Trigonometry Identities Double-Angle Identities Reciprocal Identities 1 sin θ 1 sec θ = cos θ 1 cot θ = tan θ 1 csc θ 1 cos θ = sec θ 1 tan θ = cot θ csc θ = sin θ = Quotient Identities tan θ = sin θ cos θ cot θ = cos θ sin θ Pythagorean Identities sin2 θ + cos2 θ = 1 2 2 1 + tan θ = sec θ 1 + cot2 θ = csc2 θ Even-Odd Identities sin (−θ) = − sin θ csc (−θ) = − csc θ cos (−θ) = cos θ sec (−θ) = sec θ tan (−θ) = − tan θ cot (−θ) = − cot θ Sum and Difference Identities sin (α + β) = sin α cos β + cos α sin β sin (α − β) = sin α cos β − cos α sin β cos (α + β) = cos α cos β − sin α sin β cos (α − β) = cos α cos β + sin α sin β tan α + tan β tan (α + β) = 1 − tan α tan β tan α − tan β tan (α − β) = 1 + tan α tan β sin 2θ = 2 sin θ cos θ cos 2θ = cos2 θ − sin2 θ = 2 cos2 θ − 1 2 tan θ tan 2θ = 1 − tan2 θ Half-Angle Identities 1 − cos θ θ =± sin 2 2 θ 1 + cos θ cos =± 2 2 θ 1 − cos θ sin θ 1 − cos θ tan =± = = 2 1 + cos θ sin θ 1 + cos θ Power-Reducing Identities 1 − cos 2θ sin2 θ = 2 1 + cos 2θ cos2 θ = 2 1 − cos 2θ tan2 θ = 1 + cos 2θ Law of Sines b c a = = sin A sin B sin C Law of Cosines a2 = b2 + c2 − 2bc cos A b2 = a2 + c2 − 2ac cos B c2 = a2 + b2 − 2ab cos C Product to Sum 1 sin A cos B = [sin (A − B) + sin (A + B)] 2 1 sin A sin B = [cos (A − B) − cos (A + B)] 2 1 cos A cos B = [cos (A − B) + cos (A + B)] 1 2 The Unit Circle y 2 √ 2 2 2 2, √ 4 2 60 ◦ 120 13 45 ◦ ◦ π 1 2 ◦ 5 6 ◦ 150 ◦ π √ 3 , π 90 ◦ 4 5π 6 (−1, 0) , 3 π 2π 3 3π − √ 3 2 , 1 2 2 1 π 2 √ 3 √ 3 −1 , 2 2 √ 2 √ 2 , 2 2 − (0, 1) 30 0◦ 180◦ (1, 0) 0 x ◦ 330 ◦ 210 240 ◦ 22 ◦ 5 5π 4 4π 3 − √ 2 2 √ 3 2 −1 2 , − √ 3 2 , √ 2 − 2 √ 2 2 , 2 1 ,− − √ 2 2 4 2 3π 2 (0, −1) √ 3 2 , −1 5π 3 270 ◦ 7π ◦ 31 −1 √ − 3 , 2 2 11 π 6 300 5◦ 7π 6 The above image is provided courtesy of Wikipedia and is licensed for use under the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation. More information about the original creator can be found at the website: http://en.wikipedia.org/wiki/Image:Unit_circle_angles.svg 2