BASIC INTEGRATION RULES AND PROPERTIES PROPERTIES: 1) ∫ k f ( x )dx = k ∫ f ( x )dx where k is a constant b 3) ∫ a 2) ∫ [ f ( x) ± g ( x)] dx =∫ f ( x)dx ± ∫ g ( x)dx a f (x) dx = − ∫ f (x) dx b RULES: 1) n ∫ x dx = x n +1 + C , n ≠ −1 n +1 3) ∫ e x dx = e x + C 2) 1 ∫ x dx = ln x + C 4) ∫ a x dx = ax +C ln a 5) ∫ sin x dx = − cos x + C 6) ∫ cos x dx = sin x + C 7) ∫ tan x dx = − ln cos x + C = ln sec x + C 8) ∫ cot x dx = ln sin x + C 9) ∫ sec x dx = ln sec x + tan x + C 10) 11) ∫ sec 13) ∫ sec x tan x dx = sec x + C 15) ∫ 1+ x 17) ∫x 2 xdx = tan x + C 1 2 dx = arctan x + C 1 x2 − 1 dx = arcsec x + C ∫ csc x dx = ln csc x − cot x = − ln csc x + cot x 12) ∫ csc 14) ∫ csc x cot x dx = − csc x + C 16) ∫ 2 xdx = − cot x + C 1 1 − x2 dx = arcsin x + C