Pares básicos de Transformadas de Laplace ƒ(t) F(s) ! (t) 1 d n! (t) dt sn n 1 s u(t) 1 t u(t) s2 n! t n u(t) e!at u(t), s n+1 1 s+a a>0 t n e!at u(t), n! a>0 (s + a)n+1 ! s +!2 sen(! t) u(t) 2 s cos(! t) u(t) 2 s +!2 s sen ! + " cos! sen(! t + " ) u(t) s2 + " 2 s cos! " # sen ! cos(! t + " ) u(t) s2 + # 2 c s+ d! s2 + ! 2 d& # 2 2 c + d cos % ! t " arctan ( u(t) $ c' 2 e!at sen(" t) u(t), a>0 e!at cos(" t) u(t), a>0 e!at sen(" t + # ) u(t), a>0 e!at cos(" t + # ) u(t), a>0 2 ! at c +d e d& # cos % " t ! arctan ( u(t), $ c' ! (s + a)2 + ! 2 s+a (s + a)2 + ! 2 (s + a) sen ! + " cos! (s + a)2 + " 2 (s + a) cos! " # sen ! (s + a)2 + # 2 a>0 c (s + a) + d ! (s + a)2 + ! 2 Propiedades de la Transformada de Laplace ƒ(t) F(s) a1 ƒ1 (t) ± a2 ƒ 2 (t) a1F1 (s) ± a2 F2 (s) d ƒ(t) dt sF(s) ! ƒ(0 ! ) d2 dt 2 dn dt n g(t) = ƒ(t) ƒ(t) # $0 ƒ(! )d! +g(0 " ) " s 2 F(s) ! sƒ(0 ! ) ! ƒ '(0 ! ) s n F(s) ! s n!1 ƒ(0 ! ) ! s n!2 dƒ ! d n!1 ƒ (0 ) ! L ! n!1 (0 ! ) dt dt F(s) g(0 ! ) + s s u(t ! a) e!as s ƒ(t ! a)u(t ! a) e!as F(s) e!at ƒ(t) F(s + a) ƒ(at) 1 ! s$ F# & a " a% t ƒ(t) ! n t ƒ(t) (!1) ƒ(t ) t #s lim ƒ(t) t!0 lim ƒ(t) t!" t #0 ƒ(! ) g(t " ! ) d! d F(s) ds dn n " ds n F(s) F(! )d ! lim sF(s) s!" lim sF(s) s!0 F(s)G(s )