Código genético redundante Sólo dos aminoácidos, metionina y triptófano, están codificados por un sólo codón: en el extremo contrario, tres aminoácidos, leucina, serina y arginina, están codificados por Código genético: tabla inversa (en negrita el aminoácido, a la derecha los codones que lo indican) Ala/A GCU, GCC, GCA, Leu/L UUA, UUG, CUU, CUC, CUA, CUG GCG Arg/R CGU, CGC, CGA, Lys/K AAA, AAG CGG, AGA, AGG Asn/N AAU, AAC Met/M AUG Asp/D GAU, GAC Phe/F UUU, UUC Cys/C UGU, UGC Pro/P CCU, CCC, CCA, CCG Gln/Q CAA, CAG Ser/S UCU, UCC, UCA, UCG, AGU, AGC Glu/E GAA, GAG Thr/T ACU, ACC, ACA, ACG Gly/G GGU, GGC, GGA, Trp/W UGG GGG His/H CAU, CAC Tyr/Y UAU, UAC Ile/I AUU, AUC, AUA Val/V GUU, GUC, GUA, GUG START AUG STOP UAG, UGA, UAA seis codones cada uno. Los distintos codones que codifican para un mismo aminoácido se denominan codones sinónimos. Los codones sinónimos tienden a coincidir en uno o dos de los nucleótidos iniciales (ver la tabla), aunque no siempre. Por ejemplo, cuatro de los codones que codifican para la serina (Ser ó S) empiezan por UC. Esto hace que ciertas mutaciones puntuales, las que afectan a los nucleótidos no coincidentes de codones sinónimos, carezcan de consecuencias. Por ejemplo, si en la secuencia aparece un codón UCA, la mutación del tercer nucleótido (A) a cualquier otro (G, U ó C), aunque altere de manera permanente la secuencia hereditaria (el gen) no tendrá consecuencias, porque en la secuencia polipeptídica (proteica), el aminoácido colocado seguirá siendo la serina. Exones e intrones del ADN En los genes que codifican una proteína, son los exones los que contienen la información para producir la proteína codificada en el gen. En estos casos, cada exón codifica una porción específica de la proteína completa, de manera que el conjunto de exones forma la región codificante del gen. En eucariotas los exones de un gen están separados por regiones largas de ADN (llamadas intrones) que no codifican. Splicing alternativo Es importante mencionar que un mismo gen puede producir diferentes proteínas gracias a un splicing alternativo. Mediante este proceso, algunos exones pueden ser eliminados junto con los intrones que los flanquean. De esa manera se crean diferentes versiones de ARN mensajeros que son traducidas a su vez en diferentes proteínas. Cabe notar que este splicing alternativo, no es de ninguna manera un proceso aleatorio sino que ha evolucionado de manera que las diferentes proteínas así creadas sean todas funcionales. El ADN no codificante ("ADN basura") El ADN del genoma de un organismo puede dividirse conceptualmente en dos: el que codifica las proteínas (los genes) y el que no codifica. En muchas especies, sólo una pequeña fracción del genoma codifica proteínas. Por ejemplo, sólo alrededor del 1,5% del genoma humano consiste en exones que codifican proteínas (20.000 a 25.000 genes), mientras que más del 90% consiste en ADN no codificante. El ADN no codificante (también denominado ADN basura o junk DNA) corresponde a secuencias del genoma que no generan una proteína (procedentes de transposiciones, duplicaciones, translocaciones y recombinaciones de virus, etc.), incluyendo los intrones. Hasta hace poco tiempo se pensaba que el ADN no codificante no tenía utilidad alguna, pero estudios recientes indican que eso es inexacto. Entre otras funciones, se postula que el llamado "ADN basura" regula la expresión diferencial de los genes. Por ejemplo, algunas secuencias tienen afinidad hacia proteínas especiales que tienen la capacidad de unirse al ADN (como los homeodominios, los complejos receptores de hormonas esteroides, etc.), con un papel importante en el control de los mecanismos de trascripción y replicación. Estas secuencias se llaman frecuentemente "secuencias reguladoras", y los investigadores suponen que sólo se ha identificado una pequeña fracción de las que realmente existen. La presencia de tanto ADN no codificante en genomas eucarióticos y las diferencias en tamaño del genoma entre especies representan un misterio que es conocido como el enigma del valor C Recientemente, un grupo de investigadores ha descubierto una secuencia de ADN no codificante que sería la responsable de que los seres humanos hayan desarrollado la capacidad de agarrar y/o manipular objetos o herramientas. Por otro lado, algunas secuencias de ADN desempeñan un papel estructural en los cromosomas: los telómeros y centrómeros contienen pocos o ningún gen codificante de proteínas, pero son importantes para estabilizar la estructura de los cromosomas. Algunos genes no codifican proteínas, pero sí se transcriben en ARN: ARNr, ARNt y ARN de interferencia (ARNi), que son ARN que bloquean la expresión de genes específicos). La estructura de intrones y exones de algunos genes (como los de las inmunoglobulinas son importantes por permitir los cortes y empalmen alternativos del pre-ARN mensajero que hacen posible la síntesis de diferentes proteínas a partir de un mismo gen (sin esta capacidad no existiría el sistema inmune, por ejemplo). Algunas secuencias de ADN no codificante representan pseudogenes que tienen valor evolutivo, ya que permiten la creación de nuevos genes con nuevas funciones. Otros ADN no codificantes proceden de la duplicación de pequeñas regiones del ADN; esto tiene mucha utilidad, ya que el rastreo de estas secuencias repetitivas permite estudios de filogenia