TITULO: Patogenia del síndrome reproductivo y respiratorio porcino: evaluación de la expresión de citoquinas y fenómenos de apoptosis en órganos linfoides y su papel en la respuesta inmune. AUTOR: Inmaculada Barranco Cabezudo © Edita: Servicio de Publicaciones de la Universidad de Córdoba. 2011 Campus de Rabanales Ctra. Nacional IV, Km. 396 A 14071 Córdoba www.uco.es/publicaciones publicaciones@uco.es ISBN-13: 978-84-694-8024-3 UNIVERSIDAD DE CÓRDOBA FACULTAD DE VETERINARIA PATOGENIA DEL SÍNDROME REPRODUCTIVO Y RESPIRATORIO PORCINO: EVALUACIÓN DE LA EXPRESIÓN DE CITOQUINAS Y FENÓMENOS DE APOPTOSIS EN ÓRGANOS LINFOIDES Y SU PAPEL EN LA RESPUESTA INMUNE. PATHOGENESIS OF PORCINE REPRODUCTIVE AND RESPIRATORY SYNDROME: EVALUATION OF THE EXPRESSION OF CYTOKINES AND APOPTOSIS PHENOMENA IN LYMPHOID ORGANS AND THEIR ROLE IN THE IMMUNE RESPONSE. Trabajo presentado por la Licenciada en Veterinaria Dª Inmaculada Barranco Cabezudo para optar al grado de Doctor por la Universidad de Córdoba. Departamento Comparadas Córdoba, de Anatomía 6 y Anatomía Mayo Patológica 2011 LIBRADO CARRASCO OTERO, CATEDRÁTICO DEL DEPARTAMENTO DE ANATOMÍA Y ANATOMÍA PATOLÓGICA COMPARADAS DE LA FACULTAD DE VETERINARIA DE LA UNIVERSIDAD DE CÓRDOBA INFORMA: Que Dª Inmaculada Barranco Cabezudo, Licenciada en Veterinaria, ha realizado bajo mi dirección y asesoramiento el presente trabajo titulado “PATOGENIA DEL SÍNDROME REPRODUCTIVO Y RESPIRATORIO PORCINO: EVALUACIÓN DE LA EXPRESIÓN DE CITOQUINAS Y FENÓMENOS DE APOPTOSIS EN ÓRGANOS LINFOIDES Y SU PAPEL EN LA RESPUESTA INMUNE” que considero reúne las condiciones y calidad científica necesarias para optar al grado de Doctor en Veterinaria. Y para que conste y surta los efectos oportunos, firmo el presente informe en Córdoba a 6 de Mayo de 2011 JAIME GÓMEZ LAGUNA, DOCTOR EN VETERINARIA E INVESTIGADOR EN EL CENTRO TECNOLÓGICO DE INVESTIGACIÓN ALIMENTARIA CICAP, POZOBLANCO, CÓRDOBA. INFORMA: Que Dª Inmaculada Barranco Cabezudo, Licenciada en Veterinaria, ha realizado bajo mi dirección y asesoramiento el presente trabajo titulado “PATOGENIA DEL SÍNDROME REPRODUCTIVO Y RESPIRATORIO PORCINO: EVALUACIÓN DE LA EXPRESIÓN DE CITOQUINAS Y FENÓMENOS DE APOPTOSIS EN ÓRGANOS LINFOIDES Y SU PAPEL EN LA RESPUESTA INMUNE” que considero reúne las condiciones y calidad científica necesarias para optar al grado de Doctor en Veterinaria. Y para que conste y surta los efectos oportunos, firmo el presente informe en Córdoba a 6 de Mayo de 2011 A mi familia, especialmente a mis Abuelos “Lo esencial es invisible a los ojos” (Antoine de Saint-Exupéry, “El Principito”) TABLE OF CONTENTS Lista de Abreviaturas/List of Abbreviations Introducción/ Introduction Introducción 2 Introduction 5 Resumen/ Summary Resumen 9 Summary 16 Chapter 1. REVISIÓN BIBLIOGRÁFICA 1.1. SÍNDROME REPRODUCTIVO Y RESPIRATORIO PORCINO: 1.1.1. Introducción 24 1.1.2. Virus 25 1.1.3. Epidemiología 32 1.1.4. Patogenia 36 1.1.5. Signos clínicos y lesiones 41 1.1.6. Respuesta inmune y vacunación 45 1.2. PAPEL DE LOS ÓRGANOS LINFOIDES EN EL SÍNDROME REPRODUCTIVO Y RESPIRATORIO PORCINO. 1.2.1. Estructura y funciones biológicas de los órganos linfoides en el cerdo. 50 1.2.2. Importancia de los órganos linfoides en el PRRS 54 1.3. PAPEL DE LAS CITOQUINAS EN EL SÍNDROME REPRODUCTIVO Y RESPIRATORIO PORCINO 1.3.1. Interferones (IFNα, IFNγ) 60 1.3.2. Citoquinas proinflamatorias (IL-1, IL-6, TNFα) 62 1.3.3. Otras citoquinas (IL-10, TGF-β, IL-12). 66 1.4. APOPTOSIS EN PRRS 1.4.1. Conceptos generales 1.4.2. Actualización de los fenómenos de apoptosis en el PRRS 73 77 Chapter 2. OBJETIVOS DE LA TESIS/AIMS OF THE THESIS Objetivos de la tesis 84 Aims of the thesis 86 Chapter 3. EXPERIMENTAL STUDIES 3.1. Common experimental design. 3.2. Differential expression 89 of proinflammatory cytokines in the lymphoid organs of porcine reproductive and respiratory syndrome virus-infected pigs. 3.3. IL-10, IL-12, 91 IFN-α and IFN-γ immunohistochemical expression in lymphoid organs of porcine reproductive and respiratory syndrome virus-infected pigs. 110 3.4. Apoptosis in lymphoid tissues of PRRSV infected pigs detected by immunohistochemistry. tunel and cleaved caspase-3 130 3.5. Immunohistochemical detection of extrinsic and intrinsic mediators of apoptosis in porcine paraffin-embedded tissues. 153 Chapter 4. DISCUSIÓN GENERAL/ GENERAL DISCUSSION Discusión General 176 General Discussion 185 Chapter 5. CONCLUSIONES/ CONCLUSIONS Conclusiones 195 Conclusions 197 Chapter 7. REFERENCES 200 Currículum Vitae 242 Agradecimientos 246 Patogenia del PRRS/Pathogenesis of PRRS LISTA DE ABREVIATURAS/LIST OF ABREVIATIONS Patogenia del PRRS/Pathogenesis of PRRS LISTA DE ABREVIATURAS/ LIST OF ABBREVIATIONS ABC: Avidin-Biotin-peroxidase Complex ANs: Anticuerpos Neutralizantes ANOVA: Analysis Of VAriance ADN: Ácido DesoxirriboNucleico ARN: Ácido RiboNucleico ASFv: African Swine Fever virus BALCs: BronchoAlveolar Lavage Cells BALFs: BronchoAlveolar Lavage Fluids Bcl: B-cell lymphoma CISA: Centro de Investigación en Sanidad Animal CCasp: Cleaved Caspase CD: Cluster Differentiation DC: Células Dendríticas/Dendritic Cells dpi: días post-inoculación/days post-inoculation E: Envelope EU: EUropean EAV: Equine Arteritis Virus FasL: Fas Ligand GP: Glicoproteína/Glicoproteine h: hour IFN: InterFeróN/ InterFeroN Ig: Immunoglobulins IL: InterLeuquina/InterLeukin iNOS: inducible Nitric Oxide Synthase Patogenia del PRRS/Pathogenesis of PRRS Kb: Kilobases LDEV: Lactate Dehydrogenase-Elevating Virus LV: Lelistad Virus M: Membrana/Membrane mAb: monoclonal Antibody MHC: Major Histocompatibility Complex min: minutes N: Nucleocápside NK: Natural Killer OIE: Oficina Internacional de Epizootías ORF: Open Reading Frame P: Protein PAMs: Porcine Alveolar Macrophages PBMCs: Peripheral Blood Mononuclear Cells PBS: Phosphate-Buffered Saline PCV2: Porcine CircoVirus type 2 PRCV: Porcine Respiratory Corona Virus PRRS: Porcine Reproductive and Respiratory Syndrome PRRSV: Porcine Reproductive and Respiratory Syndrome Virus RPMI medium: Roswell Park Memorial Institute médium RT: Room Temperature RT-PCR: Reverse Transcriptase-Polymerase Chain Reaction SC: Secreting Cells SD: Standard Deviation SHFV: Simian Haemorrhagic Fever Virus Patogenia del PRRS/Pathogenesis of PRRS SIV: Swine Influenza Virus SNC: Sistema Nervioso Central TCID50: 50% Tissue Culture Infectious Dose TNF: Tumor Necrosis Factor TNF-R: Tumor Necrosis Factor-Receptors TUNEL: Terminal deoxynucleotidyl transferase-mediated dUtp Nick-End Labelling wpi: weeks post-infection ZSF: Zinc salts fixative Patogenia del PRRS/Pathogenesis of PRRS INTRODUCCIÓN/ INTRODUCTION 1 Patogenia del PRRS/Pathogenesis of PRRS INTRODUCCIÓN El Síndrome Reproductivo y Respiratorio Porcino (PRRS, del inglés Porcine Reproductive and Respiratory Syndrome) es una enfermedad vírica caracterizada por inducir una respuesta inmune errática en el hospedador y es considerada como una de las enfermedades más importantes en la industria del porcino debido a las importantes pérdidas económicas que ocasiona. A pesar de que varios estudios se han realizado con el objetivo de elucidar la respuesta inmune provocada frente al virus del PRRS (PRRSV, del inglés PRRS virus) todavía quedan muchos aspectos por esclarecer. El PRRSV se replica, principalmente, en los macrófagos alveolares porcinos (MAPs) y, en menor medida, en macrófagos de otros órganos y en células dendríticas, describiéndose la replicación del virus tanto en pulmón como en órganos linfoides de cerdos infectados con el PRRSV, lo que sugiere que estos órganos desempeñarían un papel importante en la patogenia de esta enfermedad. Sin embargo, la mayoría de los estudios centrados en analizar la respuesta inmune provocada tras una 2 Patogenia del PRRS/Pathogenesis of PRRS infección con el PRRSV se han realizado principalmente sobre muestras de suero y de pulmón, existiendo escasos datos en lo que se refiere a la respuesta inmune en los órganos linfoides. Una característica importante de esta enfermedad es la persistencia del PRRSV en los animales infectados, lo que es considerado como indicativo de que tanto la respuesta inmune humoral como la celular no son capaces de eliminar completamente el virus. Asimismo, el PRRS se caracteriza por la instauración de un estado de inmunosupresión en el que podrían estar implicados los fenómenos de apoptosis, de linfocitos y macrófagos, inducidos por el PRRSV. Fenómenos de apoptosis que han sido descritos en esta enfermedad tanto asociados a la replicación del virus como a la expresión de diferentes citoquinas. El principal objetivo de esta tesis fue evaluar la expresión de citoquinas y de los fenómenos de apoptosis en los órganos linfoides de cerdos infectados experimentalmente con una cepa europea del PRRSV y su papel en la respuesta inmune. 3 Patogenia del PRRS/Pathogenesis of PRRS Los estudios experimentales llevados a cabo en esta tesis doctoral han sido financiados por el Ministerio de Educación y Ciencia, mediante los proyectos de investigación “El papel del monocito-macrófago en la patogenia del Síndrome Reproductivo y Respiratorio Porcino y otros procesos respiratorios víricos porcinos” (AGL 2006-04146/GAN) y “El papel de los linfocitos T reguladores (TREG) en el Síndrome Reproductivo y Respiratorio Porcino: correlación con la expresión de citoquinas inmunomoduladoras” (AGL200912438/GAN) y un proyecto europeo de la fundación NADIR (FP7). La doctoranda, Inmaculada Barranco, desarrolló sus estudios de doctorado gracias a la beca de referencia BES-200714928 del Ministerio de Educación y Ciencia (actual Ministerio de Ciencia e Innovación). 4 Patogenia del PRRS/Pathogenesis of PRRS INTRODUCTION Porcine Reproductive and Respiratory Syndrome (PRRS) is a viral disease characterized by inducing an erratic host immune response and considered as one of the most significant diseases in the swine industry due to causing significant economis losses. Althoug several studies have been carried out to elucidate the host immune response evoked against PRRS virus (PRRSV), there is a lot of aspect wich still remain unclear. PRRSV replication targets porcine alveolar macrophages (PAMs), macrophages in other tissues and in minor extent dendritic cells. In this sense, viral replication has been reported in both lung and lymphoid organs of PRRSV-infected pigs, which suggest a role of these organs in the pathogenesis of the disease. However, the majority of the studies focused on the immune response evoked after PRRSV infection have been performed in serum and lung samples and in a lesser extent in lymphoid tissues. An important charasteristic of the disease is the persistence of PRRSV in infected pigs pointing to both humoral 5 Patogenia del PRRS/Pathogenesis of PRRS and cellular immune response are not able to completely eliminate the virus, and also the establishment of an immunosuppression state that could be due to the apoptosis of lymphocytes and macrophages induced by PRRSV. Apoptosis phenomena have been reported during PRRS being linked to both viral particles and the expression of several cytokines. Therefore, the main aim of this thesis was to evaluate the expression of cyokines and apoptosis phenomena in lymphoid organs of pigs infected with an european PRRSV strain and their role in the immune response. The experimental studies carried out in this thesis have been founded by the Spanish Ministry of Education and Science through research projects “The role of monocyte-macrophage in the pathogenesis of Porcine Reproductive and Respiratory Syndrome and other swine viral respiratory diseases” (AGL2006-04146/GAN) and “The role of regulatory T cells (Treg) in the Porcine Reproductive and Respiratory Syndrome: correlation 6 with the expression of immunomodulatory Patogenia del PRRS/Pathogenesis of PRRS cytokines” (AGL2009-12438/GAN) and a European project of NADIR foundation (FP7). The PhD student, Inmaculada Barranco, carried out her doctoral studies supported by a grant from the Spanish Ministry of Education and Science (now, Spanish Ministry of Science and Innovation” (BES-200714928). 7 Patogenia del PRRS/Pathogenesis of PRRS RESUMEN/ SUMMARY 8 Patogenia del PRRS/Pathogenesis of PRRS RESUMEN El Síndrome Reproductivo y Respiratorio Porcino (PRRS, del inglés Porcine Reproductive and Respiratory Syndrome) es una enfermedad vírica caracterizada por inducir una respuesta inmune errática en el hospedador y es considerada como una de las enfermedades más importantes en la industria del porcino debido a las importantes pérdidas económicas que provoca. A pesar de que varios estudios se han realizado con el objetivo de elucidar la respuesta inmune provocada frente al virus del PRRS (PRRSV, del inglés PRRS virus) todavía quedan muchos aspectos por entender. El PRRSV se replica, principalmente, en los macrófagos alveolares porcinos (MAPs) y, en menor medida, en macrófagos de otros órganos y en las células dendríticas, describiéndose la replicación del virus tanto en pulmón como en los órganos linfoides de cerdos infectados con el PRRSV, y sugiriéndose que estos órganos tendrían un importante papel en la patogenia de esta enfermedad. Sin embargo, la mayoría de los estudios centrados en analizar la respuesta inmune provocada tras una 9 Patogenia del PRRS/Pathogenesis of PRRS infección con el PRRSV se han realizado principalmente sobre muestras de suero y de pulmón. El principal objetivo de esta tesis fue evaluar el papel de la expresión de citoquinas y los fenómenos de apoptosis en los órganos linfoides en la patogenia del PRRS. Para llevar a cabo este estudio, se utilizaron veintiocho lechones, de cinco semanas de edad, que fueron inoculados con el aislado 2982 del PRRSV, y sacrificados a 3, 7, 10, 14, 17, 21 y 24 días post-inoculación (dpi). Cuatro lechones, de las mismas características, fueron usados como control, inoculándolos con medio estéril, y sacrificándolos al final del experimento. De todos los animales se tomaron muestras de pulmón, tonsila y nódulos linfáticos que fueron fijadas en formol tamponado al 10 %, en solución de sales de Zinc, y en solución de Bouin, para el estudio histopatológico e inmunohistoquímico. En nuestro estudio evaluamos la expresión de IL-1α, IL-6 y TNF-α en la tonsila, y en los nódulos linfáticos retrofaríngeo y mediastínico de cerdos infectados con el PRRSV, encontrando una expresión diferente de cada citoquina en función del órgano 10 Patogenia del PRRS/Pathogenesis of PRRS analizado, lo que muestra un comportamiento diferente del PRRSV en los órganos linfoides. Este hallazgo podría estar relacionado con la falta de una respuesta inmune eficaz del hospedador frente al PRRSV. Así, mientras que en la tonsila la expresión de estas citoquinas proinflamatorias fue muy pobre, en el nódulo linfático mediastínico se observó un incremento de la expresión de TNF-α e IL-1α, siendo la IL-6 la citoquina más expresada en el nódulo linfático retrofaríngeo El antígeno del PRRSV se observó fundamentalmente en la médula o paracorteza de los órganos linfoides analizados, encontrando tanto en la tonsila como en el nódulo linfático retrofaríngeo una expresión bimodal, con un primer pico a los 3 dpi y un segundo a los 14 dpi, mientras que en el nódulo linfático mediastínico observamos un pico de expresión al comienzo del experimento disminuyendo posteriormente hasta el final del mismo. Las células inmunomarcadas tanto para el PRRSV como para las citoquinas proinflamatorias fueron principalmente macrófagos. Todas las citoquinas reguladoras estudiadas (IL-10, IL-12, IFN-α, IFN-γ) fueron expresadas fundamentalmente en las áreas linforeticulares de la tonsila y en la paracorteza de los nódulos 11 Patogenia del PRRS/Pathogenesis of PRRS linfáticos retrofaríngeo y mediastínico, principalmente en el citoplasma de los macrófagos. En la tonsila la expresión de IL10 presentó una curva con un incremento a los 3 , 14 y 24 dpi, siendo sólo estadísticamente significativo con respecto al grupo control a los 14 dpi debido a la variabilidad individual. La expresión de IFN-α, IFN-γ e IL-12 siguieron una tendencia similar en la tonsila con un pico de expresión estadísticamente significativo a los 3 dpi. En el nódulo linfático mediastínico, todas las citoquinas reguladoras mostraron picos de expresión estadísticamente significativos a los 7, 17 y 24 dpi (IL-12 e IFNγ) o 3, 14 y 24 dpi (IL-10 e IFN-α). Sin embargo, debido a la variabilidad individual existente la expresión de IL-10 no fue estadísticamente significativa. En el nódulo linfático retrofaríngeo, todas las citoquinas reguladoras siguieron una tendencia similar con una expresión máxima a los 3 dpi (IFN-α, IFN-γ) presentando otros picos de expresión a los 14 dpi así como al final del estudio (IFN-α, IL-10). En ambos nódulos linfáticos, la IL-10 fue la citoquina que mostró los niveles más bajos de expresión, mientras que IFN-γ fue la citoquina más expresada. 12 Patogenia del PRRS/Pathogenesis of PRRS La expresión de IFNs en órganos linfoides de cerdos infectados con el PRRSV junto con la persistencia del virus encontrada al final del experimento, indica que la vía de señalización de los IFNs pued no estar funcionando adecuadamente. La presencia de cuerpos apoptóticos y células picnóticas mostraron un incremento gradual en el nódulo linfático mediastínico desde el principio del estudio (3 dpi) hasta el final del mismo. Sin embargo, en la tonsila este incremento fue menor comparándolo con el grupo control, siendo sólo estadísticamente significativo al final del experimento (21 y 24 dpi). Por otro lado, la expresión de TUNEL como de Caspasa 3 activada fue similar en ambos órganos analizados con un ligero aumento al final del experimento. Aunque no se encontró correlación entre los fenómenos de apoptosis y la expresión del PRRSV, el comienzo de la expresión de los fenómenos de apoptosis coincidió con la detección del PRRSV en el nódulo linfático mediastínico. Sin embargo, en la tonsila se observó un incremento de los fenómenos de apoptosis sólo al final del experimento, aunque dichos fenómenos no coincidieron a nivel 13 Patogenia del PRRS/Pathogenesis of PRRS individual con una mayor expresión de Caspasa 3 activa y/o TUNEL. Asimismo, en nuestro estudio, encontramos mayor evidencia de fenómenos de apoptosis en el nódulo linfático mediastínico que en la tonsila, dónde la expresión de citoquinas pro-apoptóticas fue muy pobre. Tanto en tonsila como en nódulo linfático se detectó la presencia de fenómenos de apoptosis de manera independiente a la expresión de Caspasa 3, sugiriendo que la inducción de la apoptosis en nuestra infección experimental con la cepa europea 2982 del PRRSV podría inducirse por vías independientes de la Caspasa 3. Finalmente llevamos a cabo un estudio para la puesta a punto de mediadores de la apoptosis. A partir de dicho estudio, concluimos que para la detección inmunohistoquímica de los mediadores de la apoptosis implicados en la vía extrínseca (caspasa 8 y Fas) el fijador de elección fue la solución de sales de Zinc y el desenmascaramiento antigénico con tampón citrato, mientras que para los mediadores implicados en la vía intrínseca fueron los siguientes: para caspasa 9, fijación en solución de sales de Zinc con Tween 20 de desenmascaramiento antigénico, para Bcl-2 e iNOS el fijador de elección fue formol tamponado 14 Patogenia del PRRS/Pathogenesis of PRRS al 10 % con Proteinasa K y Citrato microondas como desenmascaramiento antitético respectivamente. Los buenos resultados obtenidos en la detección, mediante técnicas inmunohistoquímicas, de diferentes mediadores de la apoptosis en muestras de tejidos porcinos incluidas en parafina abren la posibilidad del potencial uso de estos anticuerpos en futuros estudios. 15 Patogenia del PRRS/Pathogenesis of PRRS SUMMARY Porcine Reproductive and Respiratory Syndrome (PRRS) is a viral disease characterized by inducing an erratic host immune response and considered as one of the most significant diseases in the swine industry due to causing significant economis losses. Althoug several studies have been carried out to elucidate the host immune response evoked against PRRS virus (PRRSV), there is a lot of aspect wich still remain unclear. PRRSV replication targets porcine alveolar macrophages (PAMs), macrophages in other tissues and in minor extent dendritic cells. In this sense, viral replication has been reported in both lung and lymphoid organs of PRRSV-infected pigs, which suggest a role of these organs in the pathogenesis of the disease. However, the majority of the studies focused on the immune response evoked after PRRSV infection have been performed in serum and lung samples and in a lesser extent in lymphoid organs.Therefore, the main aim of this thesis was to evaluate the role of the expression of cytokines and apoptotic phenomena in lymphoid organs in the pathogenesis of PRRS. 16 Patogenia del PRRS/Pathogenesis of PRRS To carried out this study twenty eight specific pathogen free, five weeks old pigs from a PRRSV seronegative farm were randomly distributed in batches of four and inoculated with PRRSV field isolate 2982 and humanely killed at 3, 7, 10, 14, 17, 21 and 24 days post-inoculation (dpi). Other four pigs, were used as controls, inoculated with 1ml of sterile medium and humanely killed at the end of the study (24dpi). Samples from the lung, tonsil and lymph nodes were fixed in 10% buffered formaldehyde, zinc salt fixative and in Bouin solution for histopathological and immunohistochemical studies. The expression of IL-1α, IL-6 and TNF-α was examined in our study in the tonsil, retropharyngeal and mediastinal lymph nodes of PRRSV-infected pigs. Interestingly, the expression of each cytokine was different depending on the body compartment examined. This finding point to a differential behaviour of PRRSV in the lymphoid organs, which may be related with the lack of a robust host immune response evoked against the virus. Whereas the expression of proinflammatory cytokines observed in the tonsil was very poor, an enhancement was 17 Patogenia del PRRS/Pathogenesis of PRRS observed on TNF-α and IL-1α levels in the mediastinal lymph node and IL-6 was the proinflammatory cytokine higher expressed in the retropharyngeal lymph node. PRRSV antigen was observed mainly in the medulla and/or in the paracortex of the different lymphoid tissues analyzed. PRRSV antigen displayed a bimodal expression in the tonsil and retropharyngeal lymph node with a first peak of expression at 3 dpi and a second one at 14 dpi, whereas the mediastinal lymph node had just a peak of expression at the beginning decreasing onwards until the end of the experiment. Cells immunollabelled against PRRSV and proinflammatory cytokines were mainly macrophages. All regulatory cytokines studied (IL-10, IL-12, IFN-α, IFNγ) were mostly expressed in the lymphoreticular areas of the tonsil and in the paracortex of retropharyngeal lymph node and mediastinal lymph node, mainly in the cytoplasm of macrophages In the tonsil, the number of IL-10 positive cells displayed a curve with an increase of its expression at 3 dpi, 14 dpi and 24dpi, being statistically significant only at 14 dpi due to individual variability. The expression of IFN-α, IFN-γ and IL-12 18 Patogenia del PRRS/Pathogenesis of PRRS showed a similar trend among them in the tonsil, with a statistically significant peak of expression at 3 dpi. In the mediastinal lymph node, all regulatory cytokines showed statistically significant peaks of expression at 7, 17 and 24 dpi (IL-12 and IFN-γ) or 3, 14 and 24 dpi (IL-10 and IFN-α). Nonetheless, the expression of IL-10 was not statistically significant due to individual variability. In the retropharyngeal lymph node all regulatory cytokines followed a similar trend with a maximum expression of all of them at 3 dpi (IFN-α, IFNγ) and another peaks of expression at 14 dpi and at the end of the study (IFN-α, IL-10). In both lymph nodes IL-10 was the cytokine which showed the lowest expression whereas IFN-γ was the one with the highest expression. The expression of IFNs in the lymphoid organs of PRRSV infected pigs together to the viral persistence at the end of the study, indicates that the IFN signaling cascade may not be working properly. The presence of apoptotic bodies and cell picnosis, increased gradually in the mediastinal lymph node from the beginning of the study (3 dpi) onwards. Nevertheless, in the tonsil the 19 Patogenia del PRRS/Pathogenesis of PRRS increase of apoptotic bodies and cells picnosis was slighter compared with the control group, being this increase statistically significant only at the end of the experiment (21 and 24 dpi). On the other hand, the expression of TUNEL and cleaved caspase 3 (CCasp3) followed a similar trend in both organs analyzed with a slight increase at the end of the study. Although no correlation was observed between apoptotic phenomena and the expression of PRRSV, the beginning of apoptotic phenomena coincided with the first detection of PRRSV antigen in the mediastinal lymph node. However, in the tonsil an enhancement of apoptotic bodies and cell picnosis was only observed at the end of the experiment wich did not coincide individually with a higher expression of CCasp3 and/or TUNEL. Moreover, in our study there were more evidences of apoptosis in mediastinal lymph node than in the tonsil, in wich the expression of pro-apoptotic cytokines was very poor. In both, tonsil and mediastinal lymph node, apoptotic phenomena were detected independently of CCasp 3 expression, suggesting that the induction of apoptosis in our experimental infection with the european strain 2982 20 Patogenia del PRRS/Pathogenesis of PRRS isolate of PRRSV could be triggered by a caspase 3 independent pathway. Finally a study to determine the best fixative and antigen retrieval method in porcine paraffin embedded tissues for the immunohistochemical detection of apoptosis mediators was carried out. According with this study, the best fixative and antigen retrieval method for the antibodies against caspase 8 and Fas (extrinsic pathway of apoptosis) were Zinc salt fixative and Citrate microwave unmasking technique, while to determine the intrinsic pathway the ideal fixative and antigen retrieval method for each antibody was as follows: for caspase 9, fixation in Zinc salt solution and antigen retrieval with Tween 20; for Bcl-2 and iNOS the optimal immunolabelling was observed in 10 % neutral buffered formalin fixed samples and with Proteinase K and Citrate microwave as antigen retrieval methods, respectively. The satisfactory results obtained in our study for a specific immunolabelling in porcine tissues point to a potential use of these antibodies in future studies. 21 Patogenia del PRRS/Pathogenesis of PRRS 1. REVISIÓN BIBLIOGRÁFICA 1.1. SÍNDROME REPRODUCTIVO Y RESPIRATORIO PORCINO: 1.1.1. Introducción 1.1.2. Virus 1.1.3. Epidemiología 1.1.4. Patogenia 1.1.5. Signos clínicos y lesiones 1.1.6. Respuesta inmune y vacunación 1.2. PAPEL DE LOS ÓRGANOS LINFOIDES EN EL PRRS. 1.2.1. Estructura y funciones biológicas de los órganos linfoides en el cerdo. 1.2.2. Importancia de los órganos linfoides en el PRRS 1.3. PAPEL DE LAS CITOQUINAS EN EL PRRS 1.3.1. Interferones (IFNα, IFNγ) 1.3.2. Citoquinas proinflamatorias (IL-1, IL-6, TNFα) 1.3.3. Otras citoquinas (IL-10, IL-12). 22 Patogenia del PRRS/Pathogenesis of PRRS 1.4. APOPTOSIS EN EL PRRS 1.4.1. Conceptos generales 1.4.2. Actualización de los fenómenos de apoptosis en el PRRS 23 Patogenia del PRRS/Pathogenesis of PRRS 1.1 SÍNDROME REPRODUCTIVO Y RESPIRATORIO PORCINO. 1.1.1. Introducción. El Síndrome Reproductivo y Respiratorio Porcino (PRRS del inglés Porcine Reproductive and Respiratory Syndrome) es una enfermedad infecciosa del cerdo, descrita por primera vez en América del Norte en 1987 y que posteriormente se diagnóstico en Europa (Collins et al., 1992; Edwards et al., 1992) denominada inicialmente como la “enfermedad misteriosa del cerdo” o “enfermedad de las orejas azules” (Paton et al., 1991; Wensvoort et al., 1991). Actualmente se considera que esta enfermedad tiene una distribución mundial, produciendo pérdidas económicas significativas en la producción porcina ya que su capacidad de producir fallos reproductivos en hembras y problemas respiratorios en lechones y cerdos en crecimientocebo lleva a una inevitable y significativa pérdida. Así se ha estimado que esta enfermedad origina pérdidas de alrededor de 560 millones de dólares al año en Estados Unidos (Neumann et 24 Patogenia del PRRS/Pathogenesis of PRRS al., 2005). La dificultad en el control de esta enfermedad es debida, principalmente, a los múltiples factores variables implicados en la patogenia, en el genotipo del virus y en la susceptibilidad del hospedador frente al PRRS (Darwich et al., 2010). La aparición en 2006 de una cepa del virus del PRRS altamente virulenta tuvo un efecto devastador en la industria del porcino en China, y demostró la habilidad del virus de mutar y evolucionar rápidamente (Tian et al., 2007). Con el fin de prevenir futuros efectos devastadores de larga duración en la industria porcina, es necesario profundizar en el conocimiento de la patogenia del PRRS y de los mecanismos de la respuesta inmune del hospedador frente a este virus, ya que estos nos permitirán establecer métodos eficientes para el control de esta enfermedad. 1.1.2. Virus. El agente causal del PRRS fue identificado por primera vez en 1991 por Wensvoort et al. (1991) como virus Lelystad, siendo ahora más comúnmente denominado como PRRSV (del 25 Patogenia del PRRS/Pathogenesis of PRRS inglés PRRS virus). El PRRSV es un virus ARN perteneciente al orden Nidovirales, familia Arteriviridae, género Arterivirus. Otros miembros de la familia Arteriviridae incluyen el virus de la arteritis equina (EAV del inglés Equine Arteritis Virus), virus elevador de lactato deshidrogenasa (LDEV del inglés Lactate Dehydrogenase-Elevating Virus), y virus de la fiebre hemorrágica de simios (SHFV del inglés Simian Haemorrhagic Fever Virus). El PRRSV fue clasificado como un miembro de la familia Arteriviridae cuando Meulenberg et al. (1993) reconocieron un número de características físicas y genómicas similares entre el PRRSV, el EAV y el LDV, como ser virus ARN de cadena positiva y que tienen la habilidad de replicarse en macrófagos, sugiriendo que estos tres virus estaban relacionados evolutivamente. El PRRSV es un virus pequeño, esférico, envuelto, formado por una cadena simple de ARN de 13-15 Kb (Benfield et al., 1992; Morrison et al., 1992). El virión tiene un diámetro de 50-60 nm con dos fragmentos de lectura abierta (ORF del inglés Open reading frame) largos (ORF1a y ORF1b) que 26 Patogenia del PRRS/Pathogenesis of PRRS codifican las proteínas no estructurales y 7 cortos (ORF2-ORF7) que codifican las proteínas estructurales del virus (Nielsen et al., 2001; Stadejek et al., 2002). Las proteínas no estructurales y la secuencia líder 5´ 3´ del virus juegan un papel importante en la replicación del virus (Fang et al., 2010; Sun et al., 2010). Considerándose que el modo de replicación del virus lo hace susceptible a tener elevados índices de mutación y recombinación. Las proteínas estructurales mayores constan de la nucleocápside (N), la proteína de membrana (M), y la glicoproteína de envoltura mayor (GP5) (Dea et al., 2000). Las proteínas estructurales menores incluyen GP2a, GP2b, GP3 y GP4 (Wu et al., 2001; Wu et al., 2005). (Fig.1). 27 Patogenia del PRRS/Pathogenesis of PRRS Figura 1. Representación esquemática de PRRSV, mostrando la estructura icosaédrica del virión, los fragmentos de lectura abierta, así como las diferentes glicoproteínas y envoltura. Imagen modificada de www.porcilisprrs.com El PRRSV posee una elevada variabilidad genética y antigénica, describiéndose dos genotipos principales; el genotipo Europeo o genotipo I y el genotipo Norteamericano o genotipo II (Snijder et al., 2004). El genotipo Europeo está representado por el virus Lelistad (LV) mientras que la cepa ATCC VR 2332 es el prototipo del genotipo Norteamericano. Estos genotipos tienen importantes diferencias patogénicas y antigénicas 28 Patogenia del PRRS/Pathogenesis of PRRS presentando sólo un 55-65% de similitud genética, existiendo además una alta diversidad genética dentro de un mismo genotipo (Wensvoort et al., 1992; Mardassi et al., 1994; Meng et al., 1995a, 1995b; Murtaugh et al., 1995; Suárez et al., 1996b; Drew et al., 1997; Gagnon and Dea, 1998; Dea et al., 2000; Forsberg et al., 2002; Goldberg et al., 2003; Mateu et al., 2003; Stadejek et al., 2006) (Fig. 2). Las proteínas estructurales M y P2b son las más conservadas (74-81%), mientras que sólo un 51-58% de la glicoproteína GP5 se conserva entre diferentes aislados del virus (Meng et al., 1994; Kapur et al., 1996; Wu et al., 2001). En este sentido, se ha descrito una marcada variabilidad en la patogenicidad dependiendo del genotipo del virus (Halbur et al., 1994; Shimizu et al., 1996; Drew, 2000; Thanawongnuwech et al., 2003). Diferencias significativas entre aislados dentro de un mismo genotipo también han sido descritas, aunque estas no son tan marcadas como las que se presentan entre los dos genotipos. Además, se ha descrito que la vacunación con un genotipo no protege frente a la infección con otro genotipo diferente 29 Patogenia del PRRS/Pathogenesis of PRRS (Labarque et al., 2003b; van Woensel et al., 1998). Inicialmente, las diferencias entre aislados fueron descritas para el genotipo Norteamericano (Meng et al., 1995a; Andreyev et al., 1997; Gagnon and Dea, 1998; Allende et al., 1999; Dea et al., 2000; Goldberg et al., 2000a). Sin embargo, recientemente se ha demostrado que entre aislados del genotipo Europeo de pueden existir diferencias de más del 18%, identificándose 4 subtipos diferentes (Drew et al., 1997; Indik et al., 2000; Forsberg et al., 2001, 2002; Bignotti et al., 2002; Stadejek et al., 2002, 2006) (Fig.2). En este sentido, Forsberg et al. (2002) demuestra que la variabilidad entre aislados del genotipo Europeo era mayor que la variabilidad encontrada entre aislados del genotipo Norteamericano, probablemente incremento del número de aislados vacunales. 30 debido al Patogenia del PRRS/Pathogenesis of PRRS Figura 2. Genotipo I (Europeo) y Genotipo II (Norteamericano). Los diferentes subtipos muestran la diversidad del Genotipo Europeo. Modificado de Stadejek et al., 2006. En esta enfermedad se han descrito diferencias entre razas de cerdos con respecto al título de anticuerpos en suero, ganancia media diaria y susceptibilidad a las lesiones inducidas por el PRRSV en pulmón, cerebro y corazón (Halbur et al., 1997). Todos estos datos sugieren que existe una variación 31 Patogenia del PRRS/Pathogenesis of PRRS alélica en los genes en la respuesta a la enfermedad producida por el PRRSV. La elevada diversidad genética y el elevado número de cepas de PRRSV junto con la susceptibilidad variable del virus entre hospedadores hacen muy complicada la tarea de controlar esta enfermedad. La diferencia entre los dos genotipos sugiere la necesidad de desarrollar diferentes medidas de control frente al PRRS dependiendo del genotipo con el que nos encontremos. Un mayor conocimiento de la relación genética entre aislados puede ayudar a explicar los mecanismos por los que emergen nuevos aislados. 1.1.3. Epidemiología. Actualmente, se considera que el PRRSV es endémico en la mayor parte de las zonas de producción de ganado porcino del mundo, considerándose como zonas libres de esta enfermedad (Fig. 3) a Suecia (Elvander et al., 1997), Noruega (OIE, 1997), Finlandia (Bøtner 1994), Suiza (Canon et al., 1998), Nueva Caledonia (OIE, 1996), Nueva Zelanda (Motha et al., 1997), 32 Patogenia del PRRS/Pathogenesis of PRRS Australia (Garner et al., 1997), Argentina (Perfumo and Sanguinetti, 2003), Brasil (Ciacci-Zanella et al., 2004) y las islas caribeñas (Alfonso and Frias-Lepoureau, 2003) Figura 3. Países considerados libres del virus del PRRS. El PRRSV tiene la habilidad de transmitirse rápidamente dentro de las poblaciones y entre poblaciones, lo que explica su rápida distribución mundial. La principal ruta de transmisión de 33 Patogenia del PRRS/Pathogenesis of PRRS PRRSV es por contacto directo entre cerdos (Albina, 1997), aunque los aerosoles y los fómites juegan también un papel importante en la transmisión horizontal de la enfermedad (De Jong et al., 1991; Le Potier et al., 1995; Albina, 1997; Torremorell et al., 1997; Lager and Mengeling, 2000; Kristensen et al., 2002; Otake et al., 2002b). El PRRSV ha sido aislado de la mayoría de las secreciones porcinas, incluyendo semen, sangre, saliva, heces, aerosoles, leche y calostro (Swenson et al., 1994; Wagstrom et al., 1997; Wills et al., 1997a), demostrándose que los verracos infectados con PRRSV pueden eliminar el virus a través del semen durante intervalos prolongados (Prieto and Castro, 2005). Algunas especies de aves, como vectores pasivos, pueden estar implicadas en la epidemiología del PRRSV. En este sentido, Zimmerman et al. (1997) demostraron que cerdos inoculados intranasalmente con un aislado del PRRSV obtenido desde heces de patos salvajes llegaron a ser virémicos, y transmitieron el virus a cerdos centinela. Las agujas contaminadas y los mosquitos también son considerados 34 Patogenia del PRRS/Pathogenesis of PRRS vectores pasivos de la enfermedad (Otake et al. 2002c, 2002d). Por el contrario, los roedores no son susceptibles al PRRSV (Hooper et al., 1994). Una característica importante de los virus de la familia Arteriviridae es su capacidad para producir infecciones persistentes, capacidad que es muy evidente en PRRSV (Allende et al., 2000; Bilodeau et al., 1994) ya que este virus puede permanecer en los tejidos durante varios meses una vez que la fase aguda de la enfermedad ha remitido. Así, se ha aislado el PRRSV de muestras de sangre de animales infectados hasta los 23 dpi, con cepas del genotipo Europeo (Prieto et al., 2003) y 28 dpi, con cepas del genotipo Norteamericano (Wills et al., 2003), o bien hasta los 56 dpi utilizando la técnica RT-PCR (del inglés Reverse Transcriptase-polymerase Chain reaction) (Wills et al., 2003). En tonsila, el PRRSV puede ser detectado por RT-PCR hasta los 251 dpi, aunque el aislamiento del virus de este órgano tan solo ha sido posible hasta los 56 dpi (Wills et al., 2003). La edad de los cerdos infectados parece ser un factor determinante, ya que se ha demostrado que es más común una 35 Patogenia del PRRS/Pathogenesis of PRRS persistencia prolongada en cerdos jóvenes, probablemente debido a que el sistema inmune es más inmaduro y hay una mayor proporción de células susceptibles (Mengeling et al., 1994). Sin embargo, a pesar de que la edad es un factor determinante en la duración de la persistencia de la enfermedad, a cualquier edad los cerdos permanecen infectados al menos varias semanas, y con frecuencia meses, tiempo durante el cual los cerdos se convierten en una fuente de infección. 1.1.4. Patogenia. El virus del PRRS se replica, preferentemente, en los macrófagos alveolares porcinos (MAPs) y ,en menor medida, en otros macrófagos, monocitos y células dendríticas (DCs) (Molitor et al., 1997; Bautista and Molitor, 1999), describiéndose la persistencia del virus durante varias semanas en pulmón y en órganos linfoides (Albina et al., 1994; Wills et al., 1997b; Allende et al., 2000; Lamontagne et al., 2001, 2003). Además, el pulmón y los órganos linfoides, con la excepción del bazo, parecen ser los sitios en los que el virus se replica durante 36 Patogenia del PRRS/Pathogenesis of PRRS la infección aguda, ya que se han detectado cantidades similares de virus en ambos tejidos (Xiao et al., 2004). Sin embargo, en las infecciones persistentes la replicación del virus está restringida fundamentalmente a la tonsila y nódulos linfáticos (Wills et al., 1997b; Rossow, 1998; Allende et al., 2000; Xiao et al., 2004). En condiciones naturales, la vía más frecuente de entrada del PRRSV es a través del tracto respiratorio, teniendo lugar rápidamente una viremia y diseminación por todo el organismo (Duan et al., 1997). Sin embargo, en condiciones experimentales se ha conseguido reproducir la enfermedad tras inocular a los animales por intramuscular, intranasal, intratraqueal, intrauterina, intravenosa oronasal, o oral, intraperitoneal (Wensvoort et al., 1991; Christianson et al., 1992; Collins et al., 1992; Christianson et al., 1993; Rossow et al., 1994; Swenson et al., 1994; Wills et al., 1994; Pol et al., 1997; Van Reeth et al., 1999; Yoon et al., 1999). El PRRS se caracteriza por producir fallos reproductivos en animales de cría y fallos respiratorios en lechones y cerdos en 37 Patogenia del PRRS/Pathogenesis of PRRS la fase de crecimiento-cebo. Como hemos indicado anteriormente, las células en las que el PRRSV se replica preferentemente son los MAPs, jugando éstos un papel importante tanto en la respuesta inmune innata como en la adquirida, llevando a cabo una serie de funciones que incluyen fagocitosis, inactivación de microorganismos, búsqueda de sitios en los que hay un daño tisular, procesamiento y presentación de antígenos a los linfocitos y producción de citoquinas. En el PRRS entre el 50-65% de los MAPs son destruidos durante las primeras semanas post-infección, dando lugar a una disminución en la función de estas células (Molitor et al., 1992; Zhou et al., 1992; Molitor, 1993) y un descenso en la liberación de aniones superóxido y peróxido de hidrógeno por macrófagos (Molitor et al., 1992; Zhou et al., 1992; Thanawongnuwech et al., 1997; Chiou et al., 2000; López-Fuertes et al., 2000), lo que impide que se produzca una buena respuesta inmune respiratoria (Fig.4). No obstante los MAPs recuperan sus funciones a las cuatro semanas tras la infección con PRRSV (Molitor, 1993; Done and Paton, 1995). 38 Patogenia del PRRS/Pathogenesis of PRRS Figura 4. Patogenia de la Forma Respiratoria y la Forma Reproductiva del PRRS. En verracos, la infección por el PRRSV es multisistémica, siendo posible el aislamiento del virus de diferentes órganos desde los 2 a los 30 dpi (Prieto et al., 2003). Tras la infección, el PRRSV se disemina por todo el organismo, infectando el semen mediante la replicación en órganos del tracto reproductor o bien por la invasión de monocitos y macrófagos infectados desde el torrente sanguíneo a los órganos reproductores, sin la necesidad de que haya una replicación del 39 Patogenia del PRRS/Pathogenesis of PRRS virus en los órganos reproductores (Prieto et al., 2003) (Fig. 4). En los testículos el PRRSV puede ser aislado sólo hasta los 8 dpi, lo que indica que éste no es un lugar principal de replicación del virus (Prieto et al., 2003). En cerdas reproductoras, la infección por el PRRSV es más significativa cuando la gestación está más avanzada, ya que el PRRSV no tiene efecto hasta la implantación del embrión (Prieto et al., 1997). Cuando las reproductoras son infectadas intranasalmente el porcentaje de embriones o fetos infectados en los dos primeros tercios de la gestación es prácticamente nulo (Mengeling et al., 1994; Prieto et al., 1996) siendo necesario infectar directamente a los fetos para que se desarrolle la infección en éstos (Christianson et al., 1993; Lager and Mengeling, 1995). Mengeling et al.(1994) y Lager et al. (1996) describieron un 100% de infección en fetos cuando la infección tiene lugar en el útero a los 90 días de gestación (Fig. 4) apareciendo nacidos muertos, nacidos débiles que generalmente mueren antes del destete, incremento en la ratio de muertes antes 40 Patogenia del PRRS/Pathogenesis of PRRS del destete o bien lechones que sobreviven pero con retraso en el crecimiento. 1.1.5. Signos clínicos y lesiones. Las infecciones por el PRRSV pueden variar desde una infección leve hasta una infección altamente patógena, que puede originar una elevada mortalidad en las explotaciones. Los signos clínicos de la enfermedad dependen tanto de la condición, raza, edad de los animales infectados como de la cepa del PRRSV que cause la infección. Así mismo, el PRRS puede presentarse en dos formas diferenciadas, reproductiva y respiratoria. La forma reproductiva se presenta en las cerdas adultas y se caracteriza por abortos, partos prematuros o retrasados, mortinatalidad y expulsión de fetos momificados y nacidos débiles (Plana et al., 1992). En el caso de los machos, el curso suele ser subclínico pero se producen alteraciones importantes en la calidad seminal (Prieto et al., 1996). Estas manifestaciones, tanto del macho como de la hembra no son exclusivas del PRRS 41 Patogenia del PRRS/Pathogenesis of PRRS y pueden encontrarse en mayor o menor grado en otras enfermedades. Así, dentro de las enfermedades de tipo infeccioso, pueden producirse cuadros abortivos que guarden alguna similitud con el PRRS en la enfermedad de Aujeszky, la influenza, el mal rojo y la infección con el circovirus porcino tipo 2 (PCV2 del inglés Porcine Circovirus type 2). Además, otras enfermedades, como la parvovirosis, pueden dar lugar a nacidos muertos y momificados. La forma respiratoria se presenta fundamentalmente en los lechones y es más difícil de valorar clínicamente ya que el cuadro, aunque puede ser grave es bastante inespecífico. Los animales presentan tos y disnea, acompañada de fiebre y pérdida de apetito, lo que conlleva a una reducción en el crecimiento. La mortalidad es elevada en cerdos de engorde, de entre las 4 y 10 semanas de edad, y en cerdos neonatales puede ser del 100% (Rossow, 1998). Las principales lesiones macroscópicas que se observan en el PRRS consisten en unos pulmones con un parcheado oscuro, que no colapsan y con una consistencia gomosa, 42 Patogenia del PRRS/Pathogenesis of PRRS especialmente en el área ventral de los lóbulos medial y accesorio, y una hiperplasia de los nódulos linfáticos (Pol et al., 1991; Halbur et al., 1995a, 1995b; Vézina et al., 1996). Cuando el virus afecta a las cerdas gestantes, podemos encontrar en los lechones nacidos débiles o muertos hidrotórax, ascitis y hemorragias subcutáneas (Plana et al., 1992; Scruggs and Sorden, 2001). Además, en las camadas infectadas pueden aparecer fetos momificados y/o macerados, así como edema y hemorragias en el cordón umbilical (Lager and Halbur, 1996). El principal hallazgo microscópico en el PRRS es la presencia de una neumonía intersticial proliferativa multifocal, caracterizada por una hipertrofia e hiperplasia de los neumocitos tipo II, infiltración de células mononucleares en los septos alveolares y presencia de restos celulares y células inflamatorias en los espacios alveolares (Halbur et al., 1994; Rossow et al., 1994, 1995). Histopatológicamente también podemos encontrar una rinitis, caracterizada por una vacuolización de las células epiteliales, pérdida de los cilios y descamación de la superficie epitelial (Pol et al., 1991; Collins et al., 1992). 43 Patogenia del PRRS/Pathogenesis of PRRS La asociación de la infección del virus PRRS con otros patógenos (Rossow, 1998) y la disminución de las funciones de los MAPs cuando han sufrido la infección por este virus, ha sugerido que este tendría un papel inmunosupresor, facilitando de esta forma la aparición de infecciones concomitantes o secundarias. Así, se ha demostrado una predisposición a la infección por Streptococcus suis tanto en animales de engorde (Galina et al., 1994; Halbur et al., 2000; Thanawongnuwech et al., 2000) como en lechones infectados en el útero (Feng et al., 2001). Además, las infecciones concomitantes de PRRS y PCV2 hacen que aumente tanto el rango de mortalidad de lechones como la gravedad de las lesiones encontradas (Allan et al., 2000; Harms et al., 2001). Durante la infección con el PRRSV también se ha descrito un incremento en la susceptibilidad a la infección con Salmonella choleraesuis (Wills et al., 2000), Bordetella bronchiseptica (Brockmeier et al., 2000), Mycoplasma hyopneumoniae (Thacker et al., 1999), virus de la gripe porcina (SIV del inglés Swine Influenza Virus) y coronavirus porcino (PRCV del inglés Porcine Respiratory Corona Virus) (Van Reeth et al., 1996). En condiciones de campo, infecciones 44 Patogenia del PRRS/Pathogenesis of PRRS concomitantes entre el PRRS y Streptococcus suis, Mycoplasma hyopneumoniae o PCV2 están presentes con elevada frecuencia (Segalés et al., 2002). Otro de los factores complejos del PRRSV es que la susceptibilidad a infecciones secundarias varía entre animales (Rossow, 1998). 1.1.6. Respuesta inmune y vacunación. Como hemos descrito anteriormente, la persistencia es una característica del PRRSV, lo que demuestra que la respuesta inmune de los cerdos frente a este virus es relativamente incapaz de eliminarlo de la circulación y de los tejidos linfoides. Los sistemas inmunes innato y adquirido son los responsables de las principales respuestas defensivas frente a los microbios y sus antígenos, utilizando diferentes mecanismos para controlar los mecanismos invasores, por lo que, se pensaba que los dos funcionaban independientemente. Sin embargo, se ha hecho cada vez más evidente que ambos interactúan estrechamente. El sistema inmune innato es inmediato, carece de especificidad para reconocer a los antígenos y su nivel de 45 Patogenia del PRRS/Pathogenesis of PRRS respuesta no aumenta con la exposición repetida. Por el contrario, el sistema inmune adaptativo ofrece respuestas específicas contra antígenos y patógenos particulares, sus principales células efectoras son los linfocitos, tiene memoria y la potencia de su acción aumenta con cada exposición a un mismo antígeno (Kumar et al., 2008). La inmunidad frente al PRRSV comienza con una respuesta inmune antiviral innata, caracterizada por una producción mínima de interferón tipo I (IFNα/β), por los macrófagos en el lugar de la infección (Murtaugh et al., 2002). Al demostrarse que no existe una producción significativa de IFNα durante la infección por el PRRSV (Albina et al., 1998a; Buddaert et al., 1998; Van Reeth et al., 1999; Murtaugh et al., 2002) se considera que la respuesta inmune innata no eficaz en esta enfermedad (Fig. 5). La inmunidad humoral antígeno específica aparece temprano tras la infección (5-7 dpi), aunque los anticuerpos neutralizantes (ANs) son detectados en suero más tarde (Loemba et al., 1996; Eichhorn and Frost, 1997; Albina et al., 46 Patogenia del PRRS/Pathogenesis of PRRS 1998b; Meier et al., 2003). La eficiencia de estos ANs en la eliminación del PRRSV no está aún clara, mostrando diferentes autores resultados contradictorios (Yoon et al., 1995; Murtaugh et al., 2002; Batista et al., 2004) (Fig. 5). La transferencia de una inmunidad maternal pasiva a los lechones por el calostro es capaz de protegerlos frente al desarrollo de una sintomatología clínica y a una reducción de la viremia (Murtaugh et al., 2002). Figura 5. Esquema de la respuesta inmune en el PRRS. La respuesta inmune celular mediada, moderada por una producción de antígenos específicos, es inducida de manera transitoria a las 4-8 semanas tras la infección por el PRRSV y 47 Patogenia del PRRS/Pathogenesis of PRRS reestimulada en un periodo de 2-4 semanas tras la reinfección (López-Fuertes et al., 1999). La respuesta inmune celular está regulada por diferentes subtipos de linfocitos que dan lugar a la producción de IFN-γ (Trinchieri, 1995). Sin embargo, la existencia de una persitencia del PRRSV sugiere que esta inmunidad celular mediada tampoco es potente y que la producción de IFN-γ es pobre o inefectiva en los primeros periodos de la infección (Murtaugh et al., 2002) (Fig 5). Por otro lado, la exposición frente al PRRSV induce una inmunidad homóloga, protegiendo eficazmente frente a las reinfecciones con la misma cepa (Lager et al., 1997). Es evidente que la interacción entre el virus y la respuesta inmune del hospedador es compleja, ya que la infección puede tanto inducir la activación como la subversión de la respuesta inmune (Murtaugh et al., 2002). La inmunosupresión inducida por el virus es capaz de prolongar la persistencia del PRRSV así como de incrementar la gravedad de otras infecciones secundarias (Mateu and Diaz, 2008). 48 Patogenia del PRRS/Pathogenesis of PRRS Actualmente el PRRS se está controlando con una combinación de vacunas y unas buenas prácticas de manejo y cría en las granjas. En el mercado están disponibles varias vacunas, incluyendo atenuadas e inactivadas, que permiten reducir los fallos reproductivos en cerdas y reducir la viremia y los problemas respiratorios en animales jóvenes. Sin embargo, la complejidad de la respuesta inmune del hospedador junto con el amplio número de cepas de PRRSV, hace que las vacunas no sean siempre eficaces. Además, la protección muchas veces es sólo parcial, confiriendo protección sólo frente aquellas cepas antigénicamente homólogas a la cepa de la vacuna (Mateu and Diaz, 2008). Sin embargo, debido a la elevada variabilidad genética del PRRSV, es difícil desarrollar una vacuna que confiera protección suficiente frente a todos los aislados del PRRSV. 49 Patogenia del PRRS/Pathogenesis of PRRS 1.2. EL PAPEL DE LOS TEJIDOS LINFOIDES EN EL PRRS. Como se ha señalado anteriormente la replicación del PRRSV se produce principalmente en el pulmón y en los en órganos linfoides. Además, tras la resolución de la fase clínica de la enfermedad, el PRRSV persiste dentro del tejido linfoide por un largo periodo de tiempo (Rossow et al., 1996; Wills et al., 1997b; Horter et al., 2002), sugiriendo que los órganos linfoides desempeñan un papel importante en la patogenia de la enfermedad. 1.2.1. Estructura y funciones biológicas de los órganos linfoides en el cerdo. Los linfocitos porcinos se producen en los órganos linfoides primarios en grandes proporciones. En la médula ósea se producen los linfocitos B, responsables de la respuesta humoral y en el timo los linfocitos T, responsables de la 50 Patogenia del PRRS/Pathogenesis of PRRS respuesta celular. Parte de estos linfocitos emigran a los órganos linfoides secundarios para formar las zonas T o B dependientes. Estas células son las responsables de las 3 principales características del sistema inmune: diferenciación de lo propio, especificidad y memoria (Kumar et al., 2008). Los órganos linfoides primarios están formados por la médula ósea y el timo, y su función es la de producir y regular la producción y diferenciación de los distintos linfocitos. Los órganos linfoides secundarios están formados a nivel sistémico por los nódulos linfáticos y el bazo, y a nivel de las mucosas por el denominado tejido linfoide asociado a mucosas (tonsilas y placas de Peyer). En el cerdo, las tonsilas del paladar blando comprenden la mayor parte del tejido tonsilar (Trautmann and Fiebiger, 1957). Histológicamente, las tonsilas son tejidos linfoepiteliales compuestos por criptas, linfoepitelio, folículos linfoides, regiones parafoliculares, tejido conectivo, células linfoides (linfocitos T y B), células dendríticas y macrófagos. Todos estos 51 Patogenia del PRRS/Pathogenesis of PRRS componentes proporcionan al cerdo, inmunidad innata, celular y humoral tanto a nivel local como a nivel sistémico. Los linfocitos presentes en las áreas foliculares y parafoliculares de las tonsilas, constituyen la mayor parte de las células inmunes que se encuentran en la tonsila del cerdo (Boeker et al., 1999; Salles and Middleton, 2000; Terzic et al., 2002). Aproximadamente el 75% de los linfocitos de la tonsila son linfocitos T y un 25% linfocitos B. De los linfocitos T, aproximadamente el 92% son CD4+ (2%), CD8+ (47%), CD4+ CD8+ (43%) y el 8% restante son células T γδ, cuya función específica es desconocida pero que puede estar implicada en la inmunidad mediada por células y en la inmunidad antiviral (Boeker et al., 1999; Salles and Middleton, 2000). Tanto la localización física de la tonsila como su organización histológica, hace que este tejido juegue un papel importante en la respuesta inmune del hospedador. A pesar de esto, hay microorganismos capaces de evadir las defensas inmunológicas y utilizar las tonsilas como una puerta de entrada en el organismo, un sitio de replicación primaria e incluso un 52 Patogenia del PRRS/Pathogenesis of PRRS lugar de persistencia. Ejemplos de patógenos porcinos que son capaces de colonizar las tonsilas son Streptococcus suis tipo 2 (Williams et al., 1973; Davies and Ossowicz, 1991), Salmonella spp. (Gray et al., 1995), el virus de la peste porcina clásica (Colgrove et al., 1969; Ressang 1973; Cheville and Mengeling, 1969) y el PRRSV (Rossow et al., 1996; Wills et al., 1997a; Horter et al., 2002). La función de los nódulos linfáticos es la de retener los antígenos que puedan llegar a través de la linfa y proceder a su presentación y procesamiento antigénico mediante la colaboración de los macrófagos y los linfocitos que lo componen. El cerdo presenta una circulación linfática y disposición celular diferente a la de otros mamíferos, llegándose a considerar como invertida (Rothkotter, 2009). Histológica y funcionalmente se observan dos zonas bien diferenciadas en el parénquima ganglionar: el tejido cortical, constituido por los folículos linfoides y el tejido linfoide difuso formado por linfocitos B, linfocitos T, macrófagos y células dendríticas, y el tejido medular, constituido principalmente por elementos 53 Patogenia del PRRS/Pathogenesis of PRRS celulares fijos formados por fibras reticulares y colágeno es pobre en linfocitos, aunque sí se observan macrófagos y células dendríticas (Rothkotter, 2009). 1.2.2. Importancia de los órganos linfoides en el PRRS La infección por el PRRSV induce una leucopenia y linfopenia transitoria en las primeras semanas de la enfermedad que se resuelve a los 8-10 días (Christianson et al., 1993; Nielsen and Botner, 1997; Feng et al., 2002; Lamontagne et al., 2003). Los nódulos linfáticos presentan lesiones desde los 4 hasta los 28 dpi (Halbur et al. 1995b; Rossow et al. 1994, 1995). En la mayoría de los cerdos infectados. los nódulos linfáticos están aumentados entre 2-10 veces, presentando una hiperplasia nodular linfoide (Lamontagne et al., 2003). Microscópicamente las lesiones se encuentran predominantemente en los centros germinales, los cuales están necróticos y depleccionados durante los primeros días trás la infección. Posteriormente, los centros germinales aumentan y están compuestos por linfocitos tipo blastocitos (Lamontagne et al., 2003). 54 Patogenia del PRRS/Pathogenesis of PRRS En tonsila se ha descrito la persistencia del PRRSV hasta los 151 dpi (Wills et al., 2003), jugando este órgano un papel fundamental como barrera primaria en la replicación y diseminación del virus (Albina et al., 1994; Wills et al., 1997b; Allende et al., 2000; Lamontagne et al., 2001; Horter et al., 2002). La información que existe sobre el efecto del virus del PRRS sobre las poblaciones de linfocitos T en los tejidos linfoides es escasa y controvertida, ya que los estudios se han centrado en el estudio de estas células procedentes de muestras de sangre, donde sólo se encuentran un 2% del total de linfocitos T que hay en el organismo (Westermann and Pabst, 1992) y donde no se ha demostrado ni replicación vírica ni presentación antigénica. Por lo tanto, es posible que la principal respuesta dependiente de linfocitos T en el PRRSV ocurra en los órganos linfoides al igual que ocurre con la respuesta de los linfocitos T en la inmunodeficiencia de los simios y con el virus de la inmunodeficiencia humana (VIH) (Kuster et al., 2000; Sopper et al., 2003). Así, se ha demostrado, mediante técnicas 55 Patogenia del PRRS/Pathogenesis of PRRS inmunohistoquímicas (Kawashima et al., 1999) o por citometría de flujo (Lamontagne et al., 2003), un incremento significativo de células T CD2+CD8high en el bazo entre los 10 y 45 dpi, lo que se ha correlacionado con una rápida eliminación del virus de la sangre y del bazo (Lamontagne et al., 2003). Sin embargo, se observó un descenso, o cambios no significativos, de las células T CD8high en el resto de órganos linfoides estudiados (Kawashima et al., 1999; Lamontagne et al., 2003), lo que podría estar relacionado con la persistencia del virus en dichos órganos. El incremento en el porcentaje de células T CD2+CD8high en la infección por el virus del PRRS se reflejó en un descenso de la ratio CD4/CD8high en el bazo y de la ratio CD8low/CD8high en el bazo y nódulo linfático mediastínico, mientras que en la tonsila no se detectaron cambios significativos (Lamontagne et al., 2003). Las células T CD2+CD8low sólo se incrementaron transitoriamente a los 3 dpi en tonsila. Las células asesinas (NK del 56 inglés Natural Killer) caracterizadas como Patogenia del PRRS/Pathogenesis of PRRS CD2+CD8lowMIL4+, no presentan variaciones significativas en el transcurso de la infección por el PRRSV, indicando una falta de estimulación de la respuesta inmune innata en órganos linfoides periféricos (Lamontagne et al., 2003) o que células NK recién producidas fueron reclutadas en los pulmones (Samson et al., 2000), facilitando una persistencia vírica en órganos linfoides. Las poblaciones de células de memoria CD2+CD8lowMIL4- sólo mostraron un descenso significativo en el bazo a los 3 dpi (Lamontagne et al., 2003). En cambio, Xiao et al. (2004) describen un descenso de la población de células T γδ en todos los tejidos examinados, especialmente en pulmón y nódulos linfáticos. La disminución de células T γδ puede contribuir a la falta de una adecuada respuesta celular mediada frente al PRRSV (Murtaugh et al., 2002) y puede deberse a una baja producción de citoquinas proinflamatorias (Van Reeth et al., 1999). Aunque Lamontagne et al. (2003) inicialmente sugirieron un posible papel de las células CD8high en la eliminación del virus debido a las coincidencias entre el incremento de esta 57 Patogenia del PRRS/Pathogenesis of PRRS población y el descenso del título del virus en suero y bazo, posteriormente observaron la persistencia de ARN vírico en la sangre y en el bazo, lo que consideraron como un indicador de un fallo en la eliminación vírica de tipo inmuno mediada. Además, la persistencia del virus en tonsila y en nódulo linfático mediastínico es considerado como un indicativo de la ausencia de una estimulación inmune de células T, lo que estaría relacionado con los bajos niveles de células CD8high en dichos órganos o con una rápida muerte de las células linfoides activadas (Lamontagne et al., 2003). Kawashima et al. (1999) describen un incremento en el número de células B en tonsila, placas de Peyer, tejido linfoide presente en la unión ileocecal, y en los nódulos linfáticos inguinal superficial, mandibular y traqueobronquial durante una infección por el PRRSV, mientras que en el timo observan un descenso de células B. 58 Patogenia del PRRS/Pathogenesis of PRRS 1.3. EL PAPEL DE LAS CITOQUINAS EN EL PRRS: INTERFERONES, CITOQUINAS PROINFLAMATORIAS Y OTRAS CITOQUINAS Las citoquinas son productos polipeptídicos de muchos tipos celulares, pero principalmente de linfocitos activados y macrófagos, que funcionan como mediadores de las respuestas inflamatorias e inmunitarias (Kumar et al., 2008). Numerosos autores han determinado la expresión de citoquinas en suero y su relación con la patogenia del PRRS (Van Reeth and Nauwynck, 2000; Liu et al., 2010; Borghetti et al., 2011) o bien en pulmón (Gómez-Laguna et al., 2010a). Lunney et al. (2010) determinaron la expresión génica de citoquinas en órganos linfoides y su papel en la eliminación del PRRSV. Sin embargo, no hay estudios que determinen la expresión de citoquinas in situ en los órganos linfoides y su papel en la patogenia del PRRS. 59 Patogenia del PRRS/Pathogenesis of PRRS 1.3.1. Interferones (IFNα, IFNγ) Los Interferones (IFNs) son glucoproteínas termoestables, ligeramente básicas y resistentes a las variaciones de pH, que pertenecen al grupo de las linfoquinas producidas espontáneamente en pequeñas cantidades por todas las células animales o humanas como respuesta a una infección viral inhibiendo de forma inespecífica la replicación viral dentro de las células del huésped (Tressguerres, 1999; Roitt et al., 2001; Abbas et al., 2001; Guyton et al., 2001; Vander et al., 2001). A pesar de que potencialmente todas las células tienen la capacidad de producir IFNs, lo secretan en mayores cantidades los leucocitos, fibroblastos y macrófagos (Kumar et al., 2008). Existiendo dos tipos fundamentales de IFNs, los denominados Tipo I y Tipo II IFN tipo I: son una superfamilia que incluyen 7 subfamilias: IFN-α, IFN-β, IFN-ε, IFN-κ, IFN-ω, IFN-δ, e IFN-τ (Pestka et al., 2004). Los subtipos IFN-α e IFN-β están muy relacionados, comparten un receptor común y tienen efectos similares (Van 60 Patogenia del PRRS/Pathogenesis of PRRS Reeth and Nauwynck, 2000), constituyendo uno de los dos mecanismos implicados en la respuesta inmune mediada por citoquinas e induciendo un estado antiviral en las células diana (Van Reeth and Nauwynck, 2000; Biron and Sen, 2001). IFN tipo II: incluye al IFN-γ o inmune, está producido exclusivamente por células del sistema inmune (Boehm et al., 1997) a diferencia de los IFN tipo I, y representa un importante regulador de la respuesta inmune adquirida. Las principales células implicadas en la expresión de IFN-α e IFN-γ, así como sus funciones biológicas generales y el papel que juegan en el PRRS se encuentran resumidas en la tabla 1. El PRRSV induce niveles mucho más bajos de IFN-α en los pulmones si lo comparamos con otras enfermedades víricas como son el SIV o el PRCV (Van Reeth et al., 1999; Van Reeth et al., 2002). Además, el PRRSV es capaz de inhibir la respuesta 61 Patogenia del PRRS/Pathogenesis of PRRS de IFN-α (Albina et al., 1998a; Buddaert et al., 1998; Chung et al., 2004), aunque los mecanismos que utiliza el virus no se conocen todavía. Con respecto a IFN-γ, Meier et al. (2003) describen un incremento inicial en la infección con el PRRSV que facilitaría la diferenciación de las células T en células secretoras de IFN-γ (IFN-γ-SC), dando lugar a un incremento eventual de la respuesta inmune. Sin embargo, otros autores, han descrito que no se producen cambios en la expresión de IFN-γ tras la vacunación con una vacuna viva modificada de una cepa europea del PRRS (Sipos et al., 2003). 1.3.2. Citoquinas proinflamatorias (IL-1, IL-6, TNFα) Las citoquinas con actividad proinflamatoria son producidas por los monocitos y macrófagos activados durante la respuesta inmune innata, aunque también pueden ser producidas por linfocitos activados (Th1 o citotóxicos), y otras células no pertenecientes al sistema inmune. Las principales citoquinas que participan en los acontecimientos celulares y moleculares 62 Patogenia del PRRS/Pathogenesis of PRRS asociados con los fenómenos inflamatorios son: IL-1, IL-6, TNF-α (Kumar et al., 2008). IL-1, Junto con IL-6 y TNF-α, constituyen una vía alternativa implicada en la respuesta inmune innata (Biron and Sen, 2001). Existen dos formas, la IL-1α y la IL-1β que, aunque solamente tienen un 25 % de homología en su secuencia aminoacídica, comparten el mismo receptor y ejercen efectos biológicos similares (Murtaugh et al., 1996; Biron and Sen, 2001). Parte de sus efectos proinflamatorios se deben a que induce la liberación de histamina en los mastocitos, generando vasodilatación y aumento de la permeabilidad vascular en el lugar de la inflamación. Es el principal pirógeno endógeno, induciendo fiebre a través de la producción de prostaglandinas. También promueve la síntesis de proteínas de fase aguda por los hepatocitos y actúa sobre el SNC induciendo sueño y anorexia, signos típicamente asociados con los procesos infecciosos (Kumar et al., 2008). 63 Patogenia del PRRS/Pathogenesis of PRRS IL-6 Es una citoquina multifuncional que juega un papel importante en la defensa del hospedador, reacciones de fase aguda y respuesta inmune. Además de su efecto en la inflamación, se ha observado que promueve la diferenciación de linfocitos B hacia células plasmáticas, induciendo la producción de inmunoglobulinas (Kishimoto et al., 1994). También puede aumentar la producción de IL-2 y el desarrollo de los precursores hematopoyéticos dependientes de la IL-3 (Ihle et al., 1995). TNF. Se han descrito dos moléculas estrechamente relacionadas, el TNF-α y el TNF-β, con elevada homología en su secuencia aminoacídica (Callard and Gearing, 1994). Los factores de necrosis tumoral fueron descritos inicialmente por su capacidad de causar necrosis en algunos tumores (Gruss and Dower, 1995). Con posterioridad, sin embargo, ganaron protagonismo por las numerosas funciones que ejercen sobre las respuestas inmunes. Junto con la IL-1 está implicado en los procesos inflamatorios derivados de los procesos infecciosos, 64 Patogenia del PRRS/Pathogenesis of PRRS elevando la temperatura corporal y produciendo caquexia y sueño al actuar sobre el SNC (Kumar et al., 2008). Por otra parte, induce la expresión de moléculas de adhesión y estimula la producción de IL-8 por células del endotelio vascular, lo que contribuye a la extravasación de linfocitos, neutrófilos y monocitos (Kishimoto et al., 1994). El TNF-β, o linfotoxina, se une a los mismos receptores que el TNF-α e induce funciones similares (Van Reeth and Nauwynck, 2000) Los cambios en la expresión de estas citoquinas se han relacionado con la modulación de la respuesta inmune frente a varios virus porcinos (Van Reeth et al., 1999; Van Reeth and Nauwynck, 2000; Carrasco et al., 2002; Salguero et al., 2002). El PRRSV ha sido descrito como un pobre inductor de citoquinas (Van Reeth et al., 1999), sin embargo, GómezLaguna et al., (2010a) describieron un incremento significativo en la síntesis de citoquinas proinflamatorias en el pulmón de cerdos infectados con el PRRSV, asociándolo a una síntesis paracrina de dichas citoquinas (Gómez-Laguna et al., 2010b). 65 Patogenia del PRRS/Pathogenesis of PRRS Las principales células implicadas en la expresión de las citoquinas proinflamatorias, así como sus funciones biológicas generales y el papel que juegan en el PRRS se encuentran resumidas en la tabla 2. 1.3.3. Otras citoquinas (IL-10, IL-12). IL-10. Es producida por monocitos/macrófagos, linfocitos T reguladores, y con menor frecuencia por linfocitos B (Biron and Sen, 2001; Moore et al., 2001). Es la citoquina inmunosupresora por excelencia, inhibiendo la síntesis de muchas otras, entre las que se encuentran IFN-γ, TNF-α, IL-2, IL-12, la expresión de MHC-II y las moléculas de adhesión en monocitos (Kishimoto et al., 1994), teniendo también efectos antiproliferativos sobre muchos tipos celulares. Sin embargo, la IL-10 ejerce también múltiples actividades inmunomoduladoras, ya que es un cofactor para el crecimiento de líneas y colonias de células mastocíticas in vitro y regula las funciones mediadas por linfocitos B, induciendo la síntesis de IgG, y linfocitos T, influyendo en el desarrollo de timocitos y células T. Esta 66 Patogenia del PRRS/Pathogenesis of PRRS citoquina también ejerce efectos reguladores sobre la angiogénesis (Callard et al., 1994). Patton et al. (2009) describen un aumento de la expresión del CD 163, receptor necesario para la internalización del PRRSV al incubar in vitro monocitos CD14+ con IL-10 relacionándose con un incremento en la expresión del PRRSV. En este sentido varios autores señalan que la IL-10 jugaría un papel importante en la inmunopatogenia del virus del PRRS (Suradhat et al, 2003; Charerntantanakul et al., 2006; SilvaCampa et al., 2009; Gómez-Laguna et al., 2010a). Así, GómezLaguna et al. (2010a) observaron que la expresión de IL-10 en el pulmón estaba correlacionada significativamente con la replicación del virus del PRRS, sugiriendo que PRRSV podría inducir la expresión de esta citoquina. En este sentido Mitchell and Kumar, (2004) describen que la IL-10 podría reducir los niveles de citoquinas implicadas en la eliminación del virus como IFNs e IL-12. Sin embargo, este papel es controvertido ya que Díaz et al. (2006) señalan que diferentes cepas de este virus son capaces de inducir respuestas de IL-10 diferentes en PBMC 67 Patogenia del PRRS/Pathogenesis of PRRS (del inglés Periferal Blood Mononuclear Cells) de cerdos infectados con el PRRSV. En este sentido Gimeno et al. (2011) describen la expresión diferencial de citoquinas utilizando 39 aislados diferentes del genotipo europeo del PRRSV, mostrando que diferentes aislados son capaces de producir diferentes patrones de IL-10 y TNF-α in vitro. IL-12, Es un heterodímero constituido por dos subunidades, p35, expresada constitutivamente y p40, que se expresa en respuesta a una amenaza (Biron and Sen, 2001). La síntesis de ambas subunidades está regulada diferencialmente, siendo ambas necesarias para la actividad funcional del heterodímero (Biron and Sen, 2001). Las principales células implicadas en la expresión de IL10 e IL-12, así como sus funciones biológicas generales y el papel que juegan en el PRRS se encuentran resumidas en la tabla 3. 68 Patogenia del PRRS/Pathogenesis of PRRS Tabla 1. Respuesta inmune, células productoras, funciones biológicas generales y papel de los interferones en el PRRS. Citoquina Respuesta inmune Células Productoras Funciones Biológicas generales Papel en el PRRS IFN-α Innata Macrófagos Linfocitos Fibroblastos • Antiviral en células diana • Inhibición de la expresión de IL-12. • Activación de la citotoxicidad de macrófagos y células NK. • In vivo: inducción de la proliferación de células T CD8 • Diferenciación de células T en IFNγ-SCs en infecciones víricas • Correlación entre IFNα-SCs específico de virus e IFNγ-SCs específico de virus (Royaee et al., 2004) • Baja respuesta de IFNα por MAPs (Albina et al., 1998a; Buddaert et al., 1998; Van Reeth et al., 1999) o PBMCs (Albina et al., 1998a; Chung et al., 2004; Van Gucht et al., 2004) • Diferentes aislados de el PRRSV desarrollan diferentes habilidades para inducir o inhibir IFNα (Lee et al., 2004) (Cousens et al., 1999; Cella et al., 2000; Kadowaki et al., 2000; Van Reeth and Nauwynck, 2000; Biron and Sen, 2001; Tizard, 2008) IFN-γ Adaptativa Células NK Células T (CD4+CD8low, CD4-CD8high y células T γδ) • Antiviral en células diana • Promueve la respuesta inmune Th1 e inhibe la Th2 •Estimula a los monocitos a un mecanismo de defensa antimicrobiano mediante la inducción de óxido nítrico sintetasa. •Incrementa la respuesta inflamatoria, incrementando la expresión de los receptores de TNF •Aumenta la produccion de citoquinas como IL12 por macrófagos y DC •Expresión de IFNγ por citoquinas como IL-12, especialmente en combinación con IL-18 (Abbas et al., 1996; Biron and Sen, 2001, 2007; Domeika et al., 2002; Rodríguez-Carreño et al., 2002;Braciale et al., 2007) •Aumento en la vacunación de el PRRSV utilizando IL-12 o IFNα como adyuvantes (Foss et al., 2002; Meier et al., 2004) •Efecto tiempo dosis relacionado con el requerimiento de la activación macrofágica (Bautista and Molitor, 1999) •Bloquea la replicación de el PRRSV en cultivos celulares (Bautista and Molitor, 1999), inhibiendo la síntesis de ARN vía PKR (Rowland et al., 2001) •Retrasa la expresión de el PRRS (Meier et al., 2003; Xiao et al., 2004; Díaz et al., 2005, 2006; Olin et al., 2005) •IFNγ-SC: correlacionado con viremia en cerdos infectados y vacunados (Díaz et al., 2005; 2006),protege frente a fallos reproductivos (Lowe et al., 2005) •Diferente expresión de IFNγ dependiento de la cepa de el PRRSV(Thanawongnuwech et al., 2003) 69 Patogenia del PRRS/Pathogenesis of PRRS Tabla 2. Respuesta inmune, células productoras, funciones biológicas generales y papel de citoquinas proinflamatorias en el PRRS. Citoquina Respuesta inmune Células Productoras Funciones Biológicas generales Papel en el PRRS IL-1 Innata Respuesta proinflamatoria Macrófagos Monocitos Neutrófilos Fibroblastos Células endoteliales •Incrementa la respuesta de IFN-γ •Induce adherencia de leucocitos a células endoteliales. •Incrementa la permeabilidad microvascular. •Induce broncoconstricción. •Pirógeno endógeno. •Contribuye a la liberación de IL-6 (Murtaugh et al., 1996; Van Reeth and Nauwynck 2000; Biron and Sen, 2001). •In Vitro:Ligero incremento en la expresión de IL1α e IL-1β (Thanawongnuwech 2001, 2004) • In Vivo: incremento en IL-1α e IL-1β en BALF desde 1 a 52 dpi (Labarque et al., 2003a; Van Gucht et al., 2003, 2004; Thanawongnuwech et al., 2004) aunque en suero IL-1β no aumenta hasta los 42 dpi (Thanawongnuwech et al., 2004) •No cambios en ARNm de IL-1α tras vacunación con una cepa europea (Sipos et al., 2003). •El PRRSV disminuye IL-1 y TNF-α en MAPs infectados in Vitro (López-Fuentes et al., 2000). IL-6 Innata Respuesta proinflamatoria PBMCs PAMs PIMs Fibroblastos Células endoteliales •Disminuye IL-1 y TNF-α a través de receptores antagonistas de IL-1 y receptores solubles de TNF- α •Activación de hepatocitos induciendo la síntesis de proteínas de fase aguda durante la respuesta de fase aguda. •Promociona el crecimiento y diferenciación de células B en células plasmáticas secretoras de inmunoglobulinas, jugando un importante papel en la respuesta humoral. •Respuesta antiinflamatoria inhibiendo la liberación de IL-1 y TNF- α y reduciendo el flujo de células inflamatorias al lugar de la inflamación. (Murtaugh et al., 1996; Scamurra et al., 1996 ; Biron and Sen, 2001 ; Van Gucht et al., 2003). •Bajos niveles tras infección con el PRRSV desde 3 a 21 dpi (Asai et al., 1999; Van Gucht et al., 2003). •Resultados contradictorios en amplificación de ARNm de IL-6, siendo detectada desde 0 a 28 dpi (Feng et al., 2003; Thanawongnuwech et al., 2004) •Cuando los cerdos son vacunados con una cepa europea de el PRRSV, IL-6 aumenta a los 22 y 44 dpi (Sipos et al., 2003). La baja respuesta de IL-6 tras inoculación o vacunación muestra que probablemente esta citoquina no tenga un papel significante en el PRRS. 70 Patogenia del PRRS/Pathogenesis of PRRS Citoquina Respuesta inmune Células Productoras Funciones Biológicas generales Papel en el PRRS TNF-α Innata Respuesta proinflamatoria Monocitos Macrófagos Células NK •Incremento de la permeabilidad vascular. •Propiedades de adhesión a las células endoteliales. •Muerte celular •Activación de monocitos y neutrófilos. •Inducción de respuesta IFNγ •Migración de células dendríticas. •Aumento de la expresión de MHC clase I. •Activación de estados antivirales •Inducción de fiebre, aletargamiento, pérdida de apetito y proteínas de fase aguda en el hígado. (Murtaugh et al., 1996; Van Reeth and Nauwynck, 2000; Biron and Sen, 2001) •TNFα es expresada in vitro (Thanawongnuwech et al., 2001, 2004) •Débil o nula expresión in vivo (Asai et al., 1999; Choi et al., 2002; Johnsen et al., 2002; Labarque et al., 2003a; Van Gucht et al., 2003; Thanawongnuwech et al., 2004) • Pobre expresión tras vacunación de el PRRSV (Sipos et al., 2003) •Reducción de la replicación viral en PAMs tras adición de TNFα recombinante porcino (LópezFuertes et al., 2000). •Diferentes aislados de el PRRSV desarrollan diferentes habilidades para inducir o inhibir TNF-α (Gimeno et al., 2011) 71 Patogenia del PRRS/Pathogenesis of PRRS Tabla 3. Respuesta inmune, células productoras, funciones biológicas generales y papel de IL-10 e IL-12 en el PRRS. Citoquina Respuesta inmune IL-10 Adaptativa IL-12 72 Innata Adaptativa Inmunidad de las mucosas Células Productoras Funciones Biológicas generales Monocitos Macrófagos Tregs Células B •Inhibición de síntesis de citoquinas: IL-1α, IL-1β, IL-6, IL-12, IFNγ y TNFα •Supresión de quemoquinas y síntesis de PGE2. •Inhibición de la presentación antigénica de las MHC clase II. •Inhibición de la expresión de TLR4. •Disminución de la respuesta Th1 y Th2. •Inhibición de la proliferación de células T CD4+ •Estimula a las NK y células T CD8+ e induce su reclutamiento, citotoxicidad y proliferación. (Cavaillon, 1994; Biron and Sen, 2001; Moore et al., 2001; Pestka et al., 2004) DCs activadas Macrófagos •Producción tras un desafío de células NK e IFNγ • Promoción de la diferenciación citolítica de las células T CD8 •Activación de células T CD4 hacia células T CD4 efectoras. •Promoción de la inmunidad tipo I contra patógenos intracelulares. (Chan et al., 1992; Cesano et al., 1993 ; Hsieh et al., 1993 ; Macatonia et al., 1995 ; Biron and Sen, 2001, 2007 ; Braciale et al., 2007). Papel en el PRRS • In vitro e in vivo: infecciones con el PRRSV muestran un incremento en los niveles protéicos y genómicos de IL-10 (Johnsen et al., 2002; Chung and Chae, 2003; Feng et al., 2003; Labarque et al., 2003a; Suradhat and Thanawongnuwech, 2003; Suradhat et al., 2003; Thanawongnuwech and Thacker, 2003; Thanawongnuwech et al., 2004; Díaz et al., 2005, 2006 ; Gómez-Laguna et al., 2010a). •Otros autores describen que no hay cambios en la expresión de IL-10 tras la infección o vacunación con el PRRSV (López-Fuertes et al., 1999; Sipos et al., 2003). •IL-10 coincide con bajos niveles de IFNγ-SCs en PBMCs de cerdos infectados o vacunados con el PRRSV (Díaz et al., 2005; 2006). •Diferentes aislados de el PRRSV desarrollan diferentes habilidades para inducir o inhibir IL-10 (Gimeno et al., 2011) •No expresión de ARNm IL-12 por PAMs infectados in Vitro (Thanawongnuwech et al., 2001). •Expresión leve-moderada de ARNm IL-12 en PAMs, BALCs y/o PBMCs (Johnsen et al., 2002; Feng et al., 2003; Thanawongnuwech and Thacker, 2003). •Incremento en la expresión de ARNm de IL-12 de 1 a 7 dpi en el pulmón (Chung and Chae, 2003). •Incremento en la ratio IL-10/IL-12 (Feng et al., 2003). •Si se usa como adyuvante da lugar a un marcado incremento de la expresión de IFN-γ (Foss et al., 2002; Carter and Curiel, 2005) pero no a una mejora en los títulos de anticuerpos (Foss et al., 2002). Patogenia del PRRS/Pathogenesis of PRRS 1.4. APOPTOSIS EN EL PRRS 1.4.1. Conceptos generales La palabra apoptosis proviene del griego, άποπτϖσις, recordando a las hojas que caen en otoño desde los árboles o a los pétalos que caen desde las flores (Kerr et al., 1972). La muerte celular se puede producir de dos maneras diferentes: por necrosis y por apoptosis (Wyllie et al., 1980). Mientras que la necrosis es la muerte celular pasiva que sigue a una agresión celular con daño grave de las membranas (Majno and Joris, 1995), la apoptosis es un proceso activo en respuesta a una variedad de estímulos fisiológicos y patológicos, en el que la célula participa de su propia destrucción siguiendo unos pasos prefijados (Kerr et al., 1972). En la figura 6 se muestran las principales diferencias que existen entre la necrosis y la apoptosis. 73 Patogenia del PRRS/Pathogenesis of PRRS Figura 6. Diferencias principales entre la Necrosis y la Apoptosis El daño o la modificación del ADN nuclear serían los principales inductores de la apoptosis. El proceso de apoptosis puede ser iniciado por diferentes estímulos, fisiológicos y patológicos, incluyendo la ausencia de factores de crecimiento, la exposición a diferentes agentes (biológicos, físicos y/o químicos) y el reconocimiento de modificaciones genéticas (Bennett et al., 1984; Albright et al., 1997; Clutton, 1997). Asimismo, cuando los genes que controlan el proceso apoptótico 74 Patogenia del PRRS/Pathogenesis of PRRS mutan, o se infra o se sobreexpresan, la apoptosis origina diversas patologías. En este sentido se han identificado diferentes genes en el proceso apoptótico, ya sea promoviendo o inhibiendo la apoptosis (oncogenes y genes supresores). Además, el óxido nítrico podría estimular o inhibir las apoptosis. Así, mientras que la estimularía en neuronas, en macrófagos, en las células β pancreáticas y participaría en el rechazos de injertos cardíacos en ratas, la inhibiría en ciertas hepatopatías (Szabolcs M., 1996) Actualmente se describen dos vías diferentes de desencadenamiento de la apoptosis, la vía intrínseca y la vía extrínseca (Roy and Nicholson, 2000) (Fig. 7). La vía intrínseca es iniciada como respuesta a un estrés celular, como daño en el ADN, tóxicos y de la replicación de ADN no programada (Roy and Nicholson, 2000). La proteína p53 es activada tras un daño en el ADN, desencadenando la apoptosis a través de la producción de un desequilibrio en la ratio Bax/Bcl-2 (Oltvai et al., 1993; Miyashita et al., 1994). En células sanas, el Bcl-2 está presente en la superficie de la membrana mitocondrial 75 Patogenia del PRRS/Pathogenesis of PRRS previniendo la inducción de la apoptosis mediante el bloqueo de la acción del Bax y de las proteínas relacionadas. Este desequilibrio en la ratio Bax/Bcl-2 a favor del Bax y las proteínas asociadas hace que se produzca una disrupción de la membrana mitocondrial, dando lugar a la liberación del citocromo C al citoplasma (Kluck et al., 1997). El citocromo C liberado forma heterodímeros con la proteínas Apaf-1, formando el apoptosoma (Zou et al., 1997). La formación del apoptosoma dará lugar a la activación de la caspasa 9, que a su vez activará la caspasa 3, dando lugar a una cascada de caspasas que provocarán la digestión de las proteínas estructurales en el citoplasma, la degradación del ADN y la fagocitosis de la célula. La vía extrínseca de la apoptosis tiene lugar cuando uno o varios receptores de muerte de superficie celular, como los receptores de la familia del factor de necrosis tumoral (TNF-R) y los receptores del Fas, se unen a su ligando apropiado como TNF-α o FasLigand (FasL), (Nagata, 1997; Ashkenazi and Dixit, 1998). Esta unión activará a la caspasa 8 que a su vez activará la caspasa 3 (Budihardjo et al., 1999; Earnshaw et al., 76 Patogenia del PRRS/Pathogenesis of PRRS 1999; Ashkenazi, 2002; Mitchell and Cotran, 2007), originando una cascada de caspasas comunes a la vía intrínseca que llevarán a la muerte celular. Figura 7. Vías Intrínseca y Extrínseca de la apoptosis. 1.4.2. Actualización de los fenómenos de apoptosis en el PRRS Diferentes virus han desarrollado estrategias para inhibir la apoptosis de la célula hospedadora en las fases tempranas de la infección y así asegurarse la replicación vírica y/o inducir la apoptosis de la célula hospedadora en las fases finales de la 77 Patogenia del PRRS/Pathogenesis of PRRS infección asegurándose así la diseminación del virus. Así mientras que el virus de la peste porcina africana (ASFV del inglés African swine fever virus) codifica proteínas que inhiben la apoptosis mediante la inactivación del gen p53 o inactivando la molécula Bax, produciendo un desequilibrio en la ratio Bax/Bcl-2 a favor de Bcl-2 (Neilan et al., 1993; Afonso et al., 1996; Brun et al., 1996; Revilla et al., 1997; Young et al., 1997) y los Baculovirus, disminuyen los fenómenos de apoptosis al expresar inhibidores de las caspasas (Manji and Friesen, 2001), el de virus de la arteritis equina (EAV) induce la apoptosis mediante una fragmentación del ADN en olígomeros nucleosomales y una activación de las caspasas, estando esta inducción de los fenómenos de apoptosis correlacionado con el efecto citopático que produce este virus (Archambault and StLaurent, 2000). En el transcurso de la la infección por el PRRSV se ha demostrado el incremento de los fenómenso de apoptosis (Suárez et al., 1996a; Sur et al., 1997; Fernández et al., 2002; Gagnon et al., 2003). Sin embargo, aún no está del todo 78 Patogenia del PRRS/Pathogenesis of PRRS elucidado que mecanismo utiliza el virus del PRRS para inducir los fenómenos de apoptosis. Así, mientras que algunos estudios describen la apoptosis como una consecuencia de la replicación del virus en la célula (apoptosis directa) (Suárez et al., 1996a; Kim et al, 2002; Coster et al., 2008) y en la que estaría involucrada la glicoproteína viral GP5 (Suárez et al., 1996a). Otros estudios describen que el virus induciría, al principio de la enfermedad, una inhibición de la apoptosis en las células infectadas, pero que esta inhibición se tornaría en una inducción de la apoptosis de las células infectadas al final de la misma (Coster et al., 2008). Sin embargo, numerosos estudios señalan que los fenómenos de apoptosis serían inducidos principalmente en células no infectadas (apoptosis indirecta) (Sur et al., 1998; Sirinarumitr et al., 1998; Choi and Chae, 2002; Feng et al., 2002; Labarque et al., 2003a). Entre los posibles mecanismos por el cual el PRRSV desencadenaría la apoptosis en las células no infectadas se considera a la unión del Fas/FasL, ya que Chang et al. (2007) describen, en un estudio in vitro, que el PRRSV es capaz de 79 Patogenia del PRRS/Pathogenesis of PRRS inducir la apoptosis de los linfocitos por la vía extrínseca, lo que para estos autores podría ser la causa de la caracterísitica inmunosupresión que se produce en el PRRS. Así mismo, se ha demostrado que algunas citoquinas, como el TNF-α (Larrick and Wright, 1990), la IL-1 (Dunger et al., 1996; Castigli et al., 2000) y la IL-10 (Estaquier et al., 1997; Liu et al., 2001) pueden inducir la apoptosis. Posiblemente el papel del TNF-α en el mecanismo de la inducción de la apoptosis en el PRRS no sea importante, ya que esta citoquina se expresa a niveles muy bajos durante la infección con este virus (Van Reeth and Nauwynck, 2000; Gómez-Laguna et al., 2010a). Sin embargo, se han demostrado, en los pulmones de cerdos infectados con el PRRSV, altos niveles de IL-1 e IL-10 (Van Reeth and Nauwynck, 2000; Thanawongnuwech, 2000; Gómez-Laguna et al., 2010a), dos citoquinas que pueden desencadenar los fenómenos de apoptosis. Lo que coincide con los estudios de Labarque et al. (2003a) que describen un pico en la expresión de apoptosis en pulmones de cerdos infectados con el PRRSV a los 14 dpi, 80 Patogenia del PRRS/Pathogenesis of PRRS precedido por un pico de producción de IL-1 e IL-10 a los 9 dpi, sugiriendo un posible papel de estas citoquinas en la inducción de la apoptosis de los monocitos/macrófagos intersticiales no infectados con el PRRSV. Sin embargo, esta hipótesis no pudo ser ratificada mediante un estudio in vitro al no observar apoptosis en monocitos ni en MAPs tratados previamente con IL-1 o IL-10 recombinante porcina. Como hemos comentado anteriormente los órganos linfoides juegan un papel muy importante en la patogenia del PRRS, así como la expresión de citoquinas como estrategia del virus para evadir la respuesta inmune o la inducción por parte del virus de los fenómenos de apoptosis en macrófagos y linfocitos, dando lugar a una inmunosupresión e impidiendo el desarrollo de una correcta respuesta inmune. Sin embargo, son muy escasos los estudios que han abordado el estudio in situ de los fenómenos de apoptosis en los órganos linfoides (Sur et al., 1998) no habiéndose realizado en los órganos linfoides, hasta la fecha, estudios in vivo que determinen la expresión in situ de 81 Patogenia del PRRS/Pathogenesis of PRRS citoquinas y el papel que estas y los fenómenos de apoptosis desempeñarían en la patogenia del PRRS. 82 Patogenia del PRRS/Pathogenesis of PRRS OBJETIVOS DE LA TESIS/ AIMS OF THE THESIS 83 Patogenia del PRRS/Pathogenesis of PRRS OBJETIVOS El objetivo general de esta tesis doctoral fue evaluar el papel de la expresión de citoquinas y de los fenómenos de apoptosis en diferentes órganos linfoides en la patogenia del Síndrome Reproductivo y Respiratorio Porcino. Para alcanzar este objetivo general planteamos los siguientes objetivos específicos: 1. Evaluar la expresión de citoquinas proinflamatorias y del antígeno vírico en órganos linfoides (tonsila y nódulos linfáticos mediastínico y retrofaríngeo) de cerdos infectados experimentalmente con un aislado europeo del PRRSV. 2. Determinar el papel que juega la expresión de citoquina reguladoras (IL-10, IL-12, IFN-γ e IFN-α) en los órganos linfoides en el transcurso de una infección experimental con un aislado europeo del PRRSV. 3. Valorar el desarrollo de los fenómenos de apoptosis en tonsila y nódulo linfático mediastínico de cerdos inoculados experimentalmente con el aislado 2982 del PRRSV, así como su correlación con la expresión del 84 Patogenia del PRRS/Pathogenesis of PRRS antígeno vírico, caspasa 3, TUNEL y citoquinas proapoptóticas. 4. Determinar el desenmascaramiento fijador ideal y el para método la de detección inmunohistoquímica de los mediadores de apoptosis en muestras de cerdo incluidas en parafina. 85 Patogenia del PRRS/Pathogenesis of PRRS AIMS The general aim of the present thesis was to evaluate the role of the expression of cytokines and apoptosis phenomena in lymphoid organs in the pathogenesis of Porcine Reproductive and Respiratory Syndrome. To achieve this general aim, we carried out the following specific aims: 1. To evaluate the expression of proinflammatory cytokines and viral antigen in lymphoid organs (mediastinal and retropharyngeal lymph nodes and tonsil) from pigs experimentally infected with a European PRRSV strain. 2. To determine the role of the expression of regulatory cytokines (IL-10, IL-12, IFN-γ and IFN-α) in lymphoid organs during an experimental infection with a European PRRSV strain.. 3. To assess the development of apoptosis phenomena in tonsil and mediastinal lymph node of pig experimentally inoculated with the isolate 2982 of PRRSV, as well as their correlation with the expression of viral antigen, caspasa 3, TUNEL and pro-apoptotic cytokines. 86 Patogenia del PRRS/Pathogenesis of PRRS 4. To determine the ideal fixative and antigen retrieval method for the immunohistochemical detection of apoptosis mediators in porcine paraffin embedded tissues. 87 Patogenia del PRRS/Pathogenesis of PRRS EXPERIMENTAL STUDIES 3.1. COMMON EXPERIMENTAL DESIGN. 3.2. DIFFERENTIAL EXPRESSION OF PROINFLAMMATORY CYTOKINES IN THE LYMPHOID ORGANS OF PORCINE REPRODUCTIVE AND RESPIRATORY SYNDROME VIRUS-INFECTED PIGS. 3.3. IL-10, IL-12, IFN-α AND IFN-γ IMMUNOHISTOCHEMICAL EXPRESSION IN LYMPHOID ORGANS OF PORCINE REPRODUCTIVE AND RESPIRATORY SYNDROME VIRUS-INFECTED PIGS. 3.4. APOPTOSIS IN LYMPHOID TISSUES OF PRRSV INFECTED PIGS DETECTED BY TUNEL AND CLEAVED CASPASE-3 IMMUNOHISTOCHEMISTRY. 3.5. IMMUNOHISTOCHEMICAL EXTRINSIC AND APOPTOSIS IN TISSUES. 88 INTRINSIC PORCINE DETECTION OF MEDIATORS OF PARAFFIN-EMBEDDED Patogenia del PRRS/Pathogenesis of PRRS 3.1. COMMON EXPERIMENTAL DESIGN. Virus The third passage of the PRRSV field isolate 2982 (kindly provided by Dr. E. Mateu) was used in this study. The virus was initially isolated in porcine alveolar macrophages (PAMs) from serum of a naturally infected piglet during an outbreak of PRRS affecting a Spanish farm where piglets displayed respiratory signs. Viral stock was adjusted to a titre of 103.0 TCID50/ml as determined by means of an immunoperoxidase monolayer assay (IPMA) (Weensvoort et al., 1991) in PAMs. PRRSV strain 2982 belonged to EU sub-genotype 1 and shared a 93 % similarity to LV based on ORF5 sequences. The viral stock was free of aerobic and anaerobic bacterial contamination as determine after bacteriological culture. Animals and experimental design A total of thirty-two, male, five-week-old piglets from a highhealthy farm historically seronegative for PRRSV were used for the experimental infection. Pigs were clinically healthy and were housed in biocontainment level III animal facilities at “Centro de Investigación en Sanidad Animal” (CISA-INIA, Valdeolmos, 89 Patogenia del PRRS/Pathogenesis of PRRS Madrid, Spain). Pigs were allowed to stay housed in the biocontainment level III facilities 10 days prior to challenge. Twenty eight pigs were randomly distributed in batches of four and inoculated by the intramuscular route, behind the right ear in the neck with 1 ml the viral inoculum. The four animals of each batch were killed at 3, 7, 10, 14, 17, 21 and 24 days postinoculation (dpi), respectively. The four remaining pigs, used as controls, were inoculated with 1 ml of sterile RPMI 1640 medium (BioWhitaker) following the same procedure and humanely killed at the end of the study (24 dpi). Euthanasia was performed by initial anesthesia with tiletamine-zolazepam (ZOLETIL, Virbac) followed by a lethal dose of 5 % sodium thiopental (THIOVET, Vet Limited). Tissue samples were analysed by in situ hybridization and were proved as negative to PCV2. This experiment was carried out under the guidelines of the European Union (Directive 86/609/EEC) and was approved by Cordoba University and CISA-INIA Ethical Review Committees. 90 Patogenia del PRRS/Pathogenesis of PRRS 3.2. DIFFERENTIAL PROINFLAMMATORY EXPRESSION CYTOKINES IN OF THE LYMPHOID ORGANS OF PORCINE REPRODUCTIVE AND RESPIRATORY SYNDROME VIRUS-INFECTED PIGS. Porcine Reproductive and Respiratory Sydrome (PRRS) is an economically significant disease of the modern swine industry (Neumann et al., 2005). This syndrome is caused by a RNA virus which belongs to Arteriviridae family, named as PRRS virus (PRRSV) (Fauquet et al., 2005). PRRSV replication targets porcine alveolar macrophages (PAMs), macrophages in other tissues and in minor extent dendritic cells (Molitor et al., 1997; Bautista and Molitor, 1999). In this sense, viral replication has been reported in both lung and lymphoid organs of PRRSV-infected pigs (Xiao et al., 2004), which suggest a role of these organs in the pathogenesis of the disease. Moreover, PRRSV is characterised by inducing an equivocal host immune response (Darwich et al., 2010) which reinforce the interest on the study of the lymphoid organs in PRRS. 91 Patogenia del PRRS/Pathogenesis of PRRS The respiratory form of the disease, morphologically characterized by interstitial pneumonia, can be induced by experimental infection of piglets and growing and fattening pigs (Pol et al., 1991; Collins et al., 1992; Fichtner et al., 1993; Halbur et al., 1993; Rossow et al., 1994; Gómez-Laguna et al., 2010b). PRRSV is known to persist during several weeks in lungs and lymphoid organs and up to 105 days postinfection (dpi) in tonsils, which play a key role as a first immune barrier in the viral replication and spread (Albina et al., 1994; Wills et al., 1997; Allende et al., 2000; Lamontagne et al., 2001; Horter et al., 2002). On the other hand, cytokines are mediators of the immune response and changes in their expression have been involved in the modulation of the immune response against several porcine viruses (Van Reeth et al., 1999; Van Reeth and Nauwynck, 2000; Carrasco et al., 2002; Salguero et al., 2002). Specifically, proinflammatory cytokines are synthesied during the early innate immune response, and act as link to the onset of an adequate adaptative immune response (Kumar et al., 2008). PRRSV is reported as a poor inducer of cytokines (Van Reeth et 92 Patogenia del PRRS/Pathogenesis of PRRS al., 1999; Gómez-Laguna et al., 2010b), however, a paracrine synthesis of proinflammatory cytokines has been reported in the lung of PRRSV-infected pigs (Gómez-Laguna et al., 2010a). Recently, our group has studied the acute phase response in PRRS as well as the expression of proinflammatory cytokines in the lung of PRRSV infected pigs (Gómez-Laguna et al., 2010a, 2010b). In the present study, samples from those previous experiments were used to determine the in situ expression of proinflammatory cytokines in the lymphoid organs of PRRSV-infected pigs and to determine their correlation with the expression of PRRSV antigen. Material and Methods Virus, Animals and Experimental Design The inoculum, animals and experimental design used in this experiment has been described above in the section “Common experimental design”. Clinical Signs, Gross Pathology and Histopathology The pigs were monitored daily for clinical signs, i.e. rectal temperature and a clinical respiratory score, as described 93 Patogenia del PRRS/Pathogenesis of PRRS previously (Halbur et al., 1995b). At the post mortem, macroscopic lesions of lung and lymphoid tissues were evaluated by visual inspection following the scoring system described by Halbur et al. (1995b). Samples from tonsils, retropharyngeal lymph node and mediastinal lymph node were collected and fixed in 10% neutral buffered formalin and in Bouin’s solution for the histopathological and immunohistochemical studies, respectively. Fixed samples were routinely processed and embedded in paraffin-wax. Immunohistochemical study The avidin-biotin-peroxidase complex technique (ABC) was used for the detection of PRRSV, and cytokine proteins as described previously (Gómez-Laguna et al., 2010a). Briefly, the sections were dewaxed and rehydrated through graded ethanol and the endogenous peroxidase activity was quenched in H2O2 3% in methanol for 30 min. The sections were washed with phosphate buffered saline (PBS; pH 7.4, 0.01 M) and incubated for 30 min at room temperature with 100 µl per slide of blocking solution in a humid chamber. Table 1 summarizes the primary antibodies and antigen retrieval methods applied. Primary 94 Patogenia del PRRS/Pathogenesis of PRRS antibodies were incubated overnight at 4 ºC in a humid chamber. In each case, the corresponding biotinylated secondary antibody was incubated for 30 min at room temperature. An avidinperoxidase complex (Vector Laboratories, Burlingame, California) was applied for 1 h at room temperature. Labelling was “visualized” by application of the NovaREDTM substrate kit (Vector Laboratories). Sections were counterstained with Mayer’s haematoxylin, dehydrated and mounted. For negative controls, the primary antibody was replaced by blocking solution, normal serum and isotype-matched reagents of irrelevant specificity. Cell counts The number of positive labelled cells against PRRSV, IL1α, IL-6 and TNF-α antibodies in tonsil, and retropharyngeal and mediastinal lymph nodes were counted using a method previously described immunolabelled were (Salguero counted et in al., 25 2005). non Cells overlapping consecutive selected, high magnification fields of 0.20 mm2 (paracortex and medulla of lymph nodes, and lymphoreticular areas of tonsils) or 25 non overlapping consecutive selected 95 Patogenia del PRRS/Pathogenesis of PRRS structures (lymphoid follicles of lymph nodes and tonsils) for each animal. Results are expressed as the number of cells per mm2. Statistical Analysis The numbers of PRRSV positive cells and cytokineexpressing cells were expressed as a mean ± SD. These values were evaluated for approximate normality of distribution by the Kolmogorov-Smirnov test. Differences between the means of control and inoculated animals were assessed by the MannWhitney-U non-parametric test (GraphPad Instat 3.05, San Diego, California). Correlation between the expression of virus and cytokines was assessed by the Spearman test (GraphPad Instat 3.05). P < 0.05 represented a statistically significant difference between inoculated and control animals. 96 Patogenia del PRRS/Pathogenesis of PRRS Table 1. Antibodies source and immunohistochemical techniques used for the immunocharacterisation of PRRSV, macrophages and cytokines antigens expression. Type of Commercial Specificity Source antibody Anti-PRRSV (clone SDOW-17/SR-30) Antigen Fixative Dilution origin Mouse myeloma Rural cells Technologies Inc. mAb retrieval Bouin 1:1.000 HTAR Anti-human IL-1α pAb Rabbit serum Endogen Bouin 1:100 Tween 20 0.01 % Anti-pig IL-6 pAb Rabbit serum Endogen Bouin 1:10 Tween 20 0.01 % Anti-human TNFα (clone 68B6A3) mAb Biosource Bouin 1:25 Tween 20 0.01 % NSO Mouse myeloma cell line mAb: Monoclonal Antibody. pAb: Polyclonal Antibody. HTAR: High Temperature Antigen Retrieval with citrate buffer ph 6.0. Tween 20 0.01 %: Tween 20 diluted 0.01 % in PBS during 10’ 97 Patogenia del PRRS/Pathogenesis of PRRS Results Clinical Signs, Gross Pathology and Histopathology Control animals displayed neither clinical signs nor gross lesions throughout the study. Inoculated animals only presented mild dullness and weight loss from 3 dpi onwards, and a mild elevation of the rectal temperature at 3 and 10 dpi, but always within the physiological ranges. Gross lung lesions displayed a significant increase from 7 dpi onwards, showing a mottled tan and rubbery parenchyma which failed to collapse. Retropharyngeal and mediastinal lymph nodes showed a mild to moderate enlargement from 10 dpi onwards. Microscopically just a mild hypertrophy of germinal centres and apoptotic bodies were observed in the lymphoid follicles of lymph nodes of inoculated animals, and in lesser extent in the tonsil, from 7 dpi onwards, together with some figures of cell picnosis, mitosis and necrosis. Tissue expression of PRRSV antigen in tonsil and lymph nodes The number of PRRSV antigen labelled cells showed a mild increase at 3 dpi in the tonsil of PRRSV-infected pigs, 98 Patogenia del PRRS/Pathogenesis of PRRS being the positive reaction detected mainly within the cytoplasm of macrophages in the lymphoreticular areas of the tonsil (Fig. 1A). In addition, the viral antigen detection displayed maximum values at 14 dpi (P<0.05), decreasing onwards (Fig. 2A). In the retropharyngeal and mediastinal lymph nodes the detection of PRRSV was mainly observed in the cytoplasm of macrophages (Fig. 1B). Furthermore, viral antigen was mostly observed in the paracortex of the retropharyngeal lymph node and in the medulla of mediastinal lymph node (Fig 1B). The detection of PRRSV antigen in retropharyngeal and mediastinal lymph nodes yielded a first peak at 3 and 7dpi (P <0.05), respectively, followed by a second peak at 14 dpi in the retropharyngeal lymph node and decreasing onwards (Figs. 3A and 4A,). Tissue expression of proinflammatory cytokines in the tonsil All proinflammatory cytokines studied were mostly expressed in the lymphoreticular areas of the tonsil, mainly in the cytoplasm of macrophages and secondly in the cytoplasm of neutrophils (IL-1α) or lymphocytes (TNF-α, IL-6) (Fig 1F). Random scarce macrophages and lymphocytes were also 99 Patogenia del PRRS/Pathogenesis of PRRS immunolabelled against TNF-α and/or IL-6 in the lymphoid follicles of the tonsil. None of the proinflammatory cytokines analyzed displayed significant changes with respect to the control group in the tonsil (Fig 2 B,C,D). Tissue expression of proinflammatory cytokines in the lymph nodes IL-1α and IL-6 were mainly expressed in the paracortex of the retropharyngeal lymph node but in the medulla of the mediastinal lymph node, whereas the expression of TNF-α was mainly observed in the medulla of both lymphoid organs. The expression of all these three cytokines was mainly observed in the cytoplasm of macrophages and in a lesser extent in the cytoplasm of lymphocytes (TNF-α, IL-6) (Figs. 1D and 1E) and neutrophils (IL-1α) (Fig. 1C). However, a significant expression of IL-1α by neutrophils was observed in the mediastinal lymph node (Fig. 4B). 100 Patogenia del PRRS/Pathogenesis of PRRS Figure 1. (A) Tonsil of a pig killed at 17 dpi showing macrophages labelled for expresión of PRRSV. IHC. Bar, 100 µm. Inset: Detail of the cytoplasmic immunolabelling against PRRSV in the macrophages of the tonsil from the same animal. IHC. Bar, 50 µm (B) Macrophages immunostained for PRRSV expression in the mediastinal lymph node of a pig killed at 7 dpi. IHC. Bar, 15 µm. (C) Some macrophages and a neutrophil (arrow) immunolabelled for IL-1α expression in the paracortex of the retropharyngeal lymph node of a pig killed at the end of the experiment. IHC. Bar, 20 µm. (D) Detail of the medulla of the mediastinal lymph node of a pig killed at 7 dpi with macrophages and lymphocytes (asterisks) immunolabelled for TNF-α expression. IHC. Bar, 20 µm. (E) Retropharyngeal lymph node of a pig killed at 3 dpi showing macrophages for expression of IL-6. Notice the high expression of IL-6 in the medulla of the retropharyngeal lymph node compare with this expression in the paracortex. IHC. Bar, 100 µm. (F) Lymphoreticular area of the tonsil of a pig killed at the end of the experiment showing macrophages and lymphocytes (asterisks) labelled for the expression of IL-6. IHC. Bar, 20 µm. 101 Patogenia del PRRS/Pathogenesis of PRRS Proinflammatory cytokines displayed different patterns of expression in retropharyngeal and mediastinal lymph nodes. Whereas IL-6 was the highest cytokine expressed in the retropharyngeal lymph node, IL-1α was the one most expressed in the mediastinal lymph node, with a significant contribution of IL-1α-expressing neutrophils (Figs. 3B and 4B). On the other hand, whereas IL-1α and TNF-α were slightly expressed in the retropharyngeal lymph node, both displayed a higher expression in mediastinal lymph node following a similar trend with a statistically significant peak of expression at 7 dpi (Figs 3 and 4) Figure 2 (A-D) Counts for cells expressing PRRSV antigen, IL-1α, TNF-α and IL-6 respectively in the tonsil of pigs infected with PRRSV. * Indicates statistically significant differences (P<0.05) between the inoculated group and controls. 102 Patogenia del PRRS/Pathogenesis of PRRS Figure 3 (A-D) Counts for cells expressing PRRSV antigen, IL-1α, TNF-α and IL-6 respectively in the retropharyngeal lymph node of pigs infected with PRRSV. * Indicates statistically significant differences (P<0.05) between the inoculated group and controls. Figure 4 (A-D) Counts for cells expressing PRRSV antigen, IL-1α, TNF-α and IL-6 respectively in the mediastinal lymph node of pigs infected with PRRSV. * Indicates statistically significant differences (P<0.05) between the inoculated group and controls. 103 Patogenia del PRRS/Pathogenesis of PRRS Correlation between the expression of PRRSV and proinflammatory cytokine antigens A significant correlation was observed between the detection of PRRSV and IL-1α (r = 0.76; P<0.05) and also between the expression of IL-1α and TNF-α (r = 0.83; P<0.05) in the mediastinal lymph node. On the other hand, no correlation was observed between the expression of PRRSV and proinflammatory cytokines neither in the tonsil nor in the retropharyngeal lymph node (P>0.05), but the maximum of the expression of proinflammatory cytokines coincided or was detected just after the peak of viral expression. Furthermore, a high correlation was observed between the viral expression in retropharyngeal lymph node and tonsil (r = 0.93; P<0.05). Additionally, a significant correlation was observed between the expression of IL-1α (r = 0.79; P<0.05), IL-6 (r = 0.79; P<0.05) and TNF-α (r = 0.88; P<0.05) in mediastinal lymph node when compared with the expression of these cytokines in the lung of PRRSV-infected pigs reported previously in a parallel study carried out by our group (Gómez-Laguna et al., 2010a). 104 Patogenia del PRRS/Pathogenesis of PRRS Discussion PRRSV is known to replicate mainly in porcine alveolar macrophages (PAMs), macrophages in other tissues and in minor extent in dendritic cells (Molitor et al., 1997; Bautista and Molitor, 1999). However, the majority of the studies focused on the immune response evoked after PRRSV infection have been performed in serum and lung samples (Batista et al., 2004; Xibao et al., 2010; Gómez-Laguna et al., 2010a) and in a lesser extent in the lymphoid tissues in situ (Rossow et al., 1996; Beyer et al., 2000). Thus, in the present study the in situ expression of proinflammatory cytokines was examined in the lymphoid organs of PRRSV-infected pigs in order to put light in the immune response evoked against PRRSV. Although oronasal route is considered as the main entry route of PRRSV (Beyer et al., 2000), in the present study intramuscular route was selected for the inoculation of the animals, in order to assess an efficient infection of inoculated animals. Recently Hermann et al. (2005) compared oral, nasal and intramuscular routes of exposure to PRRSV, showing that pigs were the most susceptible by parenteral route, being 105 Patogenia del PRRS/Pathogenesis of PRRS infected all animals exposed to PRRSV by intramuscular route. In our study the clinical signs, gross and micro lesions as well as the detection of PRRSV in lymphoid organs throughout the study confirm the efficient infection of inoculated animals. PRRSV antigen was observed mainly in the medulla and/or in the paracortex of the different lymphoid tissues analyzed. The expression of PRRSV displayed a bimodal expression in the tonsil and retropharyngeal lymph node with a first peak of expression at 3 dpi and a second one at 14 dpi, whereas the mediastinal lymph node had just a peak of expression at the beginning decreasing onwards until the end of the experiment. The tonsil is considered as an immune barrier in PRRSV replication and spread (Albina et al., 1994; Wills et al., 1997; Allende et al., 2000; Lamontagne et al., 2001; Horter et al., 2002). However, despite the expression of PRRSV antigen in the tonsil a lack of proinflammatory cytokines response was observed throughout the present study. This lack of response observed in the tonsil may be related with the PRRSV persistence in the tonsil of infected pigs (Beyer et al., 2000; Wills et al., 2003), as well as with the increased susceptibility to 106 Patogenia del PRRS/Pathogenesis of PRRS secondary pathogens (Wills et al., 2000; Thanawongnuwech et al., 2000, 2004) reported by other authors. The expression of IL-1α, IL-6 and TNF-α was examined in our study in the tonsil, retropharyngeal and mediastinal lymph nodes of PRRSV-infected pigs. Interestingly, the expression of each cytokine was different depending on the body compartment examined. Wheras no expression of proinflammatory cytokines was observed in the tonsil, an enhancement was observed on TNF-α and IL-1α levels in the mediastinal lymph node and IL-6 expression in the retropharyngeal lymph node. This finding point to a differential behaviour of PRRSV in the lymphoid organs, which may be related with the lack of a robust host immune response evoked against the virus. In our study the different response against PRRSV in each body compartment was reflected by the kinetics of proinflammatory cytokines in each lymph node. In this sense, the expression of proinflammatory cytokines in lymph nodes draining different areas of the organism represent a useful tool for the study of the immunopathogenesis of PRRS. This fact is supported by the correlations observed in our study between the 107 Patogenia del PRRS/Pathogenesis of PRRS retropharyngeal lymph node and tonsil and between the mediastinal lymph node and the results observed in the lung from a previous parallel study of our group (Gómez-Laguna et al., 2010a). Proinflammatory cytokines are able to modulate the expression of CD163, a hemoglobin scavenger receptor which acts as a PRRSV receptor and is involved in viral uncoating (Van Gorp et al., 2008). Whereas IL-6 is able to upregulate the expression of CD163, TNF-α induces a downregulation of this receptor (Buechler et al., 2000), inhibiting somehow PRRSV replication. Thus, the imbalance between these cytokines in lymphoid organs may play a role in the susceptibility to PRRSV replication. In conclusion, lymphoid organs and proinflammatory cytokines were shown to represent an important target of study for clarifying the immunopathogenesis of PRRS. In our study, the lack of homogeneity in the immune response observed in the lymphoid organs of the two body cavities point to another aspect of the erratic immune response observed in PRRS. Moreover, the absence of proinflammatory cytokines expression in the 108 Patogenia del PRRS/Pathogenesis of PRRS tonsil may be of significance both in PRRSV persistence and susceptibility to concomitant infections. 109 Patogenia del PRRS/Pathogenesis of PRRS 3.3. IL-10, IL-12, IMMUNOHISTOCHEMICAL IFN-α AND EXPRESSION IFN-γ IN LYMPHOID ORGANS OF PORCINE REPRODUCTIVE AND RESPIRATORY SYNDROME VIRUS-INFECTED PIGS. Porcine Reproductive and Respiratory Sydrome (PRRS) is one of the most economically significant disease of the swine industry (Neumann et al., 2005), which is caused by PRRS virus (PRRSV) (Fauquet et al., 2005). PRRSV induces an impairment of the host immune response favouring a prolonged viraemia and viral replication (Darwich et al., 2010); however, the exact mechanism involved in the modulation of the immune response still remains unclear. PRRSV replication has been reported in both lung and lymphoid organs of PRRSV-infected pigs (Xiao et al., 2004), which suggest a role of these organs in the pathogenesis of the disease. The production of cytokines is one of the tools used by macrophages and also by several other immune or non-immune cells in the defense against pathogens (Kumar et al., 2008). IFN110 Patogenia del PRRS/Pathogenesis of PRRS γ and IL-12 are classically involved in the subtype of immune response mediated by Th1 lymphocytes, working both cytokines in parallel (Biron and Sen, 2001). As well as proinflammatory cytokines do, IFN-α participates in the innate response, triggering an antiviral activity by means the differentiation of naïve T cells into IFN-γ secreting cells and the down-regulation of IL-12 expression (Biron and Sen, 2001; Tizard, 2008). In contrast, IL-10 is considered to be an immunosuppressive cytokine as it down-regulates the expression of several other cytokines including IL-1α, TNF-α, IL-6, IL-10 itself, IL-12 and IFN-γ (Biron and Sen, 2001; Moore et al., 2001). Several studies have examined the role of cytokines in the pathogenesis of PRRS (Van Reeth and Nauwynck, 2000); however, it is not clear how the cytokines regulate the onset of the immune response against the virus. Albina et al. (1994) suggested that downregulation of IFN-α production may play an important role in enabling PRRSV replication, likewise, Bautista and Molitor (1999) reported a significant role of IFN-γ in the protection of host cells against viral replication. In this sense, another study of a PRRSV modified-live vaccine showed that upregulation of IL111 Patogenia del PRRS/Pathogenesis of PRRS 10 expression was associated with a lower number of IFN-γ secreting cells amongst peripheral blood mononuclear cells (PBMCs) and a lower protection rate after challenging (Díaz et al., 2006). Recently, our group has studied the protein expression of different cytokines in the lung (Gómez-Laguna et al., 2010a) and serum (Gómez-Laguna et al., 2010b) of PRRSV infected pigs and it has also been observed in the experimental study explained before a lack of homogeneity in the expression of proinflammatory cytokines in the lymphoid organs of PRRSVinfected pigs pointing to a contribution to the erratic immune response observed in PRRS. In the present study, samples from those previous experiments were used to determine the in situ expression of regulatory cytokines in the lymphoid organs of PRRSV-infected pigs and to determine their correlation with the expression of PRRSV antigen. Material and Methods Virus, Animals and Experimental Design 112 Patogenia del PRRS/Pathogenesis of PRRS The inoculum, animals and experimental design used in this experiment have been described above in the section “Common experimental design”. Clinical Signs, Gross Pathology and Histopathology The pigs were monitored daily for clinical signs as previously described Halbur et al. (1995b). At the post mortem study, macroscopic lesions were evaluated by following the scoring system described by Halbur et al. (1995b). Samples from tonsils, retropharyngeal lymph node and mediastinal lymph node were collected and fixed in 10% neutral buffered formalin and in Bouin’s solution for the histopathological and immunohistochemical studies, respectively. Fixed samples were routinely processed and embedded in paraffin-wax. Immunohistochemical study The avidin-biotin-peroxidase complex technique (ABC) was used for the detection of PRRSV, and cytokine proteins as described previously (Gómez-Laguna et al., 2010a). The primary antibodies used were monoclonal anti-PRRSV, clone SDOW-17/SR-30, diluted 1 in 1000; polyclonal anti-pig IL-10 diluted 1 in 20; polyclonal anti-pig IL-12 diluted 1 in 20; 113 Patogenia del PRRS/Pathogenesis of PRRS polyclonal anti-pig IFN-γ diluted 1 in 20 and monoclonal antipig IFN-α (clone F17) diluted 1 in 300 . The antigen retrieval method used for all the cytokines studied was Tween 20 diluted 0.01 % in PBS during 10 min but for monoclonal antiPRRSV, clone SDOW-17/SR-30, a High Temperature Antigen Retrieval with citrate buffer ph 6.0 was used. Primary antibodies were incubated overnight at 4 ºC in a humid chamber. In each case, the corresponding biotinylated secondary antibody was incubated for 30 min at room temperature. An avidin-peroxidase complex (Vector Laboratories, Burlingame, California) was applied for 1 h at room temperature. Labelling was “visualized” by application of the NovaREDTM substrate kit (Vector Laboratories). For negative controls, the primary antibody was replaced by blocking solution, normal serum and isotype-matched reagents of irrelevant specificity. Sections were counterstained with Mayer’s haematoxylin, dehydrated and mounted. Cell counts The number of positive labelled cells against PRRSV, IL-10, IL-12, IFN-α and IFN-γ antibodies in tonsil, and 114 Patogenia del PRRS/Pathogenesis of PRRS retropharyngeal and mediastinal lymph nodes were counted using a method previously described (Salguero et al., 2005). Cells immunolabelled were counted in 25 non overlapping consecutive selected, high magnification fields of 0.20 mm2 (paracortex and medulla of lymph nodes, and lymphoreticular areas of tonsils) or 25 non overlapping consecutive selected structures (lymphoid follicles of lymph nodes and tonsils) for each animal. Results are expressed as the number of cells per mm2. Statistical Analysis The numbers of PRRSV positive cells and cytokineexpressing cells were expressed as a mean ± SD. These values were evaluated for approximate normality of distribution by the Kolmogorov-Smirnov test. Differences between the means of control and inoculated animals were assessed by the MannWhitney-U non-parametric test (GraphPad Instat 3.05, San Diego, California). Correlation between the expression of virus and cytokines was assessed by the Spearman test (GraphPad Instat 3.05), P < 0.05 represented a statistically significant difference between inoculated and control animals. 115 Patogenia del PRRS/Pathogenesis of PRRS Results Clinical Signs, Gross Pathology and Histopathology The clinical signs, gross and microscopic lesions were previously described in page..... Tissue expression of PRRSV antigen in tonsil and lymph nodes Viral antigen was mostly observed in the cytoplasm of macrophages in the paracortex of the retropharyngeal lymph node (Fig. 1A), in the lymphoreticular areas of the tonsil (Fig. 1B) and in the medulla of mediastinal lymph node (Barranco et al., submitted manuscript). The tissue expression of PRRSV antigen in tonsil and lymph nodes is represented in figure 2 (Fig. 2A,B,D) together with the expression of PRRSV antigen in lung described by Gómez-Laguna et. al., (2010a) (Fig. 2C). Briefly, in the tonsil the viral antigen detection displayed maximum values at 14 dpi (P < 0.05) decreasing onwards (Fig. 2A). In retropharyngeal and mediastinal lymph nodes the detection of PRRSV antigen yielyed a first peak at 3 and 7 dpi (P < 0.05) respectively followed by a second peak at 14 dpi in the 116 Patogenia del PRRS/Pathogenesis of PRRS retropharyngeal lymph node and decreasing onwards (Fig. 2A,D). Tissue expression of regulatory cytokines in the tonsil All regulatory cytokines studied were mostly expressed in the lymphoreticular areas of the tonsil, mainly in the cytoplasm of macrophages (Fig. 1C,D). The number of IL-10 positive cells displayed a curve with an increase of its expression at 3 dpi, 14 dpi and also at the end of the experiment (24dpi) , however due to individual variability, this increase in the expression of IL-10 was statistically significant only at 14 dpi (Fig 3B). The expression of IFN-α, IFN-γ and IL-12 showed a similar trend among them with a statistically significant peak of expression at 3 dpi (Fig 3A,C,D). After 3 dpi, the expression of IFN-α decreased sharply and remained low until the end of the study (Fig. 3C), whereas the expression of IFN-γ decreased slightly and remained at moderate levels until the end of the study with a statistically significant enhancement at 10 dpi, 14 dpi, 17 dpi and 24 dpi (Fig. 3D). The expression of IL-12 showed another two peaks at 117 Patogenia del PRRS/Pathogenesis of PRRS 14 dpi and 24 dpi, however due to individual variability, this enhancement was not statistically significant (Fig 3A). Tissue expression of regulatory cytokines in the lymph nodes Regulatory cytokines displayed similar patterns of expression in retropharyngeal and mediastinal lymph nodes (Figs. 4 and 5). All the regulatory cytokines studied were mainly expressed in the paracortex of both lymphoid organs (Fig. 1E,F). The expression of IL-10, IL-12, IFN-α and IFN-γ was mainly observed in the cytoplasm of macrophages and in a lesser extent in the cytoplasm of lymphocytes. In the mediastinal lymph node, all regulatory cytokines showed statistically significant peaks of expression at 7, 17 and 24 dpi (IL-12 and IFN-γ) (Fig. 4A,D) or 3, 14 and 24 dpi (IL-10 and IFN-α) (Fig. 4B,C). Nonetheless, the expression of IL-10 was not statistically significant due to individual variability. In the retropharyngeal lymph node all regulatory cytokines followed a similar trend with a maximum expression of all of them at 3 dpi (IFN-α, P < 0.05; IFN-γ, P < 0.05) and another peaks of expression at 14 dpi and at the end of the study (IFN-α, P < 0.05; IL-10, P < 0.05) (Fig. 5). In both lymph nodes IL-10 118 Patogenia del PRRS/Pathogenesis of PRRS was the cytokine which showed the lowest expression whereas IFN-γ was the one with the highest expression. Figure 1. (A) Retropharyngeal lymph node of a pig killed at 17 dpi showing macrophages labelled for expresión of PRRSV. IHC. Bar, 15 µm. (B) Macrophages of the tonsil from the same animal immunostained for PRRSV. IHC. Bar, 10 µm. (C) Some macrophages immunolabelled for IL-10 expression in the tonsil of a pig killed at 7 dpi. IHC. Bar, 20 µm. (D) Several macrophages from the lymphoreticular area of the tonsil of a pig killed at 3 dpi immunolabelled for IL-12 expression. IHC. Bar, 50 µm. (E) Retropharyngeal lymph node of a pig killed at 3 dpi showing macrophages for expression of IFN-α. Notice the high expression of IFN-α in the paracortex of the retropharyngeal lymph node compare with this expression in the medulla. IHC. Bar, 50 µm. (F) Mediastinal lymph node of a pig killed at 7 dpi showing macrophages and lymphocytes (asterisks) labelled for the expression of IFN-γ. IHC. Bar, 50 µm. 119 Patogenia del PRRS/Pathogenesis of PRRS Figure 2 (A-D) Counts for cells expressing PRRSV antigen, in the tonsil, retropharyngeal lymph node, lung (data from a previous study, GomezLaguna et al., 2010a) and mediastinal lymph node of pigs infected with PRRSV. * Indicates statistically significant differences (P < 0.05) between the inoculated group and controls. Figure 3 (A-D) Counts for cells expressing IL-12, IL-10, IFN-α and IFN-γ respectively in the tonsil of pigs infected with PRRSV. * Indicates statistically significant differences (P < 0.05) between the inoculated group and controls. 120 Patogenia del PRRS/Pathogenesis of PRRS Figure 4 (A-D) Counts for cells expressing IL-12, IL-10, IFN-α and IFN-γ respectively in the retropharyngeal lymph node of pigs infected with PRRSV. * Indicates statistically significant differences (P < 0.05) between the inoculated group and controls. Figure 5 (A-D) Counts for cells expressing IL-12, IL-10, IFN-α and IFN-γ respectively in the mediastinal lymph node of pigs infected with PRRSV. * Indicates statistically significant differences (P < 0.05) between the inoculated group and controls. 121 Patogenia del PRRS/Pathogenesis of PRRS Correlation between the expression of PRRSV and regulatory cytokine antigens In the retropharyngeal lymph node there was a significant correlation between the detection of PRRSV and IFN-γ (r = 0.83; P < 0.05) and also between the expression of IFN-α and IL-10 (r = 0.74; P < 0.05). In the mediastinal lymph node, a significant correlation was observed between the detection of PRRSV and IFN-α (r = 0.86; P < 0.05) and between PRRSV and IL-12 (r = 0.74; P < 0.05). A significant correlation was observed in all the lymphoid organs examined between the expression of IL-12 and IFN-α (Table 1). In addition, a correlation was shown between the expression of IL-12 and IFN-γ (r = 0.74; P < 0.05). Furthermore, when the expression of the different antigens in each lymphoid organs was compared among them a high correlation was observed between PRRSV expression in retropharyngeal lymph node and tonsil (r = 0.93; P < 0.01), as well as between the expression of IL-12 (r = 0.76; P < 0.05) and IFN-α (r = 0.81; P < 0.05) in retropharyngeal lymph node and tonsil. Tables 1 and 2 summarize the correlation observed. 122 Patogenia del PRRS/Pathogenesis of PRRS Table 1. Correlation observed between PRRSV, IFN-α, IFN-γ, IL-10 and IL-12 p40 antigens in the different lymphoid organs studied from PRRSV-infected pigs. Tonsil Retropharyngeal Lymph Node IL-12 PRRSV IFN-α PRRSV IFN-α IFN-γ IL-10 p40 - 0.33 0.13 0.31 0.21 - 0.71 0.48 0.90** - 0.33 0.67 - 0.57 IFN-γ IL-10 IL-12 p40 - Mediastinal Lymph Node IL-12 PRRSV IFN-α IFN-γ IL-10 p40 - 0.55 0.83* 0.38 0.67 - 0.48 0.74* 0.84* - 0.31 0.69 - 0.62 - IL-12 PRRSV - IFN-α IFN-γ IL-10 p40 0.86* 0.45 0.45 0.74* - 0.38 0.67 0.74* - 0.6190 0.74* - 0.50 - **P < 0.01; *P < 0.05 123 Patogenia del PRRS/Pathogenesis of PRRS Table 2. Correlation observed between Tonsil, Retropharyngeal Lymph Node and Mediastinal Lymph Node expression of the different regulatory cytokines studied from PRRSV-infected pigs. IFN-α Tonsil R.L.N. M.L.N IFN-γ IL-10 Tonsil R.L.N M.L.N Tonsil R.L.N - 0.81* 0.83* - 0.55 0.19 - -0.33 - 0.71 - M.L.. - IL-12 Tonsil R.L.N. M.L.N. Tonsil R.L.N M.L.N Tonsil R.L.N M.L.N - 0.24 0.81* - 0.76* 0.45 - 0.93** 0.14 - 0.57 - 0.52 - 0.33 - R.L.N.: Retropharyngeal Lymph Node; M.L.N.: Mediastinal Lymph Node; **P < 0.01; *P < 0.05 124 PRRSV - - Patogenia del PRRS/Pathogenesis of PRRS Discussion The immune system protects host cells from viral infection, and viruses have evolved to escape from this response to achieve an efficient proliferation in the host. Host cells produce cytokines in response to viral infection as a mechanism of defence. PRRSV replication targets porcine alveolar macrophages (PAMs), macrophages in other tissues and in minor extent dendritic cells (Molitor et al., 1997; Bautista and Molitor, 1999), being characterized by the induction of an equivocal host immune response (Darwich et al., 2010). There are several studies focused on the immune response evoked after PRRSV infection most of which have been performed in serum and lung samples (Batista et al., 2004; Xibao et al., 2010; Gómez-Laguna et al., 2010a) and in a lesser extent in the lymphoid tissues in situ (Rossow et al., 1996; Beyer et al., 2000). We analyzed in the experimental study explained before the in situ expression of proinflammatory cytokines in the lymphoid organs of PRRSV-infected pigs finding a different expression of these cytokines depending on the examined body compartment, wich may be related to a differential behaviour of 125 Patogenia del PRRS/Pathogenesis of PRRS PRRSV in the lymphoid organs. In the present study we analyzed the in situ expression of IL-10, IL-12, IFN-γ and IFNα, which are cytokines involved in the immune response against viruses, in order to help in the arduous task of deciphering the immune response evoked against PRRSV. The expression of IL-10, IL-12, IFN-γ and IFN-α in the tonsil, retropharyngeal and mediastinal lymph nodes of PRRSVinfected pigs displayed a two-peak curve. Although the expression of proinflammatory cytokines described before was different depending on the body compartment examined, the expression of each cytokine analyzed in the present study was quite similar in all the lymphoid organs studied, despite the amount of PRRSV detected was different in each one. This finding suggests that the adaptative immune response evoked against PRRSV in this study is more homogeneous than the proinflammatory response previously observed. IL-10 is a pleiotropic cytokine with regulatory properties that is thought to play an important role in PRRSV immunopathogenesis (Suradhat et al, 2003; Charerntantanakul et al., 2006; Silva-Campa et al., 2009; Gómez-Laguna et al., 126 Patogenia del PRRS/Pathogenesis of PRRS 2010a). However, the role of this cytokine in PRRSV is controversial. According to Díaz et al. (2006) different viral strains are able to induce different IL-10 responses in PBMC of PRRSV-naïve pigs. In a parallel study Gómez-Laguna et al. (2010a) observed that the expression of IL-10 in the lung was significantly correlated with PRRSV replication, indicating that PRRSV may induce the expression of IL-10. Interestingly, in the present study we did no find correlation between IL-10 and PRRSV in none of the lymphoid tissues analyzed, suggesting that the expression of IL-10 could be different depending on the tissue examined. On the other hand, the IFN family of cytokines is recognized as a key component of the innate immune response and the first line of defense against viral infection (Borden et al., 2007). IFN-α participates in the innate immune response through their antiviral activity, by inducing the differentiation of naïve T cells into IFN-γ secreting cells and by down-regulating the expression of IL-12 (Biron and Sen, 2001; Tizard, 2008). In addition, IFN-γ and IL-12 are classically involved in the Th1 subtype of immune response, working both cytokines in parallel 127 Patogenia del PRRS/Pathogenesis of PRRS (Biron and Sen, 2001). In our study the expression of IFN-α in the tonsil and lymph nodes was correlated between them, wich may be related to the onset of a host innate immune response. Moreover, the expression of IFN-γ and IL-12 followed also a similar trend in all the lymphoid organs examined. Despite the expression of these cytokines, PRRSV antigen was still detected in moderate amount at the end of the study, which points to an inefficient viral clearance. Although IFNs and IL-12 have an antiviral activity, IL10 may reduce the levels of these cytokines involved in viral clearance (Mitchell and Kumar, 2004). In our study the amount of IL-10 expressed was mild to moderate being observed a higher expression of antiviral cytokines. Contrary, the IL10/IFN-γ ratio previously described in the lung by GómezLaguna et al. (2010a) was proportionally higher, which was related to the viral persistence in the lung of PRRSV infected pigs. The expression of IFNs in the lymphoid organs of PRRSV infected pigs together to the viral persistence at the end of the study, indicates that the IFN signaling cascade may not be 128 Patogenia del PRRS/Pathogenesis of PRRS working properly. In this sense, non structural protein 2 (Nsp2) of PRRSV has been shown to inhibit the induction of IFN regulatory factor 3 (Li et al., 2010), but no role of PRRSV has been reported on the IFN signaling pathway. Thus, further studies are being conducted to determine the role of PRRS on IFN signaling cascade. In conclusion, considering the different expression of IFNs, IL-10 and IL-12 in lymphoid organs with respect to the one described previously in the lung by our group, PRRSV may be able to impair the host immune response in the lymphoid organs by a different mechanism than the one described in the lung. 129 Patogenia del PRRS/Pathogenesis of PRRS 3.4. APOPTOSIS IN LYMPHOID TISSUES OF PRRSV INFECTED PIGS DETECTED BY TUNEL AND CLEAVED CASPASE-3 IMMUNOHISTOCHEMISTRY. Apoptosis or “programmed cellular death” is a highly regulated process modulated by both pro-apoptotic and antiapoptotic cellular factors and activated by various stimuli that disturb cell metabolism and physiology. Morphologically, apoptosis is characterized by peripheral condensation of the chromatin and cellular shrinkage leading to the formation of apoptotic bodies, without the onset of an inflammatory response (Kerr et al., 1972, 1995). Currently, two distinct pathways of apoptosis have been described, extrinsic and intrinsic pathways (Roy and Nicholson, 2000; Mitchell and Cotran, 2007). Both pathways of apoptosis converge in the activation of caspase 3 and continue a common pathway of cell death (Mitchell and Cotran, 2007). Caspases or cysteine-aspartic proteases are a family of cysteine proteases that play essential roles in apoptosis and are synthesized as inactive precursors that require proteolytic 130 Patogenia del PRRS/Pathogenesis of PRRS conversion to become active caspases (Zhivotovsky et al., 1999; Hengartner, 2000). Caspase 3 is one of the known effector caspases wich, once activated, irreversibly executes cell death through degradation of vital cell proteins and activation of endonucleases. Consecuently, activation of caspase 3 is considered a characteristic sign of apoptosis (Huppertz et al., 1999). Contributions to histochemical characterization of apoptosis have been done mainly by studying the final stage of apoptotic death with the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) method (Huppertz et al., 1999). Despite the easy detection of apoptosis by this assay, its specificity and sensitivity have been strongly criticized (LabatMoleur et al., 1998; Stahelin et al., 1998). However, activated caspase 3 labelling is considered to be a reliable immunohistochemical approach to detect and quantify apoptotic cells in human lymphoid tissue (Dukers et al., 2002). Nevertheless, the presence of apoptotic cells could be possible instead a lack of cleaved caspase 3 (CCasp 3) labelling, since there are authors who described a caspase 3-independent 131 Patogenia del PRRS/Pathogenesis of PRRS apoptosis pathway (Kuida et al., 1996; Piwocka et al., 2002; Alvarez et al., 2011) Viral infections may modulate apoptosis inducing either an up-regulation or a down-regulation of such process as a mechanism to evade the immune response (Thomson, 2001; Costers et al., 2008). In this sense, an enhancement of apoptosis phenomena has been observed in lymphoid organs of pigs infected with African Swine Fever virus (ASFv) (Salguero et al., 2005; Fernández de Marco et al., 2007), Porcine Circovirus type 2 (PCV2) (Resendes et al., 2004b) or Porcine reproductive and respiratory syndrome virus (PRRSV) (Suárez et al., 1996a; Choi and Chae, 2002; Costers et al., 2008). The apoptosis phenomena observed in these diseases have been linked directly to viral replication (Suárez et al., 1996a; Costers et al., 2008) or indirectly to an increased expression of mediators, such as cytokines (Choi and Chae, 2002; Salguero et al., 2005; Fernández de Marco et al., 2007). Porcine Reproductive and Respiratory Syndrome (PRRS) constitute one of the most significant diseases in the swine industry, which is caused by an arterivirus that is considered 132 Patogenia del PRRS/Pathogenesis of PRRS able to modulate the immune response, making easier the infection with secondary infectious agents. PRRSV can be detected from 1dpi to 251 dpi in tonsils (Wills et al., 2003), pointing this persistence to both humoral and cellular immune response inefficiency to completely eliminate the virus. Moreover, persistence of the virus in tonsils and mediastinal lymph nodes indicates either the absence of T cell immune stimulation, or a fast death of activated lymphoid cells (Lamontagne et al., 2003). In addition, the apoptosis of lymphoid cells has been hypothesized to justify the lack of an efficient cell mediated immune response in PRRS (Lamontagne et al., 2001; 2003). However, despite the published studies examining PRRSV infection and apoptosis, there is still conflicting evidence and views as to whether PRRSV induces apoptosis directly (within infected cells) (Suárez et al., 1996a; Kim et al., 2002; Costers et al., 2008) or indirectly (within bystander cells) (Sur et al., 1997; Sirinarumitr et al., 1998; Labarque et al., 2003; Choi and Chae, 2002). 133 Patogenia del PRRS/Pathogenesis of PRRS During the first and second experimental study, we evaluated the expression of PRRSV and cytokines antigens in the lymphoid organs of PRRSV infected pigs. The main aim of this study, was to evaluate the apoptosis phenomena by microscopic examination and to correlate it with PRRSV and CCasp3 immunohistochemistry and TUNEL method in tonsil and mediastinal lymph node of PRRSV-infected pigs, as well as with the expression of pro-apoptotic cytokines. 1. Materials and methods 2.1.Virus, Animals and Experimental Design The inoculum, animals and experimental design used in this experiment has been described above in the section “Common experimental design”. 2.2. Clinical Signs, Gross Pathology and Histopathology The animals were monitored daily for clinical signs, i.e. rectal temperature and a clinical respiratory score, as described previously (Halbur et al., 1995b). At the post mortem, macroscopic lesions of lung and lymphoid tissues were evaluated by visual inspection following the scoring system 134 Patogenia del PRRS/Pathogenesis of PRRS described by Halbur et al. (1995b). Samples from tonsil and mediastinal lymph node were collected and fixed in 10% neutral buffered formalin for the histopathological and immunohistochemical studies. Fixed samples were routinely processed and embedded in paraffin-wax. Four µm tissue sections from tonsils and mediastinal lymph node were stained with the routine Mayer´s hematoxylin and eosin staining for microscopic examination. Samples from all the animals were analyzed following the score summarize in table 1. 135 Patogenia del PRRS/Pathogenesis of PRRS Table 1: Score used for tonsil and mediastinal lymph node microscopic examination LN SIZE DEPLETION OF GERMINAL APOPTOTIC CELL AREAS OF MITOTIC FC CENTRES BODIES PICNOSIS NECROSIS FIGURES Small: 0 No depletion: 0 No active: 0 None: 0 None: 0 None: 0 None: 0 Nomal: 1 Depletion: 1 Active: 1 Mild: 1 Mild: 1 Mild: 1 Mild: 1 Intense: 2 Intense: 2 Intense: 2 Enlarged: 2 LN: Lymph Node; FC: Follicular Centres 136 Intense: 2 Patogenia del PRRS/Pathogenesis of PRRS 2.3. Immunohistochemical study The avidin-biotin-peroxidase complex technique (ABC) was used for the detection of PRRSV and CCasp3 as described previously (Gómez-Laguna et al., 2010a). The primary antibodies used were monoclonal anti-PRRSV, clone SDOW17/SR-30, diluted 1 in 1000 and Signal Stain-Cleaved Caspase 3 Asp175 (Cell Signaling, Danvers, MA, USA). Four µm sections were dewaxed and rehydrated through graded ethanol and a High Temperature Antigen Retrieval with citrate buffer ph 6.0 was used. Endogenous peroxidase activity was quenched in H2O2 3% in methanol for 10 min. The sections were washed with phosphate buffered saline (PBS; pH 7.4, 0.01 M) and incubated for 1h at room temperature (RT) with 100 µl per slide of blocking solution in a humid chamber. The primary antibodies were incubated overnight at 4ºC in a humid chamber. The corresponding biotinylated secondary antibody was incubated for 30 min at RT. An avidin-peroxidase complex (Vector Laboratories, Burlingame, California, USA) was applied for 30 min at RT. Labelling was “visualized” by application of the NovaREDTM substrate kit (Vector Laboratories, Burlingame, 137 Patogenia del PRRS/Pathogenesis of PRRS California, USA). Sections were counterstained with Mayer’s haematoxylin, dehydrated and mounted. Negative controls consisted of replacement of the primary antibody by blocking solution, normal serum and isotype-matched reagents of irrelevant specificity. TUNEL immunolabelling was carried out with a commercial kit (In situ cell death detection, POD, Roche, Manheim, Germany, respectively) and following the manufacturer’s instructions. Briefly, sequential 4 µm tissue sections were adhered to silane-coated slides and allowed to dry at RT. Subsequently, sections were deparaffinized and rehydrated. Protein digestion was performed by incubating tissue sections in 20 mg/ml proteinase K recombinant PCR Grade (Roche Diagnostics, Indianapolis, USA) for 15 min at 37ºC in an humid chamber. Endogenous peroxidase was inactivated with 2% H2O2 in distilled water (dH2O) for 35 min, at RT. The labelling mixture was added to sections and incubated at 37ºC in a humid chamber for 1 h. After stopping the enzymatic reaction, sections were rinsed with PBS, covered with Converter-POD (Anti-fluorescein antibody, Fab fragment 138 Patogenia del PRRS/Pathogenesis of PRRS from sheep, conjugated with horse-radish peroxidase) and incubated for 30 min at 37ºC in a humid chamber. Labelling was “visualized” by application of the NovaREDTM substrate kit (Vector Laboratories). Sections were counterstained with Mayer’s haematoxylin, dehydrated and mounted. During the first and second experimental studies we analyzed the expression of several cytokines involved in apoptotic phenomena such us IL-1, IL-6, TNF-α and IL-10 by ABC technique in both tonsil and mediastinal lymph node. 2.4. Cell counts The number of positive cells labelled with antibodies against PRRSV, CCasp3 and TUNEL in tonsil and mediastinal lymph node was counted as previously described (Salguero et al., 2005). Cells immunolabelled were counted in 25 non overlapping consecutive selected, high magnification fields of 0.20 mm2 (lymphoid follicles, paracortex and medulla of lymph nodes) or 25 non overlapping consecutive selected structures (follicles, parafollicular, and lymphoreticular areas of tonsils) for each animal. Results are expressed as the number of cells per mm2. 139 Patogenia del PRRS/Pathogenesis of PRRS 2.5. Statistical Analysis The number of PRRSV, CCasp 3 and TUNEL positive cells was expressed as a mean ± SD. These values were evaluated for approximate normality of distribution by the Kolmogorov-Smirnov test. Differences between the means of control and inoculated animals were assessed by the KruskalWallis test followed by the Mann-Whitney-U non-parametric test (GraphPad Instat 3.05, San Diego, California). Correlation between the expression of PRRSV, CCasp3, TUNEL, apoptotic bodies and picnotic cells was assessed by the Spearman test (GraphPad Instat 3.05). In addition, the correlation between all those parameters and the expression of pro-apoptotic cytokines was performed following the same methodology. P < 0.05 represented a statistically significant difference between inoculated and control animals. 2. Results 2.1. Clinical Sign, Gross Pathology and Histopathology The clinical signs, gross and microscopic lesions were described in the previous experimental studies. Briefly, mild dullness and weight loss was observed in inoculated animals 140 Patogenia del PRRS/Pathogenesis of PRRS from the beginning of the study, which showed a non-collapsed, mottled tan and rubbery lung parenchyma from 7 dpi onwards, and a mild to moderate enlargement of mediastinal lymph node. Microscopically the size of lymphoid follicles in most of the animals in tonsil and mediastinal lymph node were normal presenting all of them depletion of follicular center and most of them without an active germinal centre. No necrotic areas were observed in the tonsil neither in the mediastinal lymph node. Apoptotic bodies and cell picnosis were presented in both organs (Fig 1). Fig. 1. (A) Presence of apoptotic bodies (arrow) and cell picnosis (asterisk) in the mediastinal lymph node of a 3dpi PRRSV infected pig. H-E Bar = 50µm. (B) Presence of apoptotic bodies (arrow) and cell picnosis (asterisk) in the tonsil of a 21 dpi PRRSV infected pig. H-E Bar = 40µm 141 Patogenia del PRRS/Pathogenesis of PRRS In the mediastinal lymph node the presence of apoptotic bodies and cell picnosis increased gradually from the beginning of the study (3 dpi) onwards with statistical significant differences with respect to the control group (Fig 2A). Nevertheless, in the tonsil the presence of apoptotic bodies and cells picnosis was slighter with a statistically significant increase only at 21 and 24 dpi compare with the control group (Fig 2B). Fig. 2..(A) Apoptotic bodies and cell picnosis expression in mediastinal lymph node of pigs infected with PRRSV (B) Apoptotic bodies and cell picnosis expression in tonsil of pigs infected with PRRSV * Indicates statistically significant differences (P<0.05) between the inoculated group and controls. 142 Patogenia del PRRS/Pathogenesis of PRRS 2.2.Tissue expression of PRRSV antigen in tonsil and lymph nodes PRRSV was detected from 3 dpi until the end of the study, displaying maximum values at 14 dpi in tonsil and at 7 dpi in mediastinal lymph node, and being observed mainly within the cytoplasm of macrophages. Table 2 shows PRRSV positive cells immunolabelled in the tonsil and in the mediastinal lymph node of control and inoculated animals. CON 3 dpi 7 dpi 10 dpi 14 dpi 17 dpi 21 dpi 24 dpi TONSIL Macrophages Mean ± SD 0.00 ± 0.00 47.40 ± 59.79 7.40 ± 6.02* 0.43 ± 0.30 114.43 ± 25.75* 114.43 ± 25.75* 49.5 ± 19.05* 16.6 ± 18.76* MEDIASTINAL LYMPH NODE Macrophages Mean ± SD 8,5±5 99,5±94,04 171,25±100,42* 19,75±15,65 40,25±52,73 8,5±17 23,5±41,74 62,5±67,78 Table 2. PRRSV positive cells immunolabelled in the tonsil and in the mediastinal lymph node of control and inoculated animals. Data expressed as mean ± SD of cells/mm2 2.3. Tissue expression of Cleaved Caspase 3 and TUNEL CCasp3 was mostly expressed in the lymphoreticular area of the tonsil, mainly by lymphocytes (Fig 3A), whereas TUNEL reaction was chiefly expressed in the lymphoid follicles by lymphocytes (Fig 3B). 143 Patogenia del PRRS/Pathogenesis of PRRS In the mediastinal lymph node CCasp3 and TUNEL reaction were mostly expressed in the paracortex and in the lymphoid follicles and in a lesser extend in the medulla. CCasp3 expression was observed mainly in macrophages (Fig 3C), whereas TUNEL reaction was expressed mainly by lymphocytes (Fig 3D). Fig. 3.. (A) CCasp 3 immunostaining in the lymphoreticular areas of the tonsil of a 24 dpi PRRSV infected pig. IHC Bar = 50µm. (B) TUNEL immunostaining in the follicular areas of the tonsil of a 24 dpi PRRSV infected pig IHC Bar = 50µm. (C) Macrophages (arrow) immunostained with CCasp 3 in the mediastinal lymph node of a 24 dpi PRRSV infected pig IHC Bar = 40µm. (D) Lymphocytes (arrow) immunostained with TUNEL in the mediastinal lymph node of a 24 dpi PRRSV infected pig IHC Bar = 50µm. 144 Patogenia del PRRS/Pathogenesis of PRRS The expression of CCasp3 in the mediastinal lymph node was poor throughout the study. Moreover, the expression of CCasp3 in the tonsil and the TUNEL reaction observed in both tissues analyzed displayed a similar trend with a slight increase at the end of the study (Fig 4). Fig. 4..(A) Counts for cells expressing CCasp3 antigen in the tonsil of pigs infected with PRRSV. (B) Counts for cells expressing CCasp3 antigen in the mediastinal lymph node of pigs infected with PRRSV. (C) Counts for cells expressing TUNEL in the tonsil of pigs infected with PRRSV. (D) Counts for cells expressing TUNEL in the mediastinal lymph node of pigs infected with PRRSV. 145 Patogenia del PRRS/Pathogenesis of PRRS 2.4. Tissue expression of pro-apoptotic cytokines and correlation with apoptosis The expression of pro-apoptotic cytokines in both lymphoid organs were analyzed in the experimental studies described before. Briefly, in the tonsil none of the proinflammatory cytokines analyzed displayed significant changes with respect to the control group. Moreover, IL-10 was also poorly expressed but with a moderate increase at 14 dpi. No correlation was observed in the tonsil neither between the expression of pro-apoptotic cytokines and apoptotic phenomena nor between apoptotic phenomena and PRRSV expression.IL-1α was the proinflammatory cytokine with the highest expression followed by TNF-α wich had two peaks of expression at 7 and 14 dpi, whereas IL-10 was increased at 3 dpi and at the end of the experiment. Despite the expression of IL-1α, TNF-α , IL-10 and PRRSV were not statistically significant correlated with apoptotic bodies nor cell picnosis, all of them followed a similar trend throughout the experiment. 146 Patogenia del PRRS/Pathogenesis of PRRS 3. Discussion PRRSV induces an impairment of the host immune response favouring a prolonged viraemia and viral replication (Darwich et al., 2010); however, the exact mechanism involved in the modulation of the immune response still remains unclear. Lamontagne et al. (2001, 2003) reported a non efficient cell immune response against PRRSV, which hypothesized to be related with the apoptosis of lymphoid cells by the direct action of the virus. Despite numerous studies examine the possible induction of apoptosis in PRRSV infected cells, it remains unclear if PRRSV infection results in the direct induction of apoptosis by viral particles. In this sense, Suárez et al. (1996a) demonstrated a direct induction of apoptosis in PRRSV infected cells by the gene product of open reading frame 5 (p25). Other authors have reported both direct and indirect induction of apoptosis in PRRSV-infected cells and in bystander cells, respectively (Sur et al., 1997; 1998), being observed always a higher number of apoptotic than PRRSV-infected cells (Sur et al., 1998; Choi and Chae, 2002). Recently, an intrinsic ability of PRRSV to modulate apoptosis in infected cells has been 147 Patogenia del PRRS/Pathogenesis of PRRS reported, which is independent on the cell type (Costers et al., 2008). Moreover, these authors described that early in infection, the balance tends to anti-apoptosis, whereas late in infection, the balance is driven towards pro-apoptosis (Costers et al., 2008) In our study a significant increase in the amount of apoptotic bodies and cell picnosis was observed in pigs inoculated with PRRSV throughout the experiment in the mediastinal lymph node and at the end of the study in the tonsil. Although no correlation was observed between apoptotic phenomena and the expression of PRRSV, the beginning of apoptotic phenomena coincided with the first detection of PRRSV antigen in the mediastinal lymph node. In addition, in the tonsil a significant enhancement of apoptotic bodies and cell picnosis was only observed at the end of the experiment coinciding with a decrease in PRRSV. These results remark that although PRRSV may be partially involved in a direct induction of apoptosis, PRRSV induced pro-apoptotic mediators may play an important role in the onset of apoptosis phenomena. Apoptosis phenomena have been reported during PRRS being linked to both viral particles (Suárez et al., 1996a; Costers 148 Patogenia del PRRS/Pathogenesis of PRRS et al., 2008) and the expression of cytokines (Choi et al., 2002). TNF-α participates in both the extrinsic and intrinsic pathway of apoptosis, whereas IL-1 and IL-6 plays a role in the intrinsic pathway acting as pro- and anti- apoptotic mediators, respectively (Pollock et al., 2003; Garcia-Tunon et al., 2005; Alvarez et al., 2011). IL-10 is also considered a pro-apoptotic mediator (Estaquier et al., 1997; Liu et al., 2001). In a previous parallel study we observed a lack of homogeneity in the expression of proinflammatory cytokines in lymphoid organs of PRRSV-infected pigs. Since all the proinflammatory cytokines analyzed are involved in apoptosis phenomena it is also expected to find different expression of apoptotic phenomena in the lymphoid organs analyzed in the present study. Interestingly, in our study apoptosis phenomena were more evident in the mediastinal lymph node than in the tonsil, in wich the expression of pro-apoptotic cytokines was poor. Furthermore, the expression of both TNF-α (r = 0.60; P > 0.05) and IL-10 (r = 0.61; P > 0.05) tended to correlate with the presence of apoptotic bodies and cell pyknosis in the mediastinal lymph node. 149 Patogenia del PRRS/Pathogenesis of PRRS On the other hand, in the tonsil we found a significant increase of apoptotic bodies and cell picnosis at the end of the experiment coinciding with the expression of CCasp3 and TUNEL. The expression in the tonsil of CCasp3 and TUNEL was mainly observed in lymphocytes, cells in which the expression of PRRSV was not observed which support the hypothesis that PRRSV may induce apoptosis by an indirect mechanism. Moreover, those animals with higher apoptotic scores did not correlate with those with higher CCasp3 or TUNEL counts, which points to an induction of apoptosis by a caspase 3-independent pathway. This postulate agree with our results in the mediastinal lymph node, where apoptotic bodies and cell picnosis were observed throughout the experiment without an expression of CCasp 3 and TUNEL. Caspase 3-independent apoptotic pathway have been described by several authors in human cells in vitro (Untergasser et al., 2001; Piwocka et al., 2002; Thayyullathul et al., 2008; Zilkova et al., 2011; Zhang et al., 2011; Alvarez et al., 2011). Among caspase 3-independent pathways, the generation of reactive oxygen species (ROS) (Thayyullathi et al., 2008), the 150 Patogenia del PRRS/Pathogenesis of PRRS imbalance of the Bcl-2/Bax ratio (Untergasser et al., 2001) and the upregulation of FasL (Alvarez et al., 2011), have been reported as possible mechanisms for the induction of apoptosis. Specifically, Alvarez et al. (2011) reported that TNF-α induced an enhancement of FasL and cell death by the release of cytochrome c from the mitochondria, leading to caspase 9 activation and a caspase 3-independent apoptotic pathway. Moreover, Chang et al. (2007) described an increase of FasL capable of inducing Fas/FasL mediated apoptosis in lymphocytes in pigs with PRRSV infection. In this regard, taking into account our results we hypothesized that PRRSV may induce apoptosis through a caspase 3-independent pathway by Fas/FasL interaction. In conclusion, different expression of apoptotic phenomena was observed in the lymphoid organs analyzed which could be related with the lack of homogeneity in the expression of proinflammatory cytokines. Furthermore, caspase 3-independent apoptosis pathways could be present in PRRSV infection, since no expression of caspase 3 together with morphological evidence of apoptosis was observed. The study of different 151 Patogenia del PRRS/Pathogenesis of PRRS apoptosis mediators is encouraged in order to determine the mechanism used by PRRSV to induce the apoptosis phenomena. 152 Patogenia del PRRS/Pathogenesis of PRRS 3.5. IMMUNOHISTOCHEMICAL EXTRINSIC AND APOPTOSIS IN INTRINSIC PORCINE DETECTION OF MEDIATORS OF PARAFFIN-EMBEDDED TISSUES. Apoptosis or “programmed cellular death”, both under physiological and pathological conditions, is characterized by peripheral condensation of the chromatin and cellular shrinkage leading to the formation of apoptotic bodies, without the onset of an inflammatory response (Kerr et al., 1972, 1995). Several mechanisms may trigger off apoptosis depending on the expression of specific molecules. Thus, an extrinsic and an intrinsic pathway have been reported (Roy and Nicholson, 2000; Mitchell and Cotran, 2007). The extrinsic pathway is started when an appropiate ligand, such as TNFα or FasLigand (FasL), is bound to one of several cell surface death-receptors (known as Tumor Necrosis Factor Receptor family, TNF-R) (Nagata, 1997; Ashkenazi and Dixit, 1998). These mediators activate caspase 8, which subsequently activates the executioner caspase 3 (Budihardjo et al., 1999; Earnshaw et al., 1999; Ashkenazi, 2002; Mitchell and Cotran, 2007). On the other hand, the 153 Patogenia del PRRS/Pathogenesis of PRRS intrinsic pathway is considered a mitochondrial dependent pathway (Roy and Nicholson, 2000). The Bcl family covers a group of molecules involved in the mitochondrial permeability, being differentiated anti-apoptotic (Bcl-2 or Bcl-x) and proapoptotic (Bax, Bak, Bim) molecules (Oltvai et al., 1993; Miyashita et al., 1994; Reed, 1994; Sedlak et al., 1995; Cory et al., 2003). The unbalance between these molecules increases the permeability of mitochondrial membrane, leading to the release of proteins, just as cytochrome c, which activates caspases. The release of cytochrome c induces the activation and cleavage of caspase 9, and the subsequent activation of the executioner caspase 3 (Zou et al., 1997; Chu et al., 2001; Waterhouse et al., 2002). Moreover, an upregulation of inducible nitrogen oxide synthase (iNOS) has been also related to an increase of the mitochondrial permeability and release of cytochrome c (Kim et al., 2002; Atre et al., 76 2006). Both extrinsic and intrinsic pathways of apoptosis converge in the activation of caspase 3 and continue a common pathway of cell death (Mitchell and Cotran, 2007). Viral infections may modulate apoptosis inducing either an up-regulation or a down-regulation of such 154 Patogenia del PRRS/Pathogenesis of PRRS process as a mechanism to evade the immune response (Thomson, 2001; Costers et al., 2008). In this sense, an enhancement of apoptosis phenomena has been observed in lymphoid organs of pigs infected with African Swine Fever virus (ASFv) (Salguero et al., 2005; Fernández de Marco et al., 2007), Porcine Circovirus type 2 (PCV2) (Resendes et al., 2004) or Porcine Reproductive and Respiratory Syndrome virus (PRRSv) (Suárez et al., 1995a; Choi and Chae, 2002; Costers et al., 2008). The apoptosis phenomena observed in these diseases have been linked directly to the viral replication (Suárez et al., 1996a; Costers et al., 2008) or indirectly to an increased expression of mediators, such as cytokines (Choi and Chae, 2002; Salguero et al., 2005; Fernández de Marco et al., 2007). Preservation of antigenicity and structure is essential to carry out immunohistochemical studies on tissue samples, playing the fixation a key role to reach this goal. Formaldehyde is the routine fixative in histopathological studies since is able to preserve properly the tissue structure. However, aldehyde fixatives are known to induce cross-links between tissue proteins inducing the masking of tissue antigens (Ramos-Vara et 155 Patogenia del PRRS/Pathogenesis of PRRS al., 2008). Thus, recently many efforts have been carried out to determine which one is the optimal fixative for each antibody as a previous step to study the pathogenesis of several diseases (Salguero et al., 2001; Hicks et al., 2006). The main goal of this study was to standardize techniques for the immunohistochemical detection of mediators from both extrinsic (caspase 8, Fas) and intrinsic pathways (caspase 9, Bcl2, iNOS) of apoptosis using different antigen retrieval methods and fixatives in porcine paraffin embedded tissues. Materials and methods Animals and experimental design To standardize the expression of apoptosis mediator antigens five 5-week-old pigs from a previous experiment (GómezLaguna et al., 2009) were used. These animals were PRRSvinoculated pigs, with clinical signs and lesions of the disease, and were selected on the basis of their positive immunolabelling against caspase 3 and TUNEL (Figs. 1A and 1B). 156 Patogenia del PRRS/Pathogenesis of PRRS Fig. 1. (A) Anti-caspase 3 immunolabelling in numerous lymphocytes and macrophages from the lymphoreticular tissue and some lymphocytes in the lymphoid follicle of the tonsil. IHC. Bar = 100_m. (B) TUNEL labelled cells and apoptotic bodies (arrow) in the lymphoid follicle of the retropharyngeal lymph node. IHC. Bar = 25_m. At the necropsy samples from tonsil, retropharyngeal lymph node and lung were fixed in various fixatives: 10% neutral buffered formalin buffered with phosphate-buffered saline (PBS) pH 7.2 for 18 h; Bouin’s solution (15:5:1 of 10% formalin, glacial acetic acid, picric acid saturated solution in distilled water) for 18 h; and, Zinc salts fixative (ZSF) (Tris buffer pH 7.4 with 0.5% of calcium acetate, 5% of zinc acetate and 5% of zinc chloride) for 18 h. Samples fixed with the Bouin solution were rinsed 7 times in ethanol 50%, 30 min each time, and stored (20-30 min) in ethanol 70% until embedding. Finally, all the samples fixed with each fixative were routinely processed 157 Patogenia del PRRS/Pathogenesis of PRRS and embedded in paraffin-wax. Sections (4 µm) of fixed tissue were used for the immunohistochemical study. Caspase 3 and TUNEL immunolabelling was carried out with commercial kits 120 (Signal Stain-Cleaved Caspase 3 Asp175, Cell Signaling, Danvers, MA, USA; In situ cell death detection, POD, Roche, Manheim, Germany, respectively) and following the manufacturer’s instructions. Briefly, for TUNEL technique, serial 4 µm tissue sections were adhered to silane-coated slides and allowed to dry at room temperature (RT). Subsequently, sections were deparaffinized, rehydrated and incubated with 20 mg/ml proteinase K (Roche Diagnostics, Indianapolis, 125 USA) for 15 min at 37 ºC in an humidity chamber. Endogenous peroxidase was quenched with 2% H2O2 in distilled water for 35 min, at RT. The labelling mixture was added to sections and incubated at 37 ºC in an humidity chamber for 1 h. After stopping the enzymatic reaction, sections were rinsed with PBS, covered with Converter-POD (Anti-fluorescein antibody, Fab fragment from sheep, conjugated with horse-radish peroxidase) and incubated for 30 min at 37 ºC in an humified chamber. Labelling was “visualized” by application of the NovaREDTM 158 Patogenia del PRRS/Pathogenesis of PRRS substrate kit (Vector Laboratories). Sections were counterstained with Mayer’s haematoxylin, dehydrated and mounted. Immunohistochemical study The avidin-biotin-peroxidase complex technique (ABC) (Hsu et al., 1981) was used for the detection of caspases 8 and 9, Fas, Bcl-2 and iNOS. Briefly, tissue sections were dewaxed and dehydrated through graded ethanol and the endogenous peroxidase activity was quenched in H2O2 3% in methanol for 45 min. Different antigen retrieval or permeabilisation methods were used to test the samples in all different fixations: no pretreatment, when no antigen retrieval method was performed; 0.01% Tween 20 (Merck & Co, Inc., WhiteHouse Station, NJ, USA) in PBS pH 7.2 (12 min in a stirrer at room temperature); microwave in pH 6.0 citrate buffer (5 min at 450W followed by 6 min at 150W); or protease type XIV (Sigma Aldrich Chemie GmbH, Steinheim, Germany) at 37 ºC for 30 minutes. After pretreatment, samples were rinsed three times in PBS pH 7.2 for 5 min each and incubated for 30 min at room temperature with 100 µl per slide of blocking solution in a humid chamber, before incubation overnight at 4 ºC with primary antibody. The clones 159 Patogenia del PRRS/Pathogenesis of PRRS and sources of primary antibodies are summarized in Table 1. In each case, the corresponding biotinylated secondary antibody was incubated for 30 min at room temperature. An avidinbiotin-peroxidase complex (Vector Laboratories; Burlingame, CA, USA) was 150 applied for 1 h at room temperature. Labelling was “visualized” by application of the NovaREDTM substrate kit (Vector Laboratories; Burlingame, CA, USA). Sections were counterstained with Mayer’s haematoxylin, dehydrated and mounted. Negative controls consisted of replacement of the primary antibody by blocking solution, normal serum and isotype-matched reagents of irrelevant specificity. Cell counts The number of positive cells labelled with antibodies against caspase 8, caspase 9, Fas, Bcl-2 and iNOS in tonsil, retropharyngeal lymph node and lung were counted as previously described immunolabelled were (Salguero counted et in al., 25 2005). non Cells overlapping consecutive selected, high magnification fields of 0.20 mm2 160 (lymphoid follicles, paracortex and medulla of lymph nodes) or 160 Patogenia del PRRS/Pathogenesis of PRRS 25 non overlapping consecutive selected structures (follicles, parafollicular, and lymphoreticular areas of tonsils) for each animal. In the lung sections, it was determined if the immunolabelled cells were located in the alveoli or in the septa. Results (number of cells per mm2164 ) were recorded as follows: +, < 2; ++, 2-5 and +++, > 5 cells/mm2. 161 Patogenia del PRRS/Pathogenesis of PRRS Table 1 Clones, sources and dilutions of the primary antibodies used for the immunohistochemical detection of extrinsic and intrinsic pathways of apoptosis. Antibody Clone Source Dilution Rabbit Anti-human caspase 8 Clone Asp391 Cell Signaling; Danvers, MA, USA 1:25 Rabbit Anti-human caspase 9 Clone Asp330 Cell Signaling; Danvers, MA, USA 1:25 Santa Cruz Biotech.; Santa Cruz, CA, USA 1:1000 Rabbit Anti-mouse Fas (X- Polyclonal 20) Mouse Anti-human Bcl-2 Clone 124 Dako Denmark; Glostrup, Denmark 1:50 Rabbit Anti-mouse iNOS Polyclonal NeoMarkers; Fremont, CA, USA 1:200 162 Patogenia del PRRS/Pathogenesis of PRRS Results Immunohistochemical markers for the extrinsic pathway of apoptosis Markers of the extrinsic pathway of apoptosis showed the most satisfactory immunohistochemical labelling in porcine ZSF tissues (Table 2). Both antibodies against caspase 8 and Fas displayed no immunostaining in 10% neutral buffered formalin and Bouin fixed samples (tonsil, retropharyngeal lymph node, and lung), but positive immunolabelling with hard to light background was observed when citrate buffered or protease was used as antigen retrieval technique with both fixatives (Table 2). Porcine ZSF tissues s 175 howed positive immunostained cells for both antibodies against caspase 8 and Fas with light or without background when Tween 20 or citrate unmasking methods were respectively used (Table 2). Immunohistochemical markers for the intrinsic pathway of apoptosis The fixation with 10% neutral buffered formalin and Bouin solution yielded negative results or hard background for antibody against caspase 9 with any of the antigen retrieval 163 Patogenia del PRRS/Pathogenesis of PRRS treatments carried out. However, immunopositive cells without background were observed in ZSF tissue samples when Tween 20 treatment was used (Table 2). No reaction or intense background was observed with any other combination of fixative and antigen retrieval. Both Bcl-2 and iNOS antibodies developed positive immunostaining with light or without background when citrate antigen retrieval or protease techniques were used in formalin fixed tissues (Table 2). Bouin and ZSF samples showed also immunolabelled cells for these antibodies but with light to hard background (Table 2). Cell counts and location of immunolabelled cells Cell counts were performed in the ideal fixative and antigen retrieval for each antibody: caspase 8 and Fas antibodies in ZSF tissues and treated with citrate; caspase 9 antibody in ZSF tissues treated with Tween 20; and Bcl-2 and iNOS antibodies in 10% neutral buffered formalin fixed samples and unmasked with protease and citrate treatment, respectively. The number of positive cells against each antibody is expressed as means of all the animals examined in the study (Table 3). Caspase 3 and TUNEL techniques immunostained both apoptotic bodies and 164 Patogenia del PRRS/Pathogenesis of PRRS viable cells that corresponded with macrophages and lymphocytes from T- and B-cells areas (Figs. 1A and 1B). The rest of antibodies (caspase 8, caspase 9, Bcl-2, Fas, iNOS) immunolabelled viable cells corresponding mainly with lymphocytes from T-cell areas of the examined lymphoid tissues, lymphoreticular areas 200 of tonsil and paracortex of 201 lymph nodes (Figs. 2A–E). In addition, macrophage-like cells from the medulla of lymph nodes and from the septum of the lung were also immunostained (Figs. 2F–G). Few lymphocytes from B-cell areas (lymphoid follicles) of tonsils and lymph nodes were positively labelled. Table 3 summarizes the main structures showing immunolabelled cells for each organ and antibody. The total number of positive cells against caspase 3 and TUNEL was equivalent to the one observed for most of the other mediators of apoptosis evaluated in this study. Nonetheless, in the retropharyngeal lymph node a higher number of immunolabelled cells against caspase 3 and TUNEL was observed in the lymphoid follicles. Contrary, in the medulla the immunoreactive cells against the intrinsic and extrinsic mediators of apoptosis were more numerous than caspase 3 and 165 Patogenia del PRRS/Pathogenesis of PRRS TUNEL (Table 3). Particularly, few epithelial cells from tonsil crypts were immunolabelled with antibody against caspase 8, as well as, some neutrophils from the lung or lymphoid tissues with antibodies against caspase 9 and/or iNOS (Figs. 2F–G). Fig. 2. (A) Numerous macrophages (arrow) and lymphocytes (arrowhead) immunolabelled against cleaved caspase 8 (ZSF, Citrate) in the paracortex of the retropharyngeal lymph node. IHC. Bar = 30µm. (B) Anti-cleaved caspase 9 immunostaining (ZSF, Tween 20) in the paracortex of a retropharyngeal lymph node. IHC. Bar = 100µm. (C) Abundant lymphocytes immunostained against Bcl-2 (Formol, Protease) in the paracortex of a retropharyngeal lymph node. Note the negative immunolabelling of the lymphoid follicle. IHC. Bar = 30µm. (D) AntiFas immunostaining (ZSF, Citrate) in macrophages and lymphocytes in the paracortex of the tonsil and intraepithelial within a crypt. IHC. Bar = 30µm. (E) Numerous macrophages and some lymphocytes immunolabelled against iNOS (Formol, Citrate) in the paracortex of the tonsil. IHC. Bar = 75µm. (F) Anti-iNOS (Formol, Citrate) immunolabelling of two interstitial macrophages (arrow) in the alveolar septa of the lung. IHC. Bar = 25µm. (G) Two interstitial macrophages (asterisk), a lymphocyte (arrow), and a neutrophil (arrowhead) immunostained against cleaved caspase 9 (ZSF, Tween 20) in the alveolar septa of the lung. IHC. Bar = 25µm. 166 Patogenia del PRRS/Pathogenesis of PRRS Table 2 Treatments and antibodies used for detection of caspases 8 and 9, Fas and iNOS in tonsil, retropharyngeal lymph node and lung of pigs. Caspase 8 Caspase 9 Fas Bcl-2 iNOS Formol No pretreatment Tween 20 Citrate microwave + +++ +++ Protease + + + +++ ++ Bouin No pretreatment ++ Tween 20 + ++ Citrate microwave + -/+ ++ ++ ++ Protease Zinc salts No pretreatment ++ + ++ + + Tween 20 + +++ Citrate microwave +++ + +++ ++ + Protease - : No reaction; +: Positive reaction and hard background; ++: Positive reaction and light background; +++: Positive reaction with no background 167 Patogenia del PRRS/Pathogenesis of PRRS Table 3 Positive cells for caspases 8 and 9, Fas and iNOS in the tonsil, retropharyngeal lymph node and lung of pigs. Fixative Antigen retrieval method Tonsil Follicles Caspase 3 Formol Citrate TUNEL Formol Protease Caspase 8 ZSF Citrate Caspase 9 ZSF Tween 20 Fas ZSF Citrate Bcl-2 Formol Protease iNOS Formol Citrate ++ ++ ++ + ++ + + LRT Retropharyngeal LN +++ ++ +++ ++ +++ +++ +++ Follicles Paracortex ++ +++ ++ ++ + +++ + ++ + +++ + +++ + +++ Medulla Lung Alveoli + + +++ + +++ +++ ++ + +++ + + + + + Septum ++ +++ ++ + +++ ++ 2 ++ 2 ZSF: Zinc Salts Fixative; LRT: LymphoReticular Tissue; +: < 2 cells/0.2mm field; ++: 2-5 cells/0.2mm field; +++: > 5 cells/0.2mm2 field. 168 Patogenia del PRRS/Pathogenesis of PRRS Discussion Immunohistochemical labelling represents nowadays a significantly useful tool in research since enables the detection of antigens by means specific antibodies amplifying the antigenantibody reaction making it easily visible, as well as, to localize a specific antigen within a lesion contributing to the understanding of the pathogenesis of several diseases (RamosVara et al., 2008). This technique also allows determining the spatial correlation between the expression of antigens and mediators of the immune response, just as cytokines or apoptosis mediators. However, the fixation process required to carry out immunohistochemical staining is one of the greatest inconveniences of this technique. It is well known that aldehyde fixatives, routine fixatives in histopathology examinations, cause cross-linkages masking the antigens present in tissue sections (Leong and Leong, 2007). Thus, several fixatives and antigen retrieval methods are proposed in order to obtain the optimal preservation for each antigen (Salguero et al., 2001). In the present study a panel of antibodies was used to determine the extrinsic and intrinsic pathways of apoptosis in porcine fixed 169 Patogenia del PRRS/Pathogenesis of PRRS tissues. To study the extrinsic pathway the antibodies against caspase 8, and Fas were used, whereas, antibodies against caspase 9, Bcl-2 and iNOS were use to examine the intrinsic pathway of apoptosis. All the antibodies were selected on the basis of the manufacturer specifications for the immunohistochemical detection of their human, mouse and/or rat counterparts. As the development and production of new monoclonal antibodies is both time consuming and expensive, it seems reasonable to investigate whether existing antibodies against human or murine antigens can be used successfully in heterologous species of interest (Pedersen et al., 2002). In this sense, a considerable homology has been reported between porcine Fas-associated death domain (FADD) and porcine procaspase 8 with their human and murine counterparts (Inoue et al, 2007). Moreover, a marked genomic and antigenic correlation has been reported between human and porcine cytokines (Smith, 1990), being observed an 86% of homology between human and porcine TNFα (Pauli, 1995). Previous studies have also reported cross reactivity for some of these antibodies in porcine cell cultures or in porcine frozen tissues 170 Patogenia del PRRS/Pathogenesis of PRRS (Bai et al., 2004; Ananiadou et al., 2007). These considerations support the use of human and murine antibodies for immunohistochemical examination of paraffin wax-embedded samples with porcine tissues in the present study. In addition, the positive immunolabelling of these antibodies in our study confirm their cross-reaction with porcine fixed paraffin embedded tissues. Previous reports have reported benefits of fixation with Bouin solution in the immunolabelling of cytokines and in the study of the pathogenesis of viral diseases (Salguero et al., 2001; Gómez-Laguna et al., 2010). In the present study, formalin fixed samples displayed successful results for Bcl-2 and iNOS, but antibodies against caspase 8, caspase 9 and Fas required alternative fixatives to get a satisfactory immunostaining. Bouin solution only enhanced lightly the detection of these antigens, but with a moderate to high background. On the other hand, ZSF allowed obtaining a positive staining without background when citrate microwave (caspase 8 and Fas) or Tween 20 (caspase 9) unmasking methods were used. The satisfactory results obtained for a specific immunolabelling in porcine tissues point to a potential 171 Patogenia del PRRS/Pathogenesis of PRRS use of these antibodies in future studies. Interestingly, Hicks and co-authors (2006) found similar results using ZSF for the immunohistochemical labelling of murine immune system cells. Theoretically the apoptosis phenomenon is divided into the two pathways named above, however, it is well known that both extrinsic and intrinsic pathways interconnect with each other. Thus, TNFα (a ligand of the extrinsic pathway of apoptosis) has been suggested to trigger iNOS-induced apoptosis (intrinsic pathway) in porcine vascular smooth muscle cells (Idel et al., 2002). On the other hand, the nitric oxide, derived from iNOS activity, has been reported to inhibit TNFα- and/or Fas-mediated apoptosis phenomena (Hatano, 2007). Moreover, Fas signaling has been reported to activate Bid, a proapototic member of the Bcl family, which increases the mitochondrial permeability (Myers and McGavin, 2007). Therefore, our results may increase the knowledge in the interplay between both pathways of apoptosis in several biological processes. In addition, the present study allows detecting cells immunolabelled in different structures from both lymphoid and non-lymphoid organs. Immunolabelled cells were morphologically identified as 172 Patogenia del PRRS/Pathogenesis of PRRS lymphocytes, macrophages, neutrophils or epithelial cells. Previous studies have reported apoptosis also in these cells (Satake et al., 2000; Salguero et al., 2005; Fernández de Marco et al., 2007). All the antibodies used in this study displayed similar results than immunolabelled cells against caspase 3 and TUNEL in the tonsil and in the lung. The discrepancy observed between these parameters in the lymphoid follicles and medulla of the retropharyngeal lymph node may be related to the detection of different stages of the apoptosis phenomenon. Thus, the higher count of caspase 3 and TUNEL in the lymphoid follicles of the retropharyngeal lymph node may point to a more advanced stage of apoptosis, whereas, the higher count of any of the other mediators, just as caspase 8, in the medulla of the lymph node may point to a earlier detection of apoptosis. This finding was also supported by the morphological characteristics of immunolabelled cells against extrinsic and intrinsic apoptosis mediators, as viable cells. Therefore, the use of these markers may be useful also in the detection of different stages of the apoptosis phenomenon. The results presented in this study enable the detection of both extrinsic- and intrinsic-apoptosis 173 Patogenia del PRRS/Pathogenesis of PRRS mediators in specific structures and cells in porcine fixed, paraffin embedded tissues, representing a worthy tool to study the pathogenesis of swine diseases, as well as, in xenotransplant and biomedicine studies. 174 Patogenia del PRRS/Pathogenesis of PRRS DISCUSIÓN GENERAL/ GENERAL DISCUSSION 175 Patogenia del PRRS/Pathogenesis of PRRS DISCUSIÓN GENERAL El Síndrome Reproductivo y Respiratorio (PRRS del ingés Porcine Reproductive and Respiratory Syndrome) es considerado una de las enfermedades más importantes de la industria del porcino. A pesar de que varios estudios han sido llevado a cabo para elucidar respuesta inmune llevada a cabo por el hospedador frente al virus del PRRS (PRRSV del inglés PRRS virus) (Yoon et al., 1995; Loemba et al., 1996; Shimizu et al., 1996; Bautista and Molitor, 1997; Wills et al., 1997a, 1997b; Albina et al., 1998a, 1998b; Kawashima et al., 1999; LópezFuentes et al., 1999; Allende et al., 2000; Samson et al., 2000; Lamontagne et al., 2001, 2003; Meier et al., 2003; Xiao et al., 2004; Díaz et al., 2005), todavía quedan aspectos que sin esclarecer. El virus del PRRS se replica, principalmente, en los macrófagos alveolares porcinos (MAPs) y, en menor medida, en macrófagos de otros órganos y en las células dendríticas (Molitor et al., 1997; Bautista and Molitor, 1999). Sin embargo, la mayoría de los estudios centrados en analizar la respuesta 176 Patogenia del PRRS/Pathogenesis of PRRS inmune provocada tras una infección con el PRRSV se han realizado principalmente sobre muestras de suero y de pulmón (Batista et al., 2004; Xibao et al., 2010; Gómez-Laguna et al., 2010a) y en menor medida en los órganos linfoides (Rossow et al., 1996; Beyer et al., 2000). La producción de citoquinas, es una de las herramientas utilizadas por los macrófagos así como por otras células del sistema inmunes o no pertenecientes al sistema inmune, en la defensa contra patógenos (Kumar et al., 2008). En este sentido, analizamos la expresión de citoquinas proinflamatorias y de citoquinas implicadas en la respuesta inmune como IL-10, IL12, IFN-α e IFN-γ en órganos linfoides de cerdos infectados con el PRRSV para determinar su correlación con la expresión del antígeno vírico en órganos linfoides, así como para evaluar su papel en la patogenia de la enfermedad. Así mismo, el PRRSV desarrolló una expresión bimodal en la tonsila y en el nódulo linfático retrofaríngeo con un primer pico de expresión a los 3 dpi y un segundo a los 14 dpi, mientras que en el nódulo linfático mediastínico sólo encontramos un pico de expresión al 177 Patogenia del PRRS/Pathogenesis of PRRS comienzo de la infección disminuyendo posteriormente hasta el final del experimento. Interesantemente, la expresión de cada citoquina estudiada fue diferente dependiendo de la cavidad analizada. Así, en la tonsila se observó una pobre expresión de citoquinas proinflamatorias, lo que podría estar relacionado tanto con la persistencia del PRRSV en tonsila de cerdos infectados (Beyer et al., 2000; Wills et al., 2003), como con una mayor susceptibilidad a las infecciones secundarias descritas por otros autores (Wills et al., 2000; Thanawongnuwech et al., 2000, 2004). Mientras que en el nódulo linfático mediastínico se observó un incremento en la expresión de TNF-α e IL-1α , siendo la IL-6 la citoquina más expresada en el nódulo linfático retrofaríngeo. Estos hallazgos, señalan un comportamiento diferente del PRRSV en los órganos linfoides, que podría estar relacionado con la falta de una respuesta inmune robusta frente al virus. Adicionalmente, las citoquinas proinflamatorias son capaces de modular la expresión de CD163, un receptor neutralizante de la hemoglobina, que actúa como receptor del PRRSV y está implicado en la internalización del virus (Van Gorp et al., 2008). Por lo tanto, un desequilibrio entre estas 178 Patogenia del PRRS/Pathogenesis of PRRS citoquinas puede jugar un papel en la capacidad del PRRSV para replicarse. Además de las citoquinas proinflamatorias, otras citoquinas juegan un papel significativo en la patogenia del PRRS. Se ha hipotetizado que el PRRSV es capaz de evadir la respuesta inmune induciendo una expresión de IL-10, que podría a su vez, reducir los niveles de otras citoquinas implicadas en la eliminación del virus como IFN-α, IFN-γ, IL-12p40 y TNF-α (Gomez-Laguna et al., 2010a). A pesar de que la expresión de las citoquinas proinflamatorias fue diferente dependiendo del órgano examinado, la expresión de IL-10, IL-12p40, IFN-α e IFN-γ, fue prácticamente similar en todos los órganos linfoides estudiados, a pesar de que la cantidad de PRRSV detectada fue diferente. Este hallazgo, sugiere que la respuesta inmune adaptativa frente al PRRSV es más homogénea que la respuesta proinflamatoria. A pesar de la actividad antiviral que poseen los IFNs y la IL-12, la IL-10 es capaz de reducir los niveles de estas citoquinas implicadas en la eliminación vírica (Mitchell and Kumar, 2004). En nuestro estudio, la cantidad de IL-10 179 Patogenia del PRRS/Pathogenesis of PRRS expresada fue de leve a moderada, observándose una mayor expresión de citoquinas con capacidad antiviral. Contrariamente, la ratio IL-10/IFN-γ previamente descrita en el pulmón por Gómez-Laguna et al. (2010a) fue proporcionalmente mayor, relacionándose con la persistencia del PRRSV en pulmón de cerdos infectados, por lo que la diferente expresión de IFNs, IL10 e IL-12 en los órganos linfoides con respecto al pulmón, nos indica que el PRRSV es capaz de modular la respuesta inmune del hospedador en los órganos linfoides de manera diferente a la previamente descrita en el pulmón. La expresión de IFNs en los órganos linfoides, junto con la persistencia viral encontrada a final del estudio, indican que la vía de señalización del IFN puede no estar funcionando adecuadamente. En este sentido, se ha demostrado que la proteína 2 no estructural (Nsp2 del inglés non structural protein 2) del PRRSV es capaz de inhibir la inducción del factor 3 regulador de IFN (Li et al., 2010), sin embargo no ha sido descrito en el PRRSV ningún papel en la vía de señalización del IFN, por lo que futuros estudios están siendo dirigidos hacia la determinación del papel del PRRS en la vía de señalización del IFN. 180 Patogenia del PRRS/Pathogenesis of PRRS Por otro lado, las infecciones víricas son capaces de modular los fenómenos de apoptosis induciendo un aumento o una disminución de los mismos como mecanismos de evasión de la respuesta inmune del hospedador (Thomson, 2001; Costers et al., 2008). La apoptosis es un mecanismo de muerte celular estrictamente regulado que envuelve a una compleja red de vías bioquímicas. El que una célula entre en apoptosis o no depende de un delicado balance de estímulos anti- y pro- apoptóticos. Los fenómenos de apoptosis han sido descritos en el PRRS ligados tanto a las partículas víricas (Suárez et al., 1996a; Costers et al., 2008) como a la expresión de citoquinas (Choi et al., 2002). Todas las citoquinas proinflamatorias analizadas en nuestro estudio pueden estar implicadas en los fenómenos de apoptosis. El TNF-α participa en la vía extrínseca de la apoptosis, mientras que la IL-1 e IL-6 juegan un papel en la vía intríseca de la apoptosis actuando como mediadores pro- y antiapoptóticos respectivamente (Pollock et al., 2003; Garcia-Tunon et al., 2005). Además, algunos autores han descrito un papel pro-apoptótico para la IL-10 (Estaquier et al., 1997; Liu et al., 2001). En este sentido, en nuestro estudio, evaluamos los 181 Patogenia del PRRS/Pathogenesis of PRRS fenómenos de apoptósis mediante examen histopatológico, así como mediante la expresión de caspasa 3 activada y la técnica TUNEL en órganos linfoides, encontrando más evidencias de fenómenos de apoptosis en el nódulo linfático mediastínico que en la tonsila, donde encontramos una expresión de citoquinas pro-apoptóticas muy pobre. En ambos órganos estudiados, encontramos fenómenos de apoptosis a lo largo de todo el estudio sin que estuviesen correlacionados estos fenómenos con la expresión de caspasa 3 activada, sugiriendo que el PRRSV en nuestro estudio induce apoptosis por una vía independiente de la caspasa 3. La generación de especies reactivas de oxígeno (ROS, del inglés reactive oxygen species) (Thayyullathi et al., 2008), el desequilibrio en la ratio Bcl-2/Bax (Untergasser et al., 2001) así como el incremento de FasL (Alvarez et al., 2011), han sido descritos como posibles mecanismos de inducción de la apoptosis por vías independientes a la caspasa 3. Concretamente, Alvarez et al. (2011) describieron que el TNF-α induce un incremento del FasL y la muerte celular por la liberación del citocromo c de la mitocondria, activando la caspasa 9 y llevando una vía de apoptosis independiente de la 182 Patogenia del PRRS/Pathogenesis of PRRS caspasa3. Además, Chang et al. (2007) describieron un incremento del FasL capaz de inducir apoptosis mediada por Fas/FasL en linfocitos de cerdos infectados con el PRRSV. Por lo tanto, futuros estudios son necesarios para determinar los mediadores de la apoptosis que utiliza el PRRSV para inducir la apoptosis por una vía independiente de la caspasa 3, para lo cual, determinamos el fijador así como el desenmascaramiento antigénico ideal para la detección inmunohistoquímica de diferentes mediadores de la apoptosis tanto de la vía extrínseca como de la vía intrínseca en tejidos de cerdos incluidos en parafina. El mejor fijador y desenmascaramiento antigénico frente a la caspasa 8 y el Fas (mediadores de la vía extrínseca de la apoptosis) fueron las sales de Zinc y el tampón citrato. Para determinar la vía intrínseca de la apoptosis los fijadores ideales así como los desenmascaramientos antigénicos de elección fueron: Para la caspasa 9, sales de Zinc como fijador y Tween 20 de desenmascaramiento antigéncio, para Bcl-2 e iNOS fue formol al 10% con proteinasa K tipo XIV y tampón citrato respectivamente. Los buenos resultados obtenidos para la inmunotinción de mediadores de apoptosis en tejidos de cerdos 183 Patogenia del PRRS/Pathogenesis of PRRS señalan hacia un potencial uso de estos anticuerpos en futuros estudios. En conclusión, el PRRSV en nuestro modelo experimental induce una expresión diferente de citoquinas y de los fenómenos de apoptosis en los órganos linfoides, lo que constituye una herramienta útil para profundizar en el estudio de la patogenia del PRRSV. Asimismo, nuestros resultados sugieren que el PRRSV puede utilizar vías independientes a la Caspasa 3 para la inducción de la apoptosis, lo que abre nuevos campos de actuación para elucidar el mecanismo empleado por el virus para inducir dichos fenómenos. 184 Patogenia del PRRS/Pathogenesis of PRRS GENERAL DISCUSSION Porcine Reproductive and Respiratory Syndrome (PRRS) is considered one of the most important diseases in the swine industry. Although several studies have been carried out to elucidate the host immune response evoked against PRRS virus (PRRSV) (Yoon et al., 1995; Loemba et al., 1996; Shimizu et al., 1996; Bautista and Molitor, 1997; Wills et al., 1997a, 1997b; Albina et al., 1998a, 1998b; Kawashima et al., 1999; LópezFuentes et al., 1999; Allende et al., 2000; Samson et al., 2000; Lamontagne et al., 2001, 2003; Meier et al., 2003; Xiao et al., 2004; Díaz et al., 2005), there are several aspects which still remain unclear. PRRSV is known to replicate mainly in porcine alveolar macrophages (PAMs), macrophages in other tissues and in minor extent in dendritic cells (Molitor et al., 1997; Bautista and Molitor, 1999). However, the majority of the studies focused on the immune response evoked after PRRSV infection have been performed in serum and lung samples (Batista et al., 2004; Xibao et al., 2010; Gómez-Laguna et al., 2010a) and in a lesser 185 Patogenia del PRRS/Pathogenesis of PRRS extent in the lymphoid tissues (Rossow et al., 1996; Beyer et al., 2000). The production of cytokines is one of the tools used by macrophages, and also by several other immune or non-immune cells, in the defense against pathogens (Kumar et al., 2008). In this sense, we analyzed the in situ expression of proinflammatory cytokines and cytokines involved in the immune response like IL-10, IL-12, IFN-α and IFN-γ in the lymphoid organs of PRRSV-infected pigs to determine their correlation with the expression of PRRSV antigen in lymphoid organs and to evaluate their role in the pathogenesis of the disease. Thus, PRRSV displayed a bimodal expression in the tonsil and retropharyngeal lymph node with a first peak of expression at 3 dpi and a second one at 14 dpi, whereas the mediastinal lymph node had just a peak of expression at the beginning decreasing onwards until the end of the experiment. Interestingly, the expression of each cytokine studied was different depending on the body compartment examined. Wheras no expression of proinflammatory cytokines was 186 Patogenia del PRRS/Pathogenesis of PRRS observed in the tonsil, wich may be related with the PRRSV persistence in the tonsil of infected pigs (Beyer et al., 2000; Wills et al., 2003), as well as with the increased susceptibility to secondary pathogens reported by other authors (Wills et al., 2000; Thanawongnuwech et al., 2000, 2004). Moreover, an enhancement was observed on TNF-α and IL-1α levels in the mediastinal lymph node and IL-6 expression in the retropharyngeal lymph node. This finding point to a differential behaviour of PRRSV in the lymphoid organs, which may be related with the lack of a robust host immune response evoked against the virus. Additionally, proinflammatory cytokines are able to modulate the expression of CD163, a hemoglobin scavenger receptor which acts as a PRRSV receptor and is involved in viral uncoating (Van Gorp et al., 2008). Thus, the imbalance between these cytokines in lymphoid organs may play a role in the susceptibility to PRRSV replication. Besides proinflammatory cytokines, other cytokines have been reported to play a significant role in the pathogenesis of PRRS. PRRSV has been hypothesized to evade the local 187 Patogenia del PRRS/Pathogenesis of PRRS immune response by inducing the expression of IL-10, which may in turn reduce the levels of cytokines involved in viral clearance such as IFN-α, IFN-γ, IL-12p40 and TNF-α (GomezLaguna et al., 2010a). Although the expression of proinflammatory cytokines was different depending on the body compartment examined, the expression of IL-10, IL-12p40, IFN-α and IFN-γ, was quite similar in all the lymphoid organs studied, despite the amount of PRRSV detected was different in each one. This finding suggests that the adaptative immune response evoked against PRRSV is more homogeneous than the proinflammatory response. Although IFNs and IL-12 have an antiviral activity, IL-10 may reduce the levels of these cytokines involved in viral clearance (Mitchell and Kumar, 2004). In our study the amount of IL-10 expressed was mild to moderate being observed a higher expression of antiviral cytokines. Contrary, the IL-10/IFN-γ ratio previously described in the lung by Gómez-Laguna et al. (2010a) was proportionally higher, which was related to the viral persistence in the lung of PRRSV infected pigs, considering the different expression of IFNs, IL10 and IL-12 in lymphoid organs as indicative that the PRRSV 188 Patogenia del PRRS/Pathogenesis of PRRS may be able to impair the host immune response in the lymphoid organs by a different mechanism than the one described in the lung. The expression of IFNs in the lymphoid organs of PRRSV infected pigs together to the viral persistence at the end of the study, indicates that the IFN signaling cascade may not be working properly. In this sense, non structural protein 2 (Nsp2) of PRRSV has been shown to inhibit the induction of IFN regulatory factor 3 (Li et al., 2010), but no role of PRRSV has been reported on the IFN signaling pathway. Thus, further studies are being conducted to determine the role of PRRS on IFN signaling cascade. On the other front, viral infections are known to modulate apoptosis phenomena inducing either an up-regulation or a down-regulation of such process as a mechanism of evasion of the host immune response (Thomson, 2001; Costers et al., 2008). Apoptosis is a strictly regulated mechanism of cell death that involves a complex network of biochemical pathways. Whether a cell undergoes apoptosis or not depends on a delicate balance of anti- and pro-apoptotic stimuli. Apoptosis 189 Patogenia del PRRS/Pathogenesis of PRRS phenomena have been reported during PRRS being linked to both viral particles (Suárez et al., 1996a; Costers et al., 2008) and the expression of cytokines (Choi et al., 2002). All proinflammatory cytokines analyzed in our study may be involved in the apoptotis phenomena. TNF-α participates in the extrinsic pathway of apoptosis, whereas IL-1 and IL-6 plays a role in the intrinsic pathway acting as pro- and anti- apoptotic mediators, respectively (Pollock et al., 2003; Garcia-Tunon et al., 2005). Additionally, some authors described IL-10 as proapoptotic mediator (Estaquier et al., 1997; Liu et al., 2001). In this sense, we evaluated apoptosis phenomena by microscopic examination and by cleaved caspase 3 expression and the TUNEL technique in lymphoid tissues, finding more evidences of apoptotic phenomena in the mediastinal lymph node than in the tonsil, where the expression of pro-apoptotic cytokines was very poor. In addition, in both, tonsil and mediastinal lymph node, apoptotic phenomena were described after microscopic examination throughout the study, without a correlation with the expression of cleaved caspase 3, suggesting that PRRSV in our study induces apoptosis by a caspase 3 independent pathway. 190 Patogenia del PRRS/Pathogenesis of PRRS Among caspase 3-independent pathways, the generation of reactive oxygen species (ROS) (Thayyullathi et al., 2008), the imbalance of the Bcl-2/Bax ratio (Untergasser et al., 2001) and the upregulation of FasL (Alvarez et al., 2011), have been reported as possible mechanisms for the induction of apoptosis. Specifically, Alvarez et al. (2011) reported that TNF-α induced an enhancement of FasL and cell death by the release of cytochrome c from the mitochondria, leading to caspase 9 activation and a caspase 3-independent apoptotic pathway. Moreover, Chang et al. (2007) described an increase of FasL capable of inducing Fas/FasL mediated apoptosis in lymphocytes in pigs with PRRSV infection. Therefore, further studies should be needed to determine the apoptosis mediators used by PRRSV to induce apoptosis by a caspase 3 independent pathway. In this sense, we determine the ideal fixative and antigen retrieval method in porcine paraffin embedded tissues for the immunohistochemical detection of apoptosis mediators, from both extrinsic and intrinsic pathways. The best fixative and 191 Patogenia del PRRS/Pathogenesis of PRRS antigen retrieval method for the antibodies against caspase 8 and Fas (extrinsic pathway of apoptosis) were Zinc salt fixative and Citrate microwave unmasking technique. To determine the intrinsic pathway the ideal fixative and antigen retrieval method for each antibody was as follows: for caspase 9, fixation in Zinc salt solution and antigen retrieval with Tween 20; for Bcl-2 and iNOS the optimal immunolabelling was observed in 10 % neutral buffered formalin fixed samples and with Proteinase K and Citrate microwave as antigen retrieval methods, respectively. The satisfactory results obtained for a specific immunolabelling in porcine tissues point to a potential use of these antibodies in future studies. In conclusion, PRRSV in our experimental study induces a different expression of cytokines and apoptotic phenomena in lymphoid organs, wich constitute an useful tool to deep in the knowledge of the pathogenesis of PRRSV. Furthemore, our results suggest that PRRSV could follow a caspase 3 independent pathway to induce apoptosis in lymphoid organs, 192 Patogenia del PRRS/Pathogenesis of PRRS wich give new fields of action to elucidate the mechanism used by the virus to induce these phenomena. 193 Patogenia del PRRS/Pathogenesis of PRRS CONCLUSIONES/ CONCLUSIONS 194 Patogenia del PRRS/Pathogenesis of PRRS CONCLUSIONES 1. La cepa 2982 (genotipo europeo) del virus del Síndrome Reproductivo y Respiratorio Porcino es capaz de evadir la respuesta inmune induciendo un desequilibrio en la expresión de citoquinas proinflamatorias a nivel de los órganos linfoides. 2. La ausencia de expresión de citoquinas proinflamatorias en la tonsila de cerdos infectados con la cepa 2982 del virus del Síndrome Reproductivo y Respiratorio Porcino desempeña un papel importante en la persistencia del virus. 3. La cepa 2982 del virus del Síndrome Reproductivo y Respiratorio Porcino modula la respuesta de IFNs, IL-10 e IL-12 en los órganos linfoides de manera distinta a la descrita previamente en el pulmón de cerdos infectados con esta misma cepa. 4. La expresión de IFNs junto con niveles elevados del virus del Síndrome Reproductivo y Respiratorio Porcino en órganos linfoides de cerdos infectados experimentalmente con la cepa 2982 indican que la vía de señalización de los 195 Patogenia del PRRS/Pathogenesis of PRRS IFNs no se desarrolla de manera eficaz en nuestro modelo experimental. 5. El desarrollo de los fenómenos de apoptosis desarrollados a lo largo de la infección con la cepa 2982 del virus del Síndrome Reproductivo y Respiratorio Porcino coincidió con una mayor expresión de citoquinas pro-apoptóticas. 6. En la infección con la cepa 2982 del virus del Síndrome Reproductivo y Respiratorio Porcino se producen fenómenos de apoptosis, en los órganos linfoides, por vías independientes de la caspasa 3. 7. El formol tamponado al 10% y las sales de Zinc, como fijadores, y la utilización de Tween 20, tampón citrato y proteasa tipo XIV, como métodos de desenmascaramiento antigénico, representaron las combinaciones de elección para el estudio de los fenómenos de apoptosis en muestras de tejidos porcinos incluidas en parafina. 196 Patogenia del PRRS/Pathogenesis of PRRS CONCLUSIONS 1.- The strain 2982 (European genotype) of Porcine Reproductive and Respiratory Syndrome virus is able to evade the immune response by inducing an imbalance in the expression of proinflammatory cytokines in lymphoid organs. 2.- The absence of proinflammatory cytokines expression in the tonsil from pigs infected with the strain 2982 of Porcine Reproductive and Respiratory Syndrome virus plays an important role in the persistence of the virus. 3.- The strain 2982 of Porcine Reproductive and Respiratory Syndrome virus modulates the response of IFNs, IL10 and IL-12 in lymphoid organs by a different mechanism than the one described in the lung of pigs infected with the same strain. 4.- The expression of IFNs, together with the persistence of Porcine Reproductive and Respiratory Syndrome virus in the lymphoid organs of pigs experimentally infected with the strain 2982, indicates that the IFN signaling cascade may not be working properly in our experimental model. 197 Patogenia del PRRS/Pathogenesis of PRRS 5.- The development of apoptotis phenomena throughout an infection with the strain 2982 of Porcine Reproductive and Respiratory Syndrome virus coincided with increased expression of pro-apoptotic cytokines. 6.- During an infection with the strain 2982 of Porcine Reproductive and Respiratory Syndrome virus the apoptotic phenomena in lymphoid organs are produced by caspase 3 independent pathways. 7.- Zinc salts and 10 % neutral buffered formalin, as fixatives, and the use of Tween 20, citrate microwave and protease type XIV, as antigen retrieval method, represented the combination of election to study the apoptosis phenomena in porcine paraffin embedded tissues. 198 Patogenia del PRRS/Pathogenesis of PRRS REFERENCES 199 Patogenia del PRRS/Pathogenesis of PRRS REFERENCES Abbas AK, Murphy KM, Sher A (1996). Functional diversity of helper T lymphocytes. Nature, 383, 787-793. Abbas AK.,Lichtman AH (2001) Basic Immunology. Functions and disorders of the Immune System. NewYork. Sauders Company, 23-41. Afonso CL, Neilan JG, Kutish GF and Rock DL (1996) An African swine fever virus Bc1-2 homolog, 5-HL, suppresses apoptotic cell death. Journal of Virology, 70, 4858-4863. Albina E, Madec F, Cariolet R, Torrison J (1994) Immune response and persistence of the porcine reproductive and respiratory syndrome virus in infected pigs and farm units. The Veterinary record, 134, 567-573. Albina E (1997). Epidemiology of porcine reproductive and respiratory syndrome (PRRS): an overview. Veterinary Microbiology, 55, 309316. Albina E, Carrat C, Charley B (1998a) Interferon-alpha response to swine arterivirus (PoAV), the porcine reproductive and respiratory syndrome virus. Journal of Interferons and Cytokines Research, 18, 485-490. Albina E, Piriou L, Hutet E, Cariolet R, L’Hospitalier R (1998b) Immune responses in pigs infected with porcine reproductive and respiratory syndrome virus (PRRSV). Veterinary Immunology and Immunopathology, 61, 49-66. Albright CD, Liu R, Mar MH, Shin OH, Vrablic AS, Salganik RI and Zeisel SH (1997) Diet, apoptosis, and carcinogenesis. Advances in Experimental Medicine and Biology, 422, 97-107. Alfonso P, Frías-Lepoureau MT (2003) PRRS in Central America and the Caribbean region. In: Zimmerman JJ, Yoon KJ (editors), The PRRS compendium 2nd edition. National Pork Board, Des Moines Iowa, 209-211. 200 Patogenia del PRRS/Pathogenesis of PRRS Allan GM, McNeilly F, Ellis J, Krakowka S, Meehan B, McNair I, Walker I, Kennedy S (2000) Experimental infection of colostrum deprived piglets with porcine circovirus 2 (PCV2) and porcine reproductive and respiratory syndrome virus (PRRSV) potentiates PCV2 replication. Archives of Virology, 145, 24212429. Allende R, Lewis TL, Lu Z, Rock DL, Kutish GF, Ali A, Doster AR, Osorio FA (1999) North American and European porcine reproductive and respiratory syndrome viruses differ in non-structural protein coding regions. Journal of General Virology, 80, 307-315. Allende R, Laegreid WW, Kutish GF, Galeota JA, Wills RW, Osorio FA (2000) Porcine reproductive and respiratory syndrome virus: description of persistence in individual pigs upon experimental infection. Journal of Virology, 74, 10834-10837. Alvarez S, Blanco A, Fresno M, Muñoz-Fernández MA (2011) TNF-α contributes to caspase-3 independent apoptosis in neuroblastoma cells: role of NFAT, PLoS one, e16100 doi: 10.1371/journal.pone.0016100. Ananiadou OG, Bibou K, Drossos GE, Charchanti A, Bai M, Haj-Yahia S, Anagnostopoulos CE, Johnson EO (2007) Effect of profound hypothermia during circulatory arrest on neurologic injury and apoptotic repressor protein Bcl-2 expression in an acute porcine model. The Journal of thoracic and cardiovascular surgery, 133, 919-926. Andreyev VG, Wesley RD, Mengeling WL, Vorwald AC, Lager KM (1997) Genetic variation and phylogenetic relationships of 22 porcine reproductive and respiratory syndrome virus (PRRSV) field strains based on sequence analysis of open reading frame 5. Archives of Virology, 142, 993-1001. Archambault D and St-Laurent G (2000) Induction of apoptosis by equine arteritis virus infection. Virus Genes, 20, 143-147. 201 Patogenia del PRRS/Pathogenesis of PRRS Asai T, Mori M, Okada M, Uruno K, Yazawa S, Shibata I (1999) Elevated serum haptoglobin in pigs infected with porcine reproductive and respiratory syndrome virus. Veterinary Immunology and Immunopathology, 70, 143-148. Ashkenazi A and Dixit VM (1998) Death receptors: signaling and modulation. Science, 281, 1305-1308. Ashkenazi A (2002) Targeting death and decoy receptors of the tumournecrosis factor superfamil. Nature reviews. Cancer, 2, 420-430. Atre N, Thomas L, Mistry R, Pathak K, Chiplunkar S (2006) Role of nitric oxide in heat shock protein induced apoptosis of gammadelta T cells. International journal of cancer,119, 1368-1376. Bai L, Maedler K, Donath M, Tuch BE (2004) Expression of Fas but not Fas ligand on fetal pig beta cells. Xenotransplantation, 11, 426-435. Batista L, Pijoan C, Dee S, Olin M, Molitor T, Joo HS, Xiao Z, Murtaugh M (2004) Virological and immunological responses to porcine reproductive and respiratory syndrome virus in a large population of gilts. The Canadian Journal of Veterinary Research, 68, 267-273. Bautista EM and Molitor TW (1997) Cell-mediated immunity to porcine reproductive and respiratory syndrome virus in swine. Viral immunology, 10, 83-94. Bautista EM and Molitor TW (1999) IFN gamma inhibits porcine reproductive and respiratory syndrome virus replication in macrophages. Archives of virology, 144, 1191-1200. Benfield DA, Nelson E, Collins JE, Harris L, Goyal SM, Robison D, Christianson WT, Morrison RB, Gorcyca D, Chladek D (1992) Characterization of swine infertility and respiratory syndrome (SIRS) virus (isolate ATCC VR-2332). Journal of Veterinary Diagnostic Investigation, 4, 127-133. Bennett RE, Harrison MW, Bishop CJ, Searle J, Kerr JF (1984) The role of apoptosis in atrophy of the small gut mucosa produced by repeated 202 Patogenia del PRRS/Pathogenesis of PRRS administration of cytosine arabinoside. Journal of Pathology, 142, 259-263. Beyer J, Fichtner D, Schirrmeier H, Polster U, Weiland E, Wege H (2000) Porcine reproductive and respiratory syndrome virus (PRRSV): kinetics of infection in lymphatic organs and lung. Journal of veterinary medicine. B, Infectious diseases and veterinary public health, 47, 9-25. Bignotti E, Ferrari M, Nicoloso L, Faccini S, Ajmone-Marsan P, Nigrelli A, Moratti R. (2002) Tipizzazione molecolare di virus della PRRS isolati in campo. In: Proceedings of the Società Italiana di Patologia ed Allevamento dei Suini, 28, 161–166. Bilodeau R, Archambault D, Vezina SA, Sauvageau R, Fournier M, Dea S (1994) Persistence of porcine reproductive and respiratory syndrome virus infection in a swine operation. Canadian journal or veterinary research, 58, 291-298. Biron CA and Sen GC (2001) Interferons and other cytokines. In: Fields of Virology, 4th Edit., D Knipe, P Howley, D Griffin, R Lamb, M Martin, Eds., Lippincott, Williams & Wilkins, Philadelphia, pp. 321349. Biron CA and Sen GC (2007) Innate Responses to viral Infections. In: Fields Virology, 5th Ed. (Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, Straus SE, ed.). Lippincott, Williams & Wilkins, a Wolters Kluwer Business, Philadelphia, 2007, pp. 249278. Boehm U, Klamp T, Groot M, Howard JC (1997) Cellular responses to interferongamma. Annual Review of Immunology, 15, 749-795. Boeker M, Pabst R, Rothkotter HJ (1999) Quantification of B, T and null lymphocyte subpopulations in the blood and lymphoid organs of the pig. Immunobiology, 201, 74-87. Borghetti P, Saleri R, Ferrari L, Morganti M, De Angelis E, Franceschi V, Bottarelli E, Martelli P (2011) Cytokine expression, glucocorticoid 203 Patogenia del PRRS/Pathogenesis of PRRS and growth hormone changes after porcine reproductive and respiratory syndrome virus (PRRSV-1) infection in vaccinated and unvaccinated naturally exposed pigs. Comparative immunology, microbiology and infectious diseases, 34, 143-155. Botner A, Nielsen J and Bille-Hansen V (1994) Isolation of porcine reproductive and respiratory syndrome (PRRS) virus in a Danish swine herd and experimental infection of pregnant gilts with the virus. Veterinary microbiology, 40, 351-360. Borden EC, Sen GC, Uze G, Silverman RH, Ransohoff RM, Foster GR, Stark GR (2007) Interferons at age 50: past, current and future impact on biomedicine. Nature Reviews Drug Discovery, 6, 975–990. Braciale TJ, Hahn YS, Burton DR (2007) The Adaptative Immune Response to Viruses. In: Fields Virology , 5th ed. (Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, Straus SE, ed.). Lippincott, Williams & Wilkins, and Wolters Kluwer Business, Philadelphia, 2007, pp. 279-326. Brockmeier SL, Palmer MV, Bolin SR (2000). Effects of intranasal inoculation of porcine reproductive and respiratory syndrome virus, Bordetella bronchiseptica, or a combination of both organisms in pigs. American Journal of Veterinary Research, 61, 892-899. Brun A, Rivas C, Esteban M, Escribano JM and Alonso C (1996) African swine fever virus gene A179L, a viral homologue of bcl-2, protects cells from programmed cell death. Virology, 225, 227-230. Buddaert W, Van Reeth K, Pensaert M (1998) In vivo and in vitro interferon (IFN) studies with the porcine reproductive and respiratory syndrome virus (PRRSV). Advances in Experimental Medicine and Biology, 440, 461-467. 204 Patogenia del PRRS/Pathogenesis of PRRS Budihardjo I, Oliver H, Lutter M, Luo X, Wang X (1999) Biochemical pathways of caspase activation during apoptosis. Annual review of cell and developmental biology, 15, 269-290. Buechler C, Ritter M, Orso E, Langmann T, Klucken J and Schmitz G (2000) Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro- and antiinflammatory stimuli. Journal of leukocyte biology, 67, 97-103. Callard R and Gearing A (1994) The cytokine. Facts Book. Academic Press. Canon N, Audige L, Denac H, Hofmann M and Griot C (1998) Evidence of freedom from porcine reproductive and respiratory syndrome virus infection in Switzerland. The Veterinary record, 142, 142-143. Carrasco L, Núñez A, Salguero FJ, Díaz San Segundo F, Sánchez-Cordon P, Gómez-Villamandos JC, Sierra MA (2002) African swine fever: Expression of interleukin-1 alpha and tumour necrosis factor-alpha by pulmonary intravascular macrophages. Journal of Comparative Pathology, 126, 194-201. Carter QL, Curiel RE (2005) Interleukin-12 (IL-12) ameliorates the effects of porcine respiratory and reproductive syndrome virus (PRRSV) infection. Veterinary Immunology and Immunopathology, 107, 105118. Castigli E, Arcuri C, Giovagnoli L, Luciani R, Secca T, Gianfranceschi GL, Bocchini V (2000) Interleukin-1beta induces apoptosis in GL15 glioblastoma-derived human cell line. American Journal or Physiology. Cell Physiology, 279, C2043-2049. Cavaillon JM (1994) Cytokines and macrophages. Biomedicine & Pharmacotherapy, 48, 445-453. Cella M, Facchetti F, Lanzavecchia A, Colonna M (2000) Plasmacytoid dendritic cells activated by influenza virus and CD40L drive a potent Th1 polarization. Nature Immunology, 1, 305-310. 205 Patogenia del PRRS/Pathogenesis of PRRS Cesano A, Visonneau S, Clark SC, Santoli D (1993) Cellular and molecular mechanisms of activation of MHC nonrestricted cytotoxic cells by IL-12. Journal of Immunology, 151, 2943-2957. Chan SH, Kobayashi M, Santoli D, Perussia B, Trinchieri G (1992) Mechanisms of IFN-gamma induction by natural killer cell stimulatory factor (NKSF/IL-12). Role of transcription and mRNA stability in the synergistic interaction between NKSF and IL-2. Journal of Immunology, 148, 92-98. Chang HW, Jeng CR, Lin CM, Liu JJ, Chang CC, Tsai YC, Chia MY, Pang VF (2007) The involvement of Fas/FasL interaction in porcine circovirus type 2 and porcine reproductive and respiratory syndrome virus co-inoculation-associated lymphocyte apoptosis in vitro. Veterinary Microbiology, 122, 72-82. Charerntantanakul W, Platt R, Roth JA, (2006) Effects of porcine reproductive and respiratory syndrome virus-infected antigenpresenting cells on T cell activation and antiviral cytokine production. Viral Immunology, 19, 646–661. Cheville NF and Mengeling WL (1969) The pathogenesis of chronic hog cholera (swine fever). Histologic, immunofluorescent, and electron microscopic studies. Laboratory investigation, 20, 261-274. Chiou MT, Jeng CR, Chueh LL, Cheng CH, Pang VF (2000) Effects of porcine reproductive and respiratory syndrome virus (isolate tw91) on porcine alveolar macrophages in vitro. Veterinary Microbiology, 71, 9-25. Choi C and Chae C (2002) Expression of tumour necrosis factor-alpha is associated with apoptosis in lungs of pigs experimentally infected with porcine reproductive and respiratory syndrome virus. Research in veterinary science, 72, 45-49. Choi C, Cho WS, Kim B, Chae C (2002) Expression of Interferon-gamma and tumour necrosis factor-alpha in pigs experimentally infected 206 Patogenia del PRRS/Pathogenesis of PRRS with Porcine Reproductive and Respiratory Syndrome Virus (PRRSV). Journal of Comparative Pathology, 127, 106-113. Christianson WT, Collins JE, Benfield DA, Harris L, Gorcyca DE, Chladek DW, Morrison RB, Joo HS (1992) Experimental reproduction of swine infertility and respiratory syndrome in pregnant sows. American Journal of Veterinary Research, 53, 485-488. Christianson WT, Choi CS, Collins JE, Molitor TW, Morrison RB, Joo HS (1993) Pathogenesis of porcine reproductive and respiratory syndrome virus infection in mid-gestation sows and fetuses. Canadian Journal of Veterinary Research, 57, 262-268. Chu ZL, Pio F, Xie Z,Welsh K, Krajewska M, Krajewski S, Godzik A, Reed JC (2001) A novel enhancer of the Apaf1 apoptosome involved in cytochrome c-dependent caspase activation and apoptosis. The Journal of biological chemistry, 276, 9239–9245. Chung HK and Chae C (2003) Expression of interleukin-10 and interleukin12 in piglets experimentally infected with porcine reproductive and respiratory syndrome virus (PRRSV). Journal of Comparative Pathology, 129, 205-212. Chung HK, Lee JH, Kim SH, Chae C (2004) Expression of interferon-alpha and Mx1 protein in pigs acutely infected with porcine reproductive and respiratory syndrome virus (PRRSV). Journal of Comparative Pathology, 130, 299-305. Ciacci-Zanella JR, Trombetta C, Vargas I (2004) Lack of evidence of porcine reproductive and respiratory syndrome virus (PRRSV) infection in domestic swine in Brazil. Ciencia rural, 34, 449-455. Clutton S (1997) The importance of oxidative stress in apoptosis. British Medical Bulletin, 53, 662-668. Colgrove GS, Haelterman EO, Coggins L (1969) Pathogenesis of African swine fever in young pigs. American journal of veterinary research, 30, 1343-1359. 207 Patogenia del PRRS/Pathogenesis of PRRS Collins JE, Benfield DA, Christianson WT, Harris L, Hennings JC, Shaw DP, Goyal SM, McCullough S, Morrison RB, Joo HS (1992) Isolation of swine infertility and respiratory syndrome virus (isolate ATCC VR2332) in North America and experimental reproduction of the disease in gnotobiotic pigs. Journal of veterinary diagnostic investigation, 4, 117-126. Cory S, Huang DC, Adams JM (2003) The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene, 22, 8590-8607. Costers S, Lefebvre DJ, Delputte PL, Nauwynck HJ (2008) Porcine reproductive and respiratory syndrome virus modulates apoptosis during replication in alveolar macrophages. Archives of virology, 153, 1453-1465. Cousens LP, Peterson R, Hsu S, Dorner A, Altman JD, Ahmed R, Biron CA (1999) Two roads diverged: interferon alpha/beta- and interleukin 12-mediated pathways in promoting T cell interferon gamma responses during viral infection. The Journal of experimental medicine, 189, 1315-1328. Darwich L, Díaz I, Mateu E (2010) Certainties, doubts and hypotheses in porcine reproductive and respiratory syndrome virus immunobiology. Virus Research, 154, 123-132. Davies PR and Ossowicz CJ (1991) Evaluation of methods used for detecting Streptococcus suis type 2 in tonsils, and investigation of the carrier state in pigs. Research in veterinary science, 50, 190-194. De Jong MF, Cromwijk W, Van ’t Veld P (1991). The “new” pig disease: epidemiology and production losses in the Netherlands. In: Report of a seminar/workshop on the new pig disease (PRRS) , European Commission, Brussels, Belgium, pp. 9-19. Dea S, Gagnon CA, Mardassi H, Pirzadeh B, Rogan D (2000) Current knowledge on the structural proteins of porcine reproductive and respiratory syndrome (PRRS) virus: comparison of the North 208 Patogenia del PRRS/Pathogenesis of PRRS American and European isolates. Archives of Virology, 145, 659688. Díaz I, Darwich L, Pappaterra G, Pujols J, Mateu E (2005) Immune responses of pigs after experimental infection with a European strain of porcine reproductive and respiratory syndrome virus. Journal of General Virology, 86, 1943-1951. Díaz I, Darwich L, Pappaterra G, Pujols J, Mateu E (2006) Different European-type vaccines against porcine reproductive and respiratory syndrome virus have different immunological properties and confer different protection to pigs. Virology, 351, 249-259. Domeika K, Berg M, Eloranta ML, Alm GV (2002). Porcine interleukin-12 fusion protein and interleukin-18 in combination induce interferongamma production in porcine natural killer and T cells. Veterinary Immunology and Immunopathology, 86, 11-21. Done SH and Paton DJ (1995) Porcine reproductive and respiratory syndrome: clinical disease, pathology and immunosuppression. Veterinary Record, 136, 32-35. Drew TW, Lowings JP, Yapp F (1997). Variation in open reading frames 3, 4 and 7 among porcine reproductive and respiratory syndrome virus isolates in the UK. Veterinary Microbiology, 55, 209-221. Drew TW (2000). A review of evidence for immunosuppression due to porcine reproductive and respiratory syndrome virus. Veterinary Research, 31, 27-39. Duan X, Nauwynck HJ, Pensaert MB (1997) Virus quantification and identification of cellular targets in the lungs and lymphoid tissues of pigs at different time intervals after inoculation with porcine reproductive and respiratory syndrome virus (PRRSV). Veterinary Microbiology, 56, 9-19. Dunger A, Augstein P, Schmidt S, Fischer U (1996) Identification of interleukin 1-induced apoptosis in rat islets using in situ specific labelling of fragmented DNA. Journal of Autoimmunity, 9, 309-313. 209 Patogenia del PRRS/Pathogenesis of PRRS Dukers DF, Oudejans JJ, Vos W, ten Berge RL, Meijer CJ (2002) Apoptosis in B-cell lymphomas and reactive lymphoid tissues always involves activation of caspase 3 as determined by a new in situ detection method. Journal of Pathology, 196, 307–315. Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annual review of biochemistry, 68, 383-424. Edwards S, Robertson LB, Wilesmith JW, Ryan JB, Kilner C, Paton D, Drew T, Brown I, Sands J (1992). PRRS (‘Blue-eared Pig disease’) in Great Britain. In: Proceedings of American Association of Swine Practitioners – 1st International PRRS Symposium, 4, 32-36. Eichhorn G, Frost JW (1997) Study on the suitability of sow colostrum for the serological diagnosis of porcine reproductive and respiratory syndrome (PRRS). Zentralblatt für Veterinärmedizin. Reihe B. Journal of veterinary medicine. Series B, 44, 65-72. Elvander M, Larsson B, Engvall A (1997) Nation-wide surveys of TGE/PRCV, CSF, PRRS, SVD, L.pomona, and B.suis in pigs in Sweden. Epidémiol Santé Animal, 39, 31-32. Estaquier J, Marguerite M, Sahuc F, Bessis N, Auriault C, Ameisen JC (1997) Interleukin-10-mediated T cell apoptosis during the T helper type 2 cytokine response in murine Schistosoma mansoni parasite infection. European Cytokine Network, 8, 153-160. Fang Y and Snijder EJ (2010) The PRRSV replicase: exploring the multifunctionality of an intriguing set of nonstructural proteins. Virus research, 154, 61-76. Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (2005) Virus Taxonomy, clasiffication and nomenclature of viruses. London: Elsevier Academic Press. Feng W, Laster SM, Tompkins M, Brown T, Xu JS, Altier C, Gómez W, Benfield D, McCaw MB (2001) In utero infection by porcine reproductive and respiratory syndrome virus is sufficient to increase 210 Patogenia del PRRS/Pathogenesis of PRRS susceptibility of piglets to challenge by Streptococcus suis type II. Journal of Virology, 75, 4889-4895. Feng WH, Tompkins MB, Xu JS, Brown TT, Laster SM, Zhang HX, McCaw MB (2002) Thymocyte and peripheral blood T lymphocyte subpopulation changes in piglets following in utero infection with porcine reproductive and respiratory syndrome virus. Virology, 302, 363-372. Feng WH, Tompkins MB, Xu JS, Zhang HX, McCaw MB (2003) Analysis of constitutive cytokine expression by pigs infected in-utero with porcine reproductive and respiratory syndrome virus. Veterinary Immunology and Immunopathology, 94, 35-45. Fernández A, Suárez P, Castro JM, Tabares E, Díaz-Guerra M (2002) Characterization of regions in the GP5 protein of porcine reproductive and respiratory syndrome virus required to induce apoptotic cell death. Virus research, 83, 103-118 Fernández de Marco M, Salguero FJ, Bautista MJ, Núñez A, Sánchez-Cordón PJ, Gómez-Villamandos JC (2007) An immunohistochemical study of the tonsils in pigs with acute African swine fever virus infection. Research in veterinary science, 83, 198-203. Forsberg R, Oleksiewicz MB, Petersen AM, Hein J, Bøtner A, Storgaard T (2001) A molecular clock dates the common ancestor of Europeantype porcine reproductive and respiratory syndrome virus at more than 10 years before the emergence of disease. Virology, 289, 174179. Forsberg R, Storgaard T, Nielsen HS, Oleksiewicz MB, Cordioli P, Sala G, Hein J, Bøtner A (2002). The genetic diversity of European type PRRSV is similar to that of the North American type but is geographically skewed within Europe. Virology, 299, 38-47. Foss DL, Zilliox MJ, Meier W, Zuckermann F, Murtaugh MP (2002). Adjuvant danger signals increase the immune response to porcine 211 Patogenia del PRRS/Pathogenesis of PRRS reproductive and respiratory syndrome virus. Viral Immunology, 15, 557-566. Galina L, Pijoan C, Sitjar M, Christianson WT, Rossow K, Collins JE (1994) Interaction between Streptococcus suis serotype 2 and porcine reproductive and respiratory syndrome virus in specific pathogenfree piglets. Veterinary Record, 134, 60-64. Garcia-Tunon I, Ricote M, Ruiz A, Fraile B, Paniagua R, Royuela M (2005) IL-6, its receptors and its relationship with bcl-2 and bax proteins in infiltrating and in situ human breast carcinoma. Histopathology, 47, 82-89. Garner MG, Gleeson LJ, Holyoake (1997) A national serological survey to verify Australia´s freedom from porcine reproductive and respiratory syndrome. Australia veterinary journal, 75, 596-600. Gagnon CA and Dea S (1998) Differentiation between porcine reproductive and respiratory syndrome virus isolates by restriction fragment length polymorphism of their ORFs 6 and 7 genes. Canadian Journal of Veterinary Research, 62, 110-116. Gagnon CA, Lachapelle G, Langelier Y, Massie B, Dea S (2003) Adenoviralexpressed GP5 of porcine respiratory and reproductive syndrome virus differs in its cellular maturation from the authentic viral protein but maintains known biological functions. Archives of virology, 148, 951-972. Gimeno M, Darwich L, Diaz I, de la Torre E, Pujols J, Martin M, Inumaru S, Cano E, Domingo M, Montoya M and Mateu E (2011) Cytokine profiles and phenotype regulation of antigen presenting cells by genotype-I porcine reproductive and respiratory syndrome virus isolates. Veterinary research, 42, 9. Goldberg TL, Hahn EC, Weigel RM, Scherba G (2000a) Genetic, geographical and temporal variation of porcine reproductive and respiratory syndrome virus in Illinois. Journal of General Virology, 81, 171-179. 212 Patogenia del PRRS/Pathogenesis of PRRS Goldberg TL, Lowe JF, Milburn SM, Firkins LD (2003) Quasispecies variation of porcine reproductive and respiratory syndrome virus during natural infection. Virology, 317, 197-207. Gómez-Laguna J, Salguero FJ, Fernández de Marco M, Pallarés FJ, Bernabé A, Carrasco L (2009) Changes in lymphocyte subsets and cytokines during European porcine reproductive and respiratory syndrome: increased expression of IL-12 and IL-10 and proliferation of CD4()CD8(high). Viral immunology, 22, 261-271. Gómez-Laguna J, Salguero FJ, Barranco I, Pallares FJ, Rodríguez-Gómez IM, Bernabé A, Carrasco L (2010a) Cytokine expression by macrophages in the lung of pigs infected with the porcine reproductive and respiratory syndrome virus. Journal of Comparative Pathology, 142, 51-60. Gómez-Laguna J, Salguero FJ, Pallarés FJ, Fernández de Marco M, Barranco I, Cerón JJ, Martínez-Subiela S, Van Reeth K,Carrasco L (2010b) Acute phase response in porcine reproductive and respiratory syndrome virus infection. Comparative Immunology, Microbiology and Infectious Diseases, 33, 51-58. Gray JT, Fedorka-Cray PJ, Stabel TJ, Ackermann MR (1995) Influence of inoculation route on the carrier state of Salmonella choleraesuis in swine. Veterinary microbiology, 47, 43-59. Gruss HJ and Dower SK (1995) Tumor Necrosis Factor Ligand Superfamily: Involvement in the Pathology of Malignant Lymphomas. Blood, 85, 3378-3404. Guyton AC, Hall JE (2001) Textbook of Medical Physiology. 10th Edition USA.W.B. Saunders Company, 402-412. Halbur PG, Paul PS, Vaughn EM, Andrews JJ (1993) Experimental reproduction of pneumonia in gnotobiotic pigs with porcine respiratory coronavirus isolate AR310. Journal of veterinary diagnostic investigation : official publication of the American 213 Patogenia del PRRS/Pathogenesis of PRRS Association of Veterinary Laboratory Diagnosticians, Inc, 5, 184188. Halbur PG, Paul PS, Meng XJ, Hagemoser W (1994) Marked variability in pathogenicity of nine U.S. porcine reproductive and respiratory syndrome virus (PRRSV) isolates in 5 week old CDCD pigs. In: Proceedings in the 13th International Pig Veterinary Society , p.59. Halbur PG, Miller LD, Paul PS, Meng XJ, Huffman EL, Andrews JJ (1995a) Immunohistochemical identification of porcine reproductive and respiratory syndrome virus (PRRSV) antigen in the heart and lymphoid system of three-week-old colostrum-deprived pigs. Veterinary Pathology, 32, 200-204. Halbur PG, Paul PS, Frey ML, Landgraf J, Eernisse K, Meng XJ, Lum MA, Andrews JJ, Rathje JA (1995b) Comparison of the pathogenicity of two US porcine reproductive and respiratory syndrome virus isolates with that of the Lelystad virus. Veterinary Pathology, 32, 648-660. Halbur PG, Rothschild MF, Thacker BJ, Meng XJ, Paul PS, Bruna JD (1997) Differences in susceptibility of Duroc, Hampshire and Meishan pigs to infection with a high virulence strain (VR2385) of porcine reproductive and respiratory syndrome virus (PRRSV). Journal of Animal Breeding and Genetics, 115, 181-189. Halbur PG, Thanawongnuwech R, Brown G, Kinyon J, Roth J, Thacker E, Thacker B (2000) Efficacy of antimicrobial treatments and vaccination regimens for control of porcine reproductive and respiratory syndrome virus and Streptococcus suis coinfection of nursery pigs. Journal of Clinical Microbiology, 38, 1156-1160. Harms PA, Sorden SD, Halbur PG, Bolin SR, Lager KM, Morozov I, Paul PS (2001) Experimental reproduction of severe disease in CD/CD pigs concurrently infected with type 2 porcine circovirus and porcine reproductive and respiratory syndrome virus. Veterinary Pathology, 38, 528-539. 214 Patogenia del PRRS/Pathogenesis of PRRS Hatano E (2007) Tumor necrosis factor signaling in hepatocyte apoptosis. Journal of gastroenterology and hepatology, 22, 43-44. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407, 770–776 Hermann JR, Muñoz-Zanzi CA, Roof MB, Burkhart K, Zimmerman JJ (2010) Probability of porcine reproductive and respiratory syndrome (PRRS) virus infection as a function of exposure route and dose. Veterinart microbiology, 110, 7-16. Hicks DJ, Johnson L, Mitchell SM, Gough J, Cooley WA, La Ragione RM, Spencer YI, Wangoo A (2006) Evaluation of zinc salt based fixatives for preserving antigenic determinants for immunohistochemical demonstration of murine immune system cell markers. Biotechnic & histochemistry, 81, 23-30. Hooper CC, Van Alstine WG, Stevenson GW, Kanitz CL (1994) Mice and rats (laboratory and feral) are not a reservoir for PRRS virus. Journal of Veterinary Diagnostic Investigation, 6, 13-15. Horter DC, Pogranichniy RM, Chang CC, Evans RB, Yoon KJ and Zimmerman JJ (2002) Characterization of the carrier state in porcine reproductive and respiratory syndrome virus infection. Veterinary Microbiology, 86, 213-228. Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O'Garra A, Murphy KM (1993) Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science, 260, 547-549. Hsu SM, Raine L, Fanger H (1981) Use of avidinebiotineperoxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. The journal of histochemistry and cytochemistry, 29, 577-580. Huppertz B, Frank HG, Kaufmann P (1999) The apoptosis cascade morphological and immunohistochemical methods for its visualization. Anatomy and Embryology, 200, 1–18. Idel S, Ellinghaus P, Wolfrum C, Nofer JR, Gloerich J, Assmann G, Spener F, Seedorf U (2002) Branched chain fatty acids induce nitric oxide- 215 Patogenia del PRRS/Pathogenesis of PRRS dependent apoptosis in vascular smooth muscle cells. The Journal of biological chemistry, 277, 49319-49325. Ihle JN, Whitthuhn BA, Quelle FW, Yamamoto K, Silvennoinen O (1995) Signaling through the hematopoietic cytokine receptors. Annual review of immunology, 13, 369-398. Indik S, Valícek L, Klein D, Klánová J (2000). Variations in the major envelope glycoprotein GP5 of Czech strains of porcine reproductive and respiratory syndrome virus. Journal of General Virology, 81, 2497-2502. Inoue N, Matsuda-Minehata F, Goto Y, Sakamaki K, Manabe N (2007) Molecular characteristics of porcine Fas-associated death domain (FADD) and procaspase 8. The Journal of reproduction and development, 53, 427-436. Johnsen CK, Bøtner A, Kamstrup S, Lind P, Nielsen J (2002) Cytokine mRNA profiles in bronchoalveolar cells of piglets experimentally infected in utero with porcine reproductive and respiratory syndrome virus: association of sustained expression of IFN-gamma and IL-10 after viral clearance. Viral Immunology, 15, 549-556. Kadowaki N, Antonenko S, Lau JY, Liu YJ (2000) Natural interferon alpha/betaproducing cells link innate and adaptive immunity. The Journal of Experimental Medicine, 192, 219-226. Kapur V, Elam MR, Pawlovich TM, Murtaugh MP (1996) Genetic variation in porcine reproductive and respiratory syndrome virus isolates in the United States. Journal of General Virology, 77, 1271-1276. Kawashima K, Narita M, Yamada S (1999) Changes in macrophage and lymphocyte subpopulations of lymphoid tissues from pigs infected with the porcine reproductive and respiratory syndrome virus (PRRSV). Veterinary Immunology and Immunopathology, 71, 257262. 216 Patogenia del PRRS/Pathogenesis of PRRS Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. British journal of cancer, 26, 239-257. Kerr JF, Gobe GC, Winterford CM, Harmon BV (1995) Anatomical methods in cell death. Methods in cell biology, 46, 1–27. Kim SJ, Hwang SG, Shin DY, Kang SS, Chun JS (2002) p38 kinase regulates nitric oxide-induced apoptosis of articular chondrocytes by accumulating p53 via NFkb-dependent transcription and stabilization by serine 15 phosphorylation. The Journal of biological chemistry, 277, 33501–33508. Kishimoto T, Taga T, Akira S (1994) Cytokine signal transduction. Cell, 76, 253-262. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science, 275, 1132-1136. Kristensen CS, Bøtner A, Angen Ø, Sørensen V, Jorsal SE, Takai H, Barfod K, Nielsen JP (2002) Airborne transmission of A. pleuropneumoniae and PRRS virus between pig units. In: Proceedings of the 17th Congress of the International Pig Veterinary Society , p. 272. Kuida K, Zheng TS, Na S, Kuan C, Yang D, Karasuyama H, Rakic P, Flavell RA (1996) Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature, 384, 368-3 Kumar V, Abbas A, Fausto N, Aster JC (2008) Diseases of the Immune System. In: Kumar V., A. Abbas, N. Fausto and J.C. Aster editors. Robbins and Cotran Pathological Basis of Disease, 8th edn. pp. 183258. Elsevier Science, Philadelphia. Kuster H, Opravil M, Ott P, Schlaepfer E, Fischer M, Günthard HF, Lüthy R, Weber R, Cone RW (2000) Treatment-Induced Decline of Human Immunodeficiency Virus-1 p24 and HIV-1 RNA in Lymphoid Tissue of Patients with Early Human Immunodeficiency Virus-1 Infection. American Journal of Pathology, 156, 1973-1986. 217 Patogenia del PRRS/Pathogenesis of PRRS Labarque G, Van Gucht S, Nauwynck H, Van Reeth K, Pensaert M (2003a). Apoptosis in the lungs of pigs infected with porcine reproductive and respiratory syndrome virus and associations with the production of apoptogenic cytokines. Veterinary Research, 34, 249-260. Labarque G, Van Gucht S, Van Reeth K, Nauwynck H, Pensaert M (2003b). Respiratory tract protection upon challenge of pigs vaccinated with attenuated porcine reproductive and respiratory syndrome virus vaccines. Veterinary Microbiology, 95, 187-197. Labat-Moleur F, Guillermet C, Lorimier P, Robert C, Lantuejoul S, Brambilla E, Negoescu A (1998) TUNEL apoptotic cell detection in tissue sections: critical evaluation and improvement critical evaluation and improvement. Journal of Histochemistry and Cytochemistry, 46, 327–334. Lager KM and Mengeling WL (1995) Pathogenesis of in utero infection in porcine fetuses with porcine reproductive and respiratory syndrome virus. Canadian Journal of Veterinary Research, 59, 187-192. Lager KM, Mengeling WL, Brockmeier SL (1996) Effect of post-coital intrauterine inoculation of porcine reproductive and respiratory syndrome virus on conception in gilts. Veterinary Record, 138, 227228. Lager KM and Halbur PG (1996) Gross and microscopic lesions in porcine fetuses infected with porcine reproductive and respiratory syndrome virus. Journal of Veterinary Diagnostic Investigation, 8, 275-282. Lager KM, Mengeling WL, Brockmeier SL (1997) Duration of homologous porcine reproductive and respiratory syndrome virus immunity in pregnant swine. Veterinary Microbiology, 58, 127-133. Lager KM and Mengeling WL (2000) Experimental aerosol transmission of pseudorabies virus and porcine reproductive and respiratory syndrome virus. In: Proceedings of the American Association of Swine Practitioners , pp.409-410. 218 Patogenia del PRRS/Pathogenesis of PRRS Lamontagne L, Page C, Larochelle R, Longtin D and Magar R (2001) Polyclonal activation of B cells occurs in lymphoid organs from porcine reproductive and respiratory syndrome virus (PRRSV)infected pigs. Veterinary Immunology and Immunopathology, 82, 165-182. Lamontagne L, Pagé C, Larochelle R, Magar R (2003) Porcine reproductive and respiratory syndrome virus persistence in blood, spleen, lymph nodes, and tonsils of experimentally infected pigs depends on the level of CD8high T cells. Viral Immunology, 16, 395-406. Larrick JW and Wright SC (1990) Cytotoxic mechanism of tumor necrosis factor-alpha. The FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 4, 3215-3223. Le Potier MF, Blanquefort P, Morvan E, Albina E (1995) Results of a control program for PRRS in the French area ‘Pays de Loire’. In: Proceedings of the 2nd International Symposium on PRRS , p.34. Lee SM, Schommer SK, Kleiboeker SB (2004) Porcine reproductive and respiratory syndrome virus field isolates differ in in vitro interferon phenotypes. Veterinary Immunology and Immunopathology, 102, 217-231. Leong TY and Leong AS (2007) How does antigen retrieval work? Advances in anatomic pathology, 14, 129-31. 219 Patogenia del PRRS/Pathogenesis of PRRS Li H, Zheng Z, Zhou P, Zhang B, Shi Z, Hu Q, Wang H (2010) The cysteine protease domain of porcine reproductive and respiratory syndrome virus non-structural protein 2 antagonizes interferon regulatory factor 3 activation. Journal of General Virology, 91, 2947-2958. Liu C, Wang Z, Feng Y, Lei S (2001) A kinetic study on the relationship between of IL-5, IL-10 and eosinophil apoptosis in asthmatic airway inflammation. Hua Xi Yi Ke Da Xue Xue Bao, 32, 55-58. Liu Y, Shi W, Zhou E, Wang S, Hu S, Cai X, Rong F, Wu J, Xu M, Li L (2010) Dynamic changes in inflammatory cytokines in pigs infected with highly pathogenic porcine reproductive and respiratory syndrome virus. Clinical and vaccine immunology, 17, 1439-1445. Loemba HD, Mounir S, Mardassi H, Archambault D, Dea S (1996) Kinetics of humoral immune response to the major structural proteins of the porcine reproductive and respiratory syndrome virus. Archives of Virology, 141, 751-761. López-Fuertes L, Doménech N, Alvarez B, Ezquerra A, Domínguez J, Castro JM, Alonso F (1999) Analysis of cellular immune response in pigs recovered from porcine respiratory and reproductive syndrome infection. Virus Research, 64, 33-42. López-Fuertes L, Campos E, Domenech N, Ezquerra A, Castro JM, Domínguez J, Alonso F (2000). Porcine reproductive and respiratory syndrome (PRRS) virus down-modulates TNF-alpha production in infected macrophages. Virus Research, 69, 41-46. Lowe JE, Husmann R, Firkins LD, Zuckermann FA, Goldberg TL (2005) Correlation of cell-mediated immunity against porcine reproductive and respiratory syndrome virus with protection against reproductive failure in sows during outbreaks of porcine reproductive and respiratory syndrome in commercial herds. Journal of American Veterinary Medical Association, 226, 1707-1711. 220 Patogenia del PRRS/Pathogenesis of PRRS Lunney JK, Fritz ER, Reecy JM, Kuhar D, Prucnal E, Molina R, ChristopherHennings J, Zimmerman J, Rowland RR (2010) Interleukin-8, interleukin-1beta, and interferon-gamma levels are linked to PRRS virus clearance. Viral immunology, 23, 127-134. Macatonia SE, Hosken NA, Litton M, Vieira P, Hsieh CS, Culpepper JA, Wysocka M, Trinchieri G, Murphy KM, O'Garra A (1995) Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells. Journal of Immunology, 154, 5071-5079. Majno G and Joris I (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. The American journal of pathology, 146, 3-15. Manji GA and Friesen PD (2001) Apoptosis in motion. An apical, P35insensitive caspase mediates programmed cell death in insect cells. The Journal of biological chemistry, 276, 16704-16710. Mardassi H, Mounir S, Dea S (1994). Identification of major differences in the nucleocapsid protein genes of a Quebec strain and European strains of porcine reproductive and respiratory syndrome virus. Journal of General Virology, 75, 681-685. Mateu E, Martin M, Vidal D (2003) Genetic diversity and phylogenetic analysis of glycoprotein 5 of European-type porcine reproductive and respiratory virus strains in Spain. Journal of General Virology, 84, 529-34. Mateu E and Díaz I (2008) The challenge of PRRS immunology. The Veterinary Journal, 177, 345-351. Meier W, Wheeler J, Husmann RJ, Osorio F, Zuckermann FA (2000) Characteristics of the immune response of pigs to PRRS virus. Veterinary Research, 31, 41. Meier W, Galeota J, Osorio F, Husmann RJ, Schnitzlein WM, Zuckermann FA (2003) Gradual development of the interferon-gamma response of swine to porcine reproductive and respiratory syndrome virus infection or vaccination. Virology, 309, 18-31. 221 Patogenia del PRRS/Pathogenesis of PRRS Meier W, Husmann RJ, Schnitzlein WM, Osorio F, Lunney JK, Zuckermann FA (2004) Cytokines and synthetic double-stranded RNA augment the T helper 1 immune response of swine to porcine reproductive and respiratory syndrome virus. Veterinary Immunology and Immunopathology, 102, 299- 14. Meng XJ, Paul PS, Halbur PG (1994) Molecular cloning and nucleotide sequencing of the 3’-terminal genomic RNA of the porcine reproductive and respiratory syndrome virus. Journal of General Virology, 75, 1795-1801. Meng XJ, Paul PS, Halbur PG, Lum MA (1995a). Phylogenetic analyses of the putative M (ORF 6) and N (ORF 7) genes of porcine reproductive and respiratory syndrome virus (PRRSV): implication for the existence of two genotypes of PRRSV in the U.S.A. and Europe. Archives of Virology, 140, 745-755. Meng XJ, Paul PS, Halbur PG, Morozov I (1995b). Sequence comparison of open reading frames 2 to 5 of low and high virulence United States isolates of porcine reproductive and respiratory syndrome virus. Journal of General Virology, 76, 3181-3188. Mengeling WL, Lager KM, Vorwald AC (1994) Temporal characterization of transplacental infection of porcine fetuses with porcine reproductive and respiratory syndrome virus. American Journal of Veterinary Research, 55, 1391-1398. Meulenberg JJ, Hulst MM, de Meijer EJ, Moonen PL, den Besten A, de Kluyver EP, Wensvoort G, Moormann RJ (1993) Lelystad virus, the causative agent of porcine epidemic abortion and respiratory syndrome (PEARS), is related to LDV and EAV. Virology, 192, 6272. Mitchell RN and Kumar V (2004) Immune diseases. In: Basic Pathology, 7th Edit., V Kumar, R Cotran, SL Robbins, Eds., Elsevier Science, Philadelphia, pp. 103-164. 222 Patogenia del PRRS/Pathogenesis of PRRS Mitchell RN and Cotran RS (2007) Cell injury, cell death, and adaptations. In: Kumar, V., Cotran, R., Robbins, S.L. (Eds.), Basic Pathology, 8th Edit., Elsevier Science, Philadelphia, pp. 19-22. Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA, Hoffman B, Reed JC (1994) Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene, 9, 1799-1805. Motha J, Stark K, Thompson J (1997) New Zealand is free from PRRS, TGE and PRCV. Surveillance, 24, 10-11. Molitor T, Leitner G, Choi C, Risdahl J, Rossow K, Collins J (1992) Modulation of host immune response by SIRS virus. American Association of Swine Practitioners Newsletter, 4, 27-28. Molitor T (1993) Immune response to PRRS virus. In: Proceedings of the Allen D. Leman Conference , p.20. Molitor TW, Bautista EM, Choi CS (1997) Immunity to PRRSV: doubleedged sword. Veterinary Microbiology, 55, 265-276. Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A (2001) Interleukin10 and the interleukin-10 receptor. Annual Review of Immunology, 19, 683-765. Morrison RB, Collins JE, Harris L, Christianson WT, Benfield DA, Chladek DW, Gorcyca DE, Joo HS (1992) Serologic evidence incriminating a recently isolated virus (ATCC VR-2332) as the cause of swine infertility and respiratory syndrome (SIRS). Journal of Veterinary Diagnostic Investigation, 4, 186-188. Murtaugh MP, Elam MR, Kakach LT (1995). Comparison of the structural protein coding sequences of the VR-2332 and Lelystad virus strains of the PRRS virus. Archives of Virology, 140, 1451-1460. Murtaugh MP, Baarsch MJ, Zhou Y, Scamurra RW, Lin G (1996) Inflammatory cytokines in animal health and disease. Veterinary Immunology and Immunopathology, 54, 45-55. 223 Patogenia del PRRS/Pathogenesis of PRRS Murtaugh MP, Xiao Z, Zuckermann F (2002) Immunological responses of swine to porcine reproductive and respiratory syndrome virus infection. Viral Immunology, 15, 533-547. Myers RK and McGavin MD (2007) Cellular and Tissue Responses to Injury. In: McGavin, M.D., Zachary, J.F. (Eds.), Pathological Basis of Veterinary Disease, 4th Ed., Mosby Elsevier, St Louis, Missouri, pp. 16-32. Nagata S (1997) Apoptosis by death factor. Cell, 88, 355-365. Neilan JG, Lu Z, Afonso CL, Kutish GF, Sussman MD and Rock DL (1993) An African swine fever virus gene with similarity to the protooncogene bcl-2 and the Epstein-Barr virus gene BHRF1. Journal of Virology, 67, 4391-4394. Neumann EJ, Kliebenstein JB, Johnson CD, Mabry JW, Bush EJ, Seitzinger AH, Green AL and Zimmerman JJ (2005) Assessment of the economic impact of porcine reproductive and respiratory syndrome on swine production in the United States. Journal of American Veterinary Medicine Association, 227, 385-392. Nielsen J, Bøtner A (1997) Hematological and immunological parameters of 4 ½- month old pigs infected with PRRS virus. Veterinary Microbiology, 55, 289-294. Nielsen HS, Oleksiewicz MB, Forsberg R, Stadejek T, Botner A, Storgaard T (2001) Reversion of a live porcine reproductive and respiratory syndrome virus vaccine investigated by parallel mutations. Journal of general virology, 82, 1263-1272. OIE (Office International des Épizooties) (1996). World Animal Health in 1995. Part 1. Reports on the Animal Health Status and Disease Control Methods ans List A Disease Outbreaks-Statistics, 211. OIE (Office International des Épizooties) (1997). World Animal Health in 1996. Part 1. Reports on the Animal Health Status and Disease Control Methods ans List A Disease Outbreaks-Statistics, 249. 224 Patogenia del PRRS/Pathogenesis of PRRS Olin MR, Batista L, Xiao Z, Dee SA, Murtaugh MP, Pijoan CC, Molitor TW (2005) Gammadelta lymphocyte response to porcine reproductive and respiratory syndrome virus. Viral Immunology, 18, 490-499. Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell, 74, 609-619. Otake S, Dee SA, Rossow KD, Deen J, Joo HS, Molitor TW, Pijoan C (2002b) Transmission of porcine reproductive and respiratory syndrome virus by fomites (boots and coveralls). Journal of Swine Health and Production, 10, 59-65. Otake S, Dee SA, Rossow KD, Joo HS, Deen J, Molitor TW, Pijoan C (2002c) Transmission of porcine reproductive and respiratory syndrome virus by needles. Veterinary Record, 150, 114-115. Otake S, Dee SA, Rossow KD, Moon RD, Pijoan C (2002d). Mechanical transmission of porcine reproductive and respiratory syndrome virus by mosquitoes, Aedes vexans (Meigen). Canadian Journal of Veterinary Research, 66, 191-195. Pauli U (1995) Porcine TNF-α review. Veterinary immunology and immunopathology, 47 , 187-201. Paton DJ, Brown IH, Edwards S, Wensvoort G (1991) 'Blue ear' disease of pigs. Veterinary Record, 128, 617. Patton JB, Rowland RR, Yoo D and Chang KO (2009) Modulation of CD163 receptor expression and replication of porcine reproductive and respiratory syndrome virus in porcine macrophages. Virus research, 140, 161-171. Perfumo CJ and Sanguinetti HR (2003) Argentina: Serological studies on PRRS virus. In: Zimmerman JJ, Yoon KJ (editors), The PRRS compendium 2nd edition. National Pork Board, Des Moines Iowa, 209-211. Pedersen LG, Castelruiz Y, Jacobsen S, Aasted B (2002) Identification of monoclonal antibodies that cross-react with cytokines from different 225 Patogenia del PRRS/Pathogenesis of PRRS animal species. Veterinary immunology and immunopathology, 88, 111–122. Pestka S, Krause CD, Walter MR (2004). Interferons, interferon-like cytokines, and their receptors. Immunological reviews, 202, 8-32. Piwocka K, Bielak-Mijewska A, Sikora E (2002) Curcumin induces caspase3-independent apoptosis in human multidrug-resistant cells, Annals of the New York Academy of Sciences, 973, 250-254. Plana J, Vayreda M, Vilarrasa J, Bastons M, Rosell R, Martinez M, San Gabriel A, Pujols J, Badiola JL, Ramos JA, Domingo M (1992). Porcine epidemic abortion and respiratory syndrome (mystery swine disease). Isolation in Spain of the causative agent and experimental reproduction of the disease. Veterinary Microbiology, 33, 203-211. Pol JM, van Dijk JE, Wensvoort G, Terpstra C (1991) Pathological, ultrastructural, and immunohistochemical changes caused by Lelystad virus in experimentally induced infections of mystery swine disease (synonym: porcine epidemic abortion and respiratory syndrome (PEARS)). The Veterinary quarterly, 13, 137-143. Pol JM, Van Leengoed LA, Stockhofe N, Kok G, Wensvoort G (1997) Dual infections of PRRSV/influenza or PRRSV/Actinobacillus pleuropneumoniae in the respiratory tract. Veterinary Microbiology, 55, 259-264. Pollock AS, Turck J, Lovett DH (2003) The prodomain of interleukin 1alpha interacts with elements of the RNA processing apparatus and induces apoptosis in malignant cells. FASEB Journal, 17, 203-213. Prieto C, Suárez P, Bautista JM, Sánchez R, Rillo SM, Simarro I, Solana A, Castro JM (1996) Semen changes in boars after experimental infection with porcine reproductive and respiratory syndrome (PRRS) virus. Theriogenology, 45, 383-395. Prieto C, Suárez P, Simarro I, García C, Martín-Rillo S, Castro JM (1997) Insemination of susceptible and preimmunized gilts with boar semen 226 Patogenia del PRRS/Pathogenesis of PRRS containing porcine reproductive and respiratory syndrome virus. Theriogenology, 47, 647-654. Prieto C, García C, Simarro I, Castro JM (2003) Temporal localization of porcine reproductive and respiratory syndrome virus in reproductive tissues of experimentally infected boars. Theriogenology, 60, 15051514. Prieto C, Castro JM (2005) Porcine reproductive and respiratory syndrome virus infection in the boar: a review. Theriogenology, 63, 1-16. Ramos-Vara JA, Kiupel M, Baszler T, Bliven L, Brodersen B, Chelack B, Czub S, Del Piero F, Dial S, Ehrhart EJ, Graham T, Manning L, Paulsen D, Valli VE, West K (2008) Suggested guidelines for immunohistochemical techniques in veterinary diagnostic laboratories. Journal of veterinary diagnostic investigation, 20, 393413. Reed JC (1994) Bcl-2 and the regulation of programmed cell death. The Journal of cell biology, 124, 1-6. Resendes AR, Majó N, Segalés J, Espadamala J, Mateu E, Chianini F, Nofrarías M, Domingo M (2004ª) Apoptosis in normal lymphoid organs from heatlhy normal, conventional pigs at different ages detected by TUNEL and cleaved caspase-3 immunohistochemistry in paraffin-embedded tissues. Veterinary Immunology and Immunopathology, 99, 203-213. Resendes AR, Majó N, Segalés J, Mateu E, Calsamiglia M, Domingo M (2004b) Apoptosis in lymphoid organs of pigs naturally infected by porcine circovirus type 2. Journal of general virology, 85, 28372844. Ressang AA (1973) Studies on the pathogenesis of hog cholera. I. Demonstration of hog cholera virus subsequent to oral exposure. Zentralblatt für Veterinärmedizin. Reihe B. Journal of veterinary medicine. Series B, 20, 256-271. 227 Patogenia del PRRS/Pathogenesis of PRRS Revilla Y, Cebrian A, Baixeras E, Martinez C, Vinuela E, Salas ML (1997) Inhibition of apoptosis by the African swine fever virus Bcl-2 homologue: role of the BH1 domain. Virology, 228, 400-404. Rodríguez-Carreño MP, López-Fuertes L, Revilla C, Ezquerra A, Alonso F, Domínguez J (2002) Phenotypic characterization of porcine IFNgamma-producing lymphocytes by flow cytometry. Journal of Immunology Methods, 259, 171-179. Roitt I, Brostoff J, Male D (2001). Immunology, 6th Edition. Madrid, Spain, Mosby International Ltd., 119 - 129. Rossow KD, Morrison RB, Goyal SM, Singh GS, Collins JE (1994) Lymph node lesions in neonatal pigs congenitally exposed to porcine reproductive and respiratory syndrome virus. Journal of veterinary diagnostic investigation, 6, 368-371. Rossow KD, Collins JE, Goyal SM, Nelson EA, Christopher-Hennings J, Benfield DA (1995) Pathogenesis of porcine reproductive and respiratory syndrome virus infection in gnotobiotic pigs. Veterinary Pathology, 32, 361-373. Rossow KD, Benfield DA, Goyal SM, Nelson EA, Christopher-Hennings J, Collins JE (1996) Chronological immunohistochemical detection and localization of porcine reproductive and respiratory syndrome virus in gnotobiotic pigs. Veterinary Pathology, 33, 551-556. Rossow KD (1998) Porcine reproductive and respiratory syndrome. Veterinary Pathology, 35, 1-20. Rothkotter HJ (2009) Anatomical particularities of the porcine immune system--a physician's view. Developmental and comparative immunology, 33, 267-272. Rowland RR, Robinson B, Stefanick J, Kim TS, Guanghua L, Lawson SR, Benfield DA (2001) Inhibition of porcine reproductive and respiratory syndrome virus by interferon-gamma and recovery of virus replication with 2-aminopurine. Archives of Virology, 146, 539-555. 228 Patogenia del PRRS/Pathogenesis of PRRS Roy S and Nicholson DW (2000) Cross-talk in cell death signaling. The Journal of experimental medicine, 192, 21-26. Royaee AR, Husmann RJ, Dawson HD, Calzada-Nova G, Schnitzlein WM, Zuckermann FA, Lunney JK (2004). Deciphering the involvement of innate immune factors in the development of the host response to PRRSV vaccination. Veterinary Immunology and Immunopathology, 102, 199-216. Salguero FJ, Mekonnen T, Ruiz-Villamor E, Sánchez-Cordón PJ, GómezVillamandos JC (2001) Detection of monokines in paraffinembedded tissues of pigs using polyclonal antibodies. Veterinary research, 32, 601-609. Salguero FJ, Ruiz-Villamor E, Bautista MJ, Sánchez-Cordón PJ, Carrasco L, Gómez-Villamandos JC (2002) Changes in macrophages in spleen and lymph nodes during acute African swine fever: expression of cytokines. Veterinary Immunology and Immunopathology, 90, 1122. Salguero FJ, Sánchez-Cordón PJ, Núñez A, Fernández de Marco M, GómezVillamandos JC (2005) Proinflammatory cytokines induce lymphocyte apoptosis in acute African swine fever infection. Journal of Comparative Pathology, 132, 289-302. Salles MW and Middleton DM (2000) Lymphocyte subsets in porcine tonsillar crypt epithelium. Veterinary immunology and immunopathology, 77, 133-144. Samsom JN, de Bruin TG, Voermans JJ, Meulenberg JJ, Pol JM, Bianchi AT (2000) Changes of leukocyte phenotype and function in the broncho-alveolar lavage fluid of pigs infected with porcine reproductive and respiratory syndrome virus: a role for CD8+ cells. Journal of General Virology, 81, 497-505. Satake K, Matsuyama Y, Kamiya M, Kawakami H, Iwata H, Adachi K, Kiuchi K (2000) Nitric oxide via macrophage iNOS induces 229 Patogenia del PRRS/Pathogenesis of PRRS apoptosis following traumatic spinal cord injury. Brain research. Molecular brain research, 85, 114-122. Scamurra R, Arriaga C, Sprunger L, Baarsch MJ, Murtaugh MP (1996) Regulation of interleukin-6 expression in porcine immune cells. Journal of Interferons and Cytokines Research, 16, 289-96. Scruggs DW and Sorden SD (2001) Proliferative vasculopathy and cutaneous hemorrhages in porcine neonates infected with the porcine reproductive and respiratory syndrome virus. Veterinary Pathology, 38, 339-342. Sedlak TW, Oltvai ZN, Yang E, Wang K, Boise LH, Thompson CB, Korsmeyer SJ (1995) Multiple Bcl-2 family members demonstrate selective dimerizations with Bax. Proceedings of the National Academy of Sciences of the United States of America, 92, 78347838. Segalés J, Calsamiglia M, Rosell C, Soler M, Maldonado J, Martín M, Domingo M (2002) Porcine reproductive and respiratory syndrome virus (PRRSV) infection status in pigs naturally affected with postweaning multisystemic wasting syndrome (PMWS) in Spain. Veterinary Microbiology, 85, 23-30. Shimizu M, Yamada S, Kawashima K, Ohashi S, Shimizu S, Ogawa T (1996). Changes of lymphocyte subpopulations in pigs infected with porcine reproductive and respiratory syndrome (PRRS) virus. Veterinary Immunology and Immunopathology, 50, 19-27. Silva-Campa E, Flores-Mendoza L, Reséndiz M, Pinelli-Saavedra A, MataHaro V, Mwangi W, Hernández J (2009) Induction of T helper 3 regulatory cells by dendritic cells infected with porcine reproductive and respiratory syndrome virus. Virology, 387,373–379. Sipos W, Duvigneau C, Pietschmann P, Holler K, Hartl R, Wahl K, Steinborn R, Gemeiner M, Willheim M, Schmoll F (2003) Parameters of humoral and cellular immunity following vaccination of pigs with a European modified-live strain of porcine reproductive and 230 Patogenia del PRRS/Pathogenesis of PRRS respiratory syndrome virus (PRRSV). Viral Immunology, 16, 335346. Sirinarumitr T, Zhang Y, Kluge JP, Halbur PG, Paul PS (1998) A pneumovirulent United States isolate of porcine reproductive and respiratory syndrome virus induces apoptosis in bystander cells both in vitro and in vivo. Journal of General Virology, 79, 2989-2995. Smith RA (1990) Evaluation of cross-species reactivity of antibodies to human antigens in animal models using immunoperoxidase. Journal of histotechnology, 13, 255-269. Snijder EJ, Brinton MA, Faaberg KS, Godeny EK, Gorbalenya AE, MacLachlan NJ, Mengeling WL, Plagemann PGW (2004). Family Arteriviridae . In: Virus Taxonomy: Eight Report of the International Committee on Taxonomy of Viruses. Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds). Elsevier/ Academic Press, London. Sopper S, Nierwetberg D, Halbach A, Sauer U, Scheller C, Stahl-Hennig C, Matz-Rensing K, Schafer F, Schneider T, ter Meulen V, Muller JG (2003) Impact of simian immunodeficiency virus (SIV) infection on lymphocyte numbers and Tcell turnover in different organs of rhesus monkeys. Blood, 101, 1213-1219. Stadejek T, Stankevicius A, Storgaard T, Oleksiewicz MB, Belak S, Drew TW, Pejsak Z (2002) Identification of radically different variants of porcine reproductive and respiratory syndrome virus in Eastern Europe: towards a common ancestor for European and American viruses. Journal of General Virology, 83, 1861-1873. Stadejek T, Oleksiewicz MB, Potapchuk D, Podgorska K (2006). Porcine reproductive and respiratory syndrome virus strains of exceptional diversity in Eastern Europe support the definition of new genetic subtypes. Journal of General Virology, 87, 1835-1841. Stahelin BJ, Marti U, Solioz M, Zimmermann H, Reichen J (1998) False positive staining in the TUNEL assay to detect apoptosis in liver and 231 Patogenia del PRRS/Pathogenesis of PRRS intestine is caused by endogenous nucleases and inhibited by diethyl pyrocarbonate. Molecular Pathology, 51, 204–208. Suárez P, Díaz-Guerra M, Prieto C, Esteban M, Castro JM, Nieto A, Ortín J (1996a) Open reading frame 5 of porcine reproductive and respiratory syndrome virus as a cause of virus-induced apoptosis. Journal of virology, 70, 2876-2882. Suárez P, Zardoya R, Martín MJ, Prieto C, Dopazo J, Solana A, Castro JM (1996b). Phylogenetic relationships of European strains of porcine reproductive and respiratory syndrome virus (PRRSV) inferred from DNA sequences of putative ORF-5 and ORF-7 genes. Virus Research, 42, 159-165. Sun Z, Chen Z, Lawson SR, Fang Y (2010) The cysteine protease domain of porcine reproductive and respiratory syndrome virus nonstructural protein 2 possesses deubiquitinating and interferon antagonism functions. Journal of virology, 84, 7832-7846. Suradhat S, Thanawongnuwech R (2003) Upregulation of interleukin-10 gene expression in the leukocytes of pigs infected with porcine reproductive and respiratory syndrome virus. Journal of General Virology, 84, 2755-2760. Suradhat S, Thanawongnuwech R, Poovorawan Y (2003) Upregulation of IL10 gene expression in porcine peripheral blood mononuclear cells by porcine reproductive and respiratory syndrome virus. Journal of general virology, 84, 453–459. Sur JH, Doster AR, Christian JS, Galeota JA, Wills RW, Zimmerman JJ, Osorio FA (1997) Porcine reproductive and respiratory syndrome virus replicates in testicular germ cells, alters spermatogenesis, and induces germ cell death by apoptosis. Journal of Virology, 71, 91709179. Sur JH, Doster AR, Osorio FA (1998) Apoptosis induced in vivo during acute infection by porcine reproductive and respiratory syndrome virus. Veterinary Pathology, 35, 506-514. 232 Patogenia del PRRS/Pathogenesis of PRRS Swenson SL, Hill HT, Zimmerman JJ, Evans LE, Landgraf JG, Wills RW, Sanderson TP, McGinley MJ, Brevik AK, Ciszewski DK, Frey ML (1994) Excretion of porcine reproductive and respiratory syndrome virus in semen after experimentally induced infection in boars. Journal of American Veterinary Medical Association, 204, 19431948. Szabolcs M, Michler RE, Yang X, Aji W, Roy D, Athan E, Sciacca RR, Minanov OP and Cannon PJ (1996) Apoptosis of cardiac myocytes during cardiac allograft rejection. Relation to induction of nitric oxide synthase. Circulation, 94, 1665-1673. Terzic S, Sver L, Valpotic I, Lojkic M, Miletic Z, Jemersic L, Lackovic G, Kovsca-Janjatovic A, Orsolic N (2002) Immunophenotyping of leukocyte subsets in peripheral blood and palatine tonsils of prefattening pigs. Veterinary research communications, 26, 273283. Thacker EL, Halbur PG, Ross RF, Thanawongnuwech R, Thacker BJ (1999) Mycoplasma hyopneumoniae potentiation of porcine reproductive and respiratory syndrome virus-induced pneumonia. Journal of Clinical Microbiology, 37, 620-627. Thanawongnuwech R and Thacker EL (2003) Interleukin-10, interleukin-12, and interferon-gamma levels in the respiratory tract following mycoplasma hyopneumoniae and PRRSV infection in pigs. Viral Immunology, 16, 357-367. Thanawongnuwech R, Thacker EL, Halbur PG (1997). Effect of porcine reproductive and respiratory syndrome virus (PRRSV) (isolate ATCC VR-2385) infection on bactericidal activity of porcine pulmonary intravascular macrophages (PIMs): in vitro comparisons with pulmonary alveolar macrophages (PAMs). Veterinary Immunology and Immunopathology, 59, 323-335. Thanawongnuwech R, Brown GB, Halbur PG, Roth JA, Royer RL, Thacker BJ (2000) Pathogenesis of porcine reproductive and 233 Patogenia del PRRS/Pathogenesis of PRRS respiratory syndrome virus-induced increase in susceptibility to Streptococcus suis infection. Veterinary pathology, 37, 143-152. Thanawongnuwech R, Young TF, Thacker BJ, Thacker EL (2001). Differential production of proinflammatory cytokines: in vitro PRRSV and Mycoplasma hyopneumoniae co-infection model. Veterinary Immunology and Immunopathology, 79, 115-127. Thanawongnuwech R, Rungsipipat A, Disatian S, Saiyasombat R, Napakanaporn S, Halbur PG (2003). Immunohistochemical staining of IFN-gamma positive cells in porcine reproductive and respiratory syndrome virus-infected lungs. Veterinary Immunology and Immunopathology, 91, 73-77. Thanawongnuwech R, Thacker B, Halbur P, Thacker EL (2004) Increased production of proinflammatory cytokines following infection with porcine reproductive and respiratory syndrome virus and Mycoplasma hyopneumoniae. Clinical and diagnostic laboratory immunology, 11, 901-908. Thayyullathil F, Chathoth S, Hago A, Patel M, Galadari S (2008) Rapid reactive oxygen species (ROS) generation induced by curcumin leads to caspase-dependent and -independent apoptosis in L929 cells, Free radical biology and medicine, 45, 1403-1412. Thomson BJ (2001) Viruses and apoptosis. International journal of experimental pathology, 82, 65-76. Tian K, Yu X, Zhao T, Feng Y, Cao Z, Wang C, Hu Y, Chen X, Hu D, Tian X, Liu D, Zhang S, Deng X, Ding Y, Yang L, Zhang Y, Xiao H, Qiao M, Wang B, Hou L, Wang X, Yang X, Kang L, Sun M, Jin P, Wang S, Kitamura Y, Yan J, Gao GF (2007) Emergence of fatal PRRSV variants: unparalleled outbreaks of atypical PRRS in China and molecular dissection of the unique hallmark. PloS ONE 2, 1-10. 234 Patogenia del PRRS/Pathogenesis of PRRS Tizard IR (2008) Cell signaling: cytokines and their receptors. In: Veterinary Immunology: An Introduction, 8th Edit., IR Tizard, Ed., Elsevier Science, Philadelphia, pp. 70-80. Torremorell M, Pijoan C, Janni K, Walker R, Joo HS (1997) Airborne transmission of Actinobacillus pleuropneumoniae and porcine reproductive and respiratory syndrome virus in nursery pigs. American Journal of Veterinary Research, 58, 828-832. Trautmann A and Fiebiger J (1957) Fundamentals of the Histology of Domestic Animals. Ithaca (NY): Comstock Publishing Associates, 121-123. Tresguerres JAF (1999) Fisiología Humana. 2nd Ed. Madrid. Mc Graw Hill Interamericana de España, 327-345. Trinchieri G (1995) Natural killer cells wear different hats: effector cells of innate resistance and regulatory cells of adaptive immunity and of hematopoiesis. Seminars in Immunology, 7, 83-88. Untergasser G, Rumpold H, Plas E, Madersbacher S, Berger P (2001) A lowmolecular-weight fraction of human seminal plasma activates adenylyl cyclase and induces caspase 3-independent apoptosis in prostatic epithelial cells by decreasing mitochondrial potential and Bcl-2/Bax ratio. The FASEB journal, 15, 673-683. Van Gorp H, Van Breedam W, Delputte PL, Nauwynck HJ (2008) Sialoadhesin and CD163 join forces during entry of the porcine reproductive and respiratory syndrome virus. The Journal of general virology, 89, 2943-2953. Van Gucht S, van Reeth K, Pensaert M (2003) Interaction between porcine reproductive-respiratory syndrome virus and bacterial endotoxin in the lungs of pigs: potentiation of cytokine production and respiratory disease. Journal of Clinical Microbiology, 41, 960-966. Van Gucht S, Labarque G, Van Reeth K (2004) The combination of PRRS virus and bacterial endotoxin as a model for multifactorial 235 Patogenia del PRRS/Pathogenesis of PRRS respiratory disease in pigs. Veterinary Immunology and Immunopathology, 102, 165-178. Van Reeth K, Nauwynck H, Pensaert M (1996) Dual infections of feeder pigs with porcine reproductive and respiratory syndrome virus followed by porcine respiratory coronavirus or swine influenza virus: a clinical and virological study. Veterinary Microbiology, 48, 325335. Van Reeth K, Labarque G, Nauwynck H, Pensaert M (1999) Differential production of proinflammatory cytokines in the pig lung during different respiratory virus infections: correlations with pathogenicity. Research in veterinary science, 67, 47-52. Van Reeth K and Nauwynck H (2000) Proinflammatory cytokines and viral respiratory disease in pigs. Veterinary Research, 31, 187-213. Van Reeth K, Van Gucht S, Pensaert M (2002) Correlations between lung proinflammatory cytokine levels, virus replication, and disease after swine influenza virus challenge of vaccination-immune pigs. Viral Immunology, 15, 583-594. Van Woensel PA, Liefkens K, Demaret S (1998) Effect on viraemia of an American and a European serotype PPRSV vaccine after challenge with European wildtype strains of the virus. Veterinary Record, 142, 510–512. Vander A, Sherman J, Luciano D (2001) Human Physiology. The Mechanisms of body function. 8th edition New York. Mc Graw Hill Higher Education, 687-725. Vézina SA, Loemba H, Fournier M, Dea S, Archambault D (1996) Antibody production and blastogenic response in pigs experimentally infected with porcine reproductive and respiratory syndrome virus. Canadian Journal of Veterinary Research, 60, 94-99. Wagstrom EA, Chang CC, Yoon K-J, Zimmerman JJ (1997) PRRS virus in mammary secretions. In: Supplement to Proceedings of the 236 Patogenia del PRRS/Pathogenesis of PRRS Allen D. Leman Swine Conference, University of Minnesota, 1997, p. 3. Waterhouse NJ, Ricci JE, Green DR (2002) And all of a sudden it's over: mitochondrial outer-membrane permeabilization in apoptosis. Biochimie, 84, 113-121. Wensvoort G, Terpstra C, Pol JM, ter Laak EA, Bloemraad M, de Kluyver EP, Kragten C, van Buiten L, den Besten A, Wagenaar F, Broekhuijsen JM, Moonen PLJM, Zetstra T, De Boer EA, Tibben HJ, De Jong MF, Van’t Veld P, Groenland GJR, Van Gennep JA, Voets MT, Verheijden JHM, Braamskamp J (1991) Mystery swine disease in The Netherlands: the isolation of Lelystad virus. The Veterinary Quarterly, 13, 121-130. Wensvoort G, de Kluyver EP, Luijtze EA, den Besten A, Harris L, Collins JE, Christianson WT, Chladek D (1992) Antigenic comparison of Lelystad virus and swine infertility and respiratory syndrome (SIRS) virus. Journal of Veterinary Diagnostic Investigation, 4, 134-138. Westermann J and Pabst R (1992) Distribution of lymphocyte subsets and natural killer cells in the human body. Clinical Investigation, 70, 539-544. Williams DM, Lawson GH, Rowland AC (1973) Streptococcal infection in piglets: the palatine tonsils as portals of entry for Streptococcus suis. Research in veterinary science, 15, 352-362. Wills RW, Zimmerman JJ, Swenson SL, Yoon KJ, Hill NT, Bundy DS, McGinley MJ (1994) Transmission of porcine reproductive and respiratory syndrome virus: contact versus airborne routes. In: Proceedings of the North Central Conference of Veterinary Laboratory Diagnosis (unnumbered pages). Wills RW, Zimmerman JJ, Yoon KJ, Swenson SL, Hoffman LJ, McGinley MJ, Hill HT, Platt KB (1997a) Porcine reproductive and respiratory syndrome virus: routes of excretion. Veterinary Microbiology, 57, 69-81. 237 Patogenia del PRRS/Pathogenesis of PRRS Wills RW, Zimmerman JJ, Yoon KJ, Swenson SL, McGinley MJ, Hill HT, Platt KB, Christopher-Hennings J, Nelson EA (1997b) Porcine reproductive and respiratory syndrome virus: a persistent infection. Veterinary Microbiology, 55, 231-240. Wills RW, Gray JT, Fedorka-Cray PJ, Yoon KJ, Ladely S, Zimmerman JJ (2000) Synergism between porcine reproductive and respiratory syndrome virus (PRRSV) and Salmonella choleraesuis in swine. Veterinary microbiology, 71, 177-192. Wills RW, Doster AR, Galeota JA, Sur JH, Osorio FA (2003) Duration of infection and proportion of pigs persistently infected with porcine reproductive and respiratory syndrome virus. Journal of clinical microbiology, 41, 58-62. Wu WH, Fang Y, Farwell R, Steffen-Bien M, Rowland RR, ChristopherHennings J, Nelson EA (2001). A 10-kDa structural protein of porcine reproductive and respiratory syndrome virus encoded by ORF2b. Virology, 287, 183-191. Wu WH, Fang Y, Rowland RR, Lawson SR, Christopher-Hennings J, Yoon KJ, Nelson EA (2005) The 2b protein as a minor structural component of PRRSV. Virus research, 114, 177-181. Wyllie AH, Kerr JF and Currie AR (1980) Cell death: the significance of apoptosis. International Review of Cytology, 68, 251-306. Xiao Z, Batista L, Dee S, Halbur P, Murtaugh MP (2004) The level of virusspecific T-cell and macrophage recruitment in porcine reproductive and respiratory syndrome virus infection in pigs is independent of virus load. Journal of Virology, 78, 5923-5933. Xibao S, Li W, Yubao Z, Guangxu X, Dong Z, Ruiguang D, Gaiping Z (2010) Porcine reproductive and respiratory syndrome virus (PRRSV) could be sensed by professional beta interferon-producing system and had mechanisms to inhibit this action in MARC-145 cells. Virus Research, 153, 151-156. 238 Patogenia del PRRS/Pathogenesis of PRRS Yoon KJ, Zimmerman JJ, Swenson SL, McGinley MJ, Eernisse KA, Brevik A, Rhinehart LL, Frey ML, Hill HT, Platt KB (1995). Characterization of the humoral immune response to porcine reproductive and respiratory syndrome (PRRS) virus infection. Journal of Veterinary Diagnostic Investigation, 7, 305-312. Yoon KJ, Zimmerman JJ, Chang CC, Cancel-Tirado S, Harmon KM, McGinley MJ (1999) Effect of challenge dose and route on porcine reproductive and respiratory syndrome virus (PRRSV) infection in young swine. Veterinary Research, 30, 629-638. Young F, Mizoguchi E, Bhan AK, Alt FW (1997) Constitutive Bcl-2 expression during immunoglobulin heavy chain-promoted B cell differentiation expands novel precursor B cells. Immunity, 6, 23-33. Zhang M, Covar J, Marshall B, Dong Z, Atherton SS (2011) Lack of TNF{alpha} Promotes Caspase-3-Independent Apoptosis during Murine Cytomegalovirus Retinitis, Investigative ophthalmology and visual science, 52, 1800-1808. Zhivotovsky B, Samali A, Gahm A, Orrenius S (1999) Caspases: their intracellular localization and translocation during apoptosis. Cell Death and Differentiation, 6, 644–651. Zhou Y, Barghusen S, Choi C, Rossow K, Collins J, Laber J, Molitor T, Murtaugh M (1992) Effect of SIRS virus infection in leukocyte populations in peripheral blood and on cytokine expression in alveolar macrophages of growing pigs. American Association of Swine Practitioners Newsletter, 4, 28. Zilkova M, Zilka N, Kovac A, Kovacech B, Skrabana R, Skrabanova M, Novak M (2011) Hyperphosphorylated truncated protein tau induces caspase-3 independent apoptosis-like pathway in the Alzheimer's disease cellular model, Journal of Alzheimer´s disease, 23, 161-169. Zimmerman JJ, Yoon KJ, Pirtle EC, Wills RW, Sanderson TJ, McGinley MJ (1997) Studies of porcine reproductive and respiratory syndrome 239 Patogenia del PRRS/Pathogenesis of PRRS (PRRS) virus infection in avian species. Veterinary Microbiology, 55, 329-336. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell, 90, 405-413. http://www. porcilis-prrs.com/microbiology-prrsv-structure.asp 240 Patogenia del PRRS/Pathogenesis of PRRS CURRICULUM VITAE 241 Patogenia del PRRS/Pathogenesis of PRRS El último estudio experimental de esta tesis, ha sido publicado este año en la revista científica “Veterinary immunology and immunopathology” volumen 139, páginas 210-216, estando actualmente siendo revisados el resto de los estudios experimentales en revistas indexadas pertenecientes al campo de las ciencias veterinarias. Los resultados obtenidos de estos trabajos han sido presentados como comunicaciones en congresos nacionales e internacionales tal y como se indica a continuación: • Barranco I, Gómez-Laguna J, Rodríguez-Gómez IM, Salguero FJ, Pallarés FJ, Carrasco L, Bernabé A. Role of cytokines as mediators of the local immune response in lung and tonsil of pigs inoculated with a european PRRSV field isolate. Presentado como comunicación tipo oral, en el 28 Meeting of the European Society of Veterinary Pathology and European Collage of Veterinary Pathologists, celebrado en Belgrado, Serbia, del 8 al 11 de Septiembre de 2010. • Rodríguez-Gómez IM, Gómez-Laguna J, Barranco I, Salguero FJ, Pallarés FJ, Carrasco L, Ramis G. The role of antigen presenting cells and T lymphocytes in the tonsil of Porcine Reproductive and Respiratory Syndrome virus-infected pigs. Presentado como comunicación tipo oral, en el 28 Meeting of the European Society of Veterinary Pathology and European Collage of Veterinary Pathologists, celebrado en Belgrado, Serbia, del 8 al 11 de Septiembre de 2010. 242 Patogenia del PRRS/Pathogenesis of PRRS • Gómez-Laguna J, Rodríguez-Gómez IM, Barranco I, Pallarés FJ, Salguero FJ, Bernabé A, Carrasco L. IL-10 and TGF-β expresión in the lung and tonsil of pigs experimentally infected with porcine reproductive and respiratory síndrome virus. Presentado como comunicación tipo oral, en el XXI Internacional Pig Veterinary Society (IPVS) Congress, celebrado en Vancouver, Canadá, del 18 al 21 de Julio de 2010. • Barranco I, Gómez-Laguna J, Rodríguez-Gómez IM, Salguero FJ, Pallarés FJ, Bernabé A, Carrasco L. Useful markers to study extrinsic and intrinsic pathways of apoptosis in porcine paraffin-embedded tissues. Presentado como comunicación tipo póster, en el XXI Internacional Pig Veterinary Society (IPVS) Congress, celebrado en Vancouver, Canadá, del 18 al 21 de Julio de 2010. • Rodríguez-Gómez IM, Gómez-Laguna J, Barranco I, Salguero FJ, Pallarés FJ, Ramis G, Carrasco L. Estudio de las poblaciones celulares inmunocompetentes en la tonsila de cerdos infectados con el virus del Síndrome Reproductivo y Respiratorio Porcino. Presentado como comunicación oral, en la XXII Reunión de la Sociedad Española de Anatomía Patológica Veterinaria, celebrada en Valencia, del 16 al 18 de Junio del 2010. • Barranco I, Gómez-Laguna J, Rodríguez-Gómez IM, Salguero FJ, Pallarés FJ, Quereda JJ, Carrasco L. Expresión de citoquinas inmunomoduladoras en tonsila de cerdos infectados con el virus del Síndrome Reproductivo y Respiratorio Porcino. Presentado como comunicación oral, en la XXII Reunión de la Sociedad Española de Anatomía Patológica Veterinaria, celebrada en Valencia, del 16 al 18 de Junio del 2010. • Barranco I, Gómez-Laguna J, Rodríguez-Gómez IM, Salguero FJ, Pallarés FJ, Bernabé A, Carrasco L. Determinación del fijador y desenmascaramiento antigénico ideal para la detección inmunohistoquímica de diferentes marcadores de 243 Patogenia del PRRS/Pathogenesis of PRRS las vías extrínseca e intrínseca de la apoptosis. Presentado como comunicación tipo póster, en la XXII Reunión de la Sociedad Española de Anatomía Patológica Veterinaria, celebrada en Valencia, del 16 al 18 de Junio del 2010. • Barranco I, Gómez-Laguna J, Rodríguez-Gómez IM, Salguero FJ, Pallarés FJ, Bernabé A, Carrasco L. Mecanismos de inducción de apoptosis por el virus del Síndrome Reproductivo y Respiratorio Porcino. Presentado como comuniación tipo Oral en I Congreso Científico de Investigadores en Formación, Celebrado en Córdoba, España del 5 al 16 de Octubre del 2009 • Barranco I, Gómez-Laguna J, Rodríguez-Gómez IM, Salguero FJ, Pallarés FJ, Bernabé A, Carrasco L. Evaluation of the apoptotic phenomenon and expression of proinflammatory cytokines in the tonsil of pigs infected with a european PRRSV field isolate. Presentado como comuniación tipo Oral en el XXVII Meeting of the European Society of Veterinary Pathology and European Collage of Veterinary Pathologists, Celebrado en Olsztyn-kraków, Poland del 9 al 12 de Septiembre del 2009 244 Patogenia del PRRS/Pathogenesis of PRRS AGRADECIMIENTOS 245 Patogenia del PRRS/Pathogenesis of PRRS Expreso mi agradecimiento a todos los miembros del Departamento de Anatomía y Anatomía Patológica Comparadas, que han hecho posible la realización de esta Tesis Doctoral y, en especial, a los directores de este trabajo, el Dr. D. Librado Carrasco Otero y el Dr. D. Jaime Gómez-Laguna, por su rigurosidad científica, su experiencia investigadora, apoyo constante y mucho más que una inestimable ayuda y confianza en el desarrollo de la tesis. A todas aquellas personas que de una u otra manera han contribuido a que este trabajo se haya realizado. Y por su puesto a mi familia y amigos, por su paciencia, apoyo constante y saber estar ahí en los buenos y malos momentos 246 Patogenia del PRRS/Pathogenesis of PRRS 247 Patogenia del PRRS/Pathogenesis of PRRS 248