tomo 2.2

Anuncio
2
grado
do
Vol. 2
2do grado
Estructura del Contenido
¡Estudiemos temas
que te interesarán!
Números y cálculos
1er Grado
9
Números hasta el 100
Vol. 1
10
Multiplicación (1) . . . . . . . . . . . . . . 2
Escríbelo con una multiplicación . . 12
11
3
1
TDEODV\JUi¿FDV
2
Números hasta 1000
4
Pensemos cómo calcular
5
Figuras variadas
Suma vertical
6
¿Qué hora es?
Pensemos cómo calcular
7
Suma y resta (1)
Resta en la forma vertical
8
Longitud (1)
Multiplicación (3) . . . . . . . . . . . . . 27
La tabla 12
de multiplicación 6xƑ
・・・
. . . . . . . 27
La tabla de multiplicación 7xƑ . . . . . . . 29
La tabla de multiplicación 8xƑ . . . . . . . 31
La tabla de multiplicación 9xƑ . . . . . . . 33
La tabla de multiplicación 1xƑ . . . . . . . 35
Cuál cálculo . . . . . . . . . . . . . . . . . . . 36
Multiplicación (2) . . . . . . . . . . . . . 13
La tabla de multiplicación 2xƑ . . . . . . 13
La tabla de multiplicación 5xƑ . . . . . . 15
La tabla de multiplicación 3xƑ . . . . . . 17
Usemos las tablas de multiplicación que hemos aprendido . . . . 25
2do Grado
14 Números mayores que 1000 . . . . . . 55
Multiplicación (4) . . . . . . . . . . . . . 39
79
La tabla de multiplicación . . . . . . . . . . . 39
Un juego con la multiplicación . . . . . . . 42
84
Hagamos patrones con la multiplicación 45
2do Grado
87
¿ Cuál número es mayor? . . . . . . . . 63
Números hasta el 1000
12
83
81
La tabla de multiplicación 4xƑ . . . . . . 19
Juego de tarjetas . . . . . . . . . . . . . . . 21
78
16 Suma y resta (2) . . . . . . . . . . . . . 71
Suma y resta
Busquemos ejemplos de multiplicación en la ciudad . . . . 46
Formas
1er Grado
Formas
2do Grado
Figuras variadas
15
Triángulos y cuadriláteros . . . . . . 64
82
. . . . . . . . . . . . . . . . 64
Triángulos y cuadriláteros . . . . . . . . 65
88
Longitud (2) . . . . . . . . . . . . . . . . 49
80
Líneas rectas
Tamaño y medida
1er Grado
Comparemos longitudes
94
13
2do Grado
Longitudes (cm,mm)
Repaso(2) . . . . . . . . . . . . . . . . . . . . . . 48
El metro . . . . . . . . . . . . . . . . . . . . . 49
Cálculo de longitudes . . . . . . . . . . . 51
La regla larga . . . . . . . . . . . . . 54
17 Resumen del Segundo Grado. . . . . . . 74
86
95
9
1
Multiplicación (1)
Disfrutando una fiesta
① ¿Cuántas manzanas hay?
② ¿Cuántas donas hay?
③ ¿Cuál es la diferencia entre el número de manzanas
y el número de donas en cada plato?
④ Busca dónde hay el mismo número de cosas en cada
plato, como los pastelitos, y expresa el número total.
El número total de pastelitos se expresa como
" 2 por plato y
El número total de donas puede expresarse como
"3 por plato y hay 5 platos, en total son 15."
2
Es fácil porque cada
plato tiene el mismo
número de donas.
El número total de
"
por plato y
platos son
."
se expresa como
platos son
."
3
2
Encuentra el número total donde hay grupos con la
misma cantidad.
① 3 cajas con 8 piezas de chocolate.
Hay 5 cajas con 2 pasteles, entonces el total es
2 por caja
5 cajas
y
hacen 10 .
Esto se escribe como 25=10 y se lee
por caja y
cajas hacen
"5 veces 2 es 10" o "2 multiplicado por 5 es
.
igual a 10."
② 6 paquetes con 2 pescados
2
número por caja
por paquete y
paquetes hacen
.
③ 5 bolsas con 6 caramelos
5
=
número de cajas
10
número total
Este tipo de cálculo se llama "multiplicación".
3 ¿Cuántas galletas hay?
por bolsa y
bolsas hacen
.
④ 2 platos con 9 peras
Número por bolsa
=
Número de bolsas
Número total
La multiplicación es la operación que se usa para
obtener el total cuando tienes el mismo número de
por plato y
4
platos hacen
.
objetos por grupo y conoces el número de grupos.
5
4
Escribe una multiplicación cuando encuentres algo
que tenga el mismo número por grupo.
man zan as
6
=
=
=
=
=
=
=
¿Hay otro
ejemplo?
7
5 ¿Cuántos hay? Comprueba usando los bloques y haz una
7 Pon el mismo número de limones en varias bolsas.
¿De cuántas maneras puedes ponerlos en las bolsas?
multiplicación.
Representa estas maneras usando multiplicaciones.
① Pelotas
① Cuando hay 12 limones.
=
Si hay 3 en cada
bolsa, ¿qué
sucede?
Si pongo 2 en cada bolsa,
obtengo 6 bolsas.
② Fresas
Aún hay
otras formas,
¿no es así?
② Cuando hay 24 limones.
=
6 Usa los bloques para representar las siguientes
multiplicaciones.
① 3 7
② 5 2
③ 8 4
④ 2 5
8
Si hay 4 en
cada bolsa…
Como el número es
mayor, tenemos más
posibilidades.
9
2B
cm
8
Hay algunos pedazos de cinta.
¿Cuántos cm de largo
tiene 1 pedazo de cinta, 2 pedazos, 3 pedazos?
1 Expresa estos problemas usando
1 grupo
21
=
2 grupos
2
=
3 grupos
2
=
2
multiplicaciones.
① ¿Cuántos pescados hay?
pescados por paquete y
.
paquetes hacen
Multiplicación:
1 grupo, 2 grupos y 3
Midamos usando
una regla.
grupos también se puede decir:
=
② ¿Cuántas mandarinas hay
en total?
1 vez, 2 veces y 3 veces.
Multiplicación:
9 Hay el mismo número de latas en cada caja.
.
bolsas hacen
por bolsa y
=
③ ¿Cuántos cm de largo mide la cinta?
2B
cm
2B
cm
2B
cm
2B
cm
cm por trozo de cinta y
Número por caja
Multiplicación:
=
Número de cajas
Número total de latas
① Escribe una multiplicación para obtener el total de latas.
② ¿Cuántas veces 8 es el número total de latas?
③ ¿Cuántas latas hay?
La respuesta de 8 6 es igual a la
respuesta de 8 + 8 + 8 + 8 + 8 + 8 .
10
Es más difícil
sumar 6 veces el 8.
2
2B
cm
trozos hacen
2B
cm
.
=
Hay 6 barras de chocolate en cada caja.
① Escribe una multiplicación para obtener el
número total de barras.
② ¿Cuántas veces 6 es el total?
③ ¿Cuántas barras de chocolate hay en total?
Ir a página 12
11
Escríbelo con una
multiplicación
●
Escribe el número de ★ con una multiplicación.
①
Si muevo así,
10
Multiplicación (2)
Construyamos una tabla de multiplicar.
La tabla de multiplicación 2 × ☐
②
1
2 niños van en cada bote.
① Encontremos el número total de niños cuando el número
la multiplicación
es 3
.
de botes aumenta de 1 a 5.
21=
Si pienso en
como un grupo, la
multiplicación
es 2
.
●
22=
23=
Encierra algunas ★ para obtener 34.
24=
② Encontremos el número total de
niños cuando el número de botes
aumenta de 6 a 9.
La idea de Takeshi ▼
La idea de Eiko ▼
¿Cuántas
otras formas
puedes
encontrar?
número de niños por bote
25=
26=
27=
28=
29=
5 botes
2 9 = 1 8 se lee "2 multiplicado por 9
es igual a 18"
12
13
2 Haz tarjetas de
La tabla de multiplicación de 2 x☐
multiplicación de 2 ☐ y
21=2 … dos por uno es 2
úsalas para practicar.
frente
La tabla de multiplicación de 5 ×☐
dos
cuatro
22=4 … dos por dos es 4
1 Hay 5 galletas en cada plato.
seis
23=6 … dos por tres es 6
atrás
ocho
24=8 … dos por cuatro es 8
diez
25=10 … dos por cinco es 10
doce
26=12 … dos por seis es 12
3 Haz dibujos para 2 ☐.
① Encuentra el número total de galletas cuando el
número de platos aumenta de 1 a 5.
catorce
27=14 … dos por siete es 14
51=
dieciseis
28=16 … dos por ocho es 16
52=
dieciocho
29=18 … dos por nuevo es 18
53=
Decide cuál es la
expresión que
corresponde.
54=
55=
4 Escribe una multiplicación para estas imágenes.
①
② Encuentra el número total de galletas
②
cuando el número total de platos
56=
aumenta de 6 a 9.
57=
58=
5
Inventa un problema que
59=
se resuelva con 27.
Cada niño hace
cisnes de origami.
¿Cuántos cisnes pueden hacer
14
niños?
Desliza una hoja de
papel sobre las
columnas para
mostrarlas una a una.
15
2
Haz tarjetas de
La tabla de multiplicación de 5 x ☐
multiplicación de 5 ☐ y
1 Hay 3 porciones de jalea
cinco
51=5 … cinco por uno es 5
diez
52=10 … cinco por dos es 10
úsalas para practicar.
en cada plato.
quince
53=15 … cinco por tres es 15
veinte
54=20 … cinco por cuatro es 20
veinticinco
55=25 … cinco por cinco es 25
3
La tabla de multiplicación de 3☐
① Encontremos el número total de gelatinas cuando el
número de platos aumenta de 1 a 4.
treinta
56=30 … cinco por seis es 30
Haz dibujos para
31=
treinta y cinco
57=35 … cinco por siete es
5 ☐.
35
cuarenta
58=40 … cinco por ocho es
32=
40
cuarenta y cinco
59=45 … cinco por nueve es
45
33=
34=
4
Inventa un problema que se resuelva con la tabla de
multiplicar 5 ☐.
5 cm de cinta
5 pastelitos
en cada caja
② Encuentra el número total de
35=
gelatinas cuando el número de
36=
platos aumenta de 5 a 9.
¿Cuántos cm de listón se forman con
listones?
37=
38=
39=
5
Multiplica el número del centro
por los números que están
③ Si se agrega un plato más,
¿cuántas gelatinas habrá?
alrededor del círculo y escribe tus
respuestas en el espacio correcto.
16
17
2
Haz tarjetas y dibujos
La tabla de multiplicación de 3 x ☐
de la multiplicación
31=3 … tres por uno es 3
3 ☐.
32=6 … tres por dos es 6
La tabla de multiplicación de 4☐
1 Construimos unos
tres
seis
carritos. Pusimos 4 llantas
nueve
33=9 … tres por tres es 9
doce
34=12 … tres por cuatro es 12
quince
35=15 … tres por cinco es 15
dieciocho
36=18 … tres por seis es 18
en cada uno.
① Encuentra el número total de llantas cuando el número de
carritos se incrementa de 1 a 4.
veintiuno
37=21 … tres por siete es 21
41=
veinticuatro
38=24 … tres por ocho es 24
veintisiete
42=
39=27 … tres por nueve es 27
3
¿Cuántas hay? Responde
usando una multiplicación.
① Barras de jabón
② Manjus (un tipo
de pastel japonés)
43=
Tres de cuatro son
doce. Hay 12 barras
de jabón.
44=
② Calculemos el número total de llantas
cuando el número de carritos se
③ Calcomanías
45=
46=
incrementa de 5 a 9.
47=
48=
49=
4
Hay 3 pepinos en cada bolsa.
¿Cuántos pepinos habrá en 6 bolsas?
③ Cuando el multiplicador
Multiplicando
6 se incrementa en 1 (de
4
46 a 47), ¿cuánto
aumenta el producto?
18
Multiplicador
6
incrementa en 1
4
producto
= 24incrementa
en
7
=
19
2 Haz tarjetas de
La tabla de multiplicación de 4 x☐
multiplicación de 4 ☐ y 41=4 … cuatro por uno es 4
cuatro
úsalas para practicar.
Juego de tarjetas
Escribe multiplicaciones en unas tarjetas
ocho
42=8 … cuatro por dos es 8
y en otras las respuestas para 2☐, 3☐,
doce
43=12 … cuatro por tres es 12
dieciseis
44=16 … cuatro por cuatro es 16
4☐ y 5☐. Luego juega con ellas.
veinte
45=20 … cuatro por cinco es 20
46=24 … cuatro por seis es
veinticuatro
24
① Elige una respuesta.
veintiocho
47=28 … cuatro por siete es 28
48=32 … cuatro por ocho es
treinta y dos
32
treinta y seis
49=36 … cuatro por nueve es 36
3 Juntemos 3 cintas que miden 4 cm de largo cada una.
¿Cuántos cm de cinta obtendremos?
② Encuentra la multiplicación que corresponde a la
respuesta que elegiste. (1).
4 Multiplica el número del centro
por los números que están
alrededor del círculo y escribe tus
respuestas en el espacio correcto.
20
21
③ ¿Cuál es mayor?
1
¿Cuál es mayor,
o
¿Cuál es mayor, 5
?
6 o 3
9 ?
¿Qué pasa cuando
las respuestas son
iguales?
④ Elige dos tarjetas: una multiplicación y su respuesta.
Haz estas multiplicaciones.
páginas13-20
① 22
② 53
③ 37
④ 36
⑤ 28
⑥ 57
⑦ 59
⑧ 41
⑨ 32
⑩ 33
⑪ 46
⑫ 27
⑬ 48
⑭ 39
⑮ 45
⑯ 29
⑰ 52
⑱ 44
⑲ 54
⑳ 25
21
56
42
24
21
22
2
38
23
2 niños pasean en cada auto chocador. Hay 4 autos. ¿Cuántos
niños hay?
página 13
3 Hay 3 berenjenas en cada bolsa. ¿Cuántas
berenjenas hay en 6 bolsas?
Si tomas el
y
, ¿puedes compararlas?
página 17
22
23
Usemos las tablas de multiplicación que hemos aprendido
4 Escribe abajo lo que has aprendido acerca
páginas 13-20
de la tabla de multiplicar.
Multiplicador
Multiplicando
renglón del 2
2
renglón del 3
3
renglón del 4
4
renglón del 5
5
1
2
3
4
5
6
7
8
9
1 ¿Cuántas estampillas hay? Piensa cómo puedes usar las
tablas de multiplicar que aprendiste.
4
15
28
15
① Cambia el orden de los números en los renglones y construye otra
tabla de multiplicar.
Multiplicando
Multiplicador
renglón del 3
3
renglón del 4
4
renglón del 2
2
renglón del 5
5
1
2
3
4
5
6
7
8
9
② Cambia el orden de los números en los renglones y construye
otra tabla de multiplicar.
Multiplicador
Multiplicando
1
2
3
4
5
6
7
8
9
Es una buena idea
separar las estampillas.
24
No hemos
aprendido 7 □,
así que, …
25
11
La idea de Natsumi ▼
Separa la hoja cerca del centro.
Multiplicación (3)
La tabla de multiplicación de 6☐
1
Hay 6 piezas de queso en cada caja.
¿Cuántas piezas de queso hay en 3 cajas?
① Escribe una multiplicación.
Sumamos la respuesta de 36 y la respuesta de 46 y obtenemos
.
6 en cada caja y hay
3 cajas, da …
② Obtén la respuesta.
2 Haz la tabla de multiplicar para 6 ☐.
La idea de Ryoichi ▼
61=
62=
63=
① Escribe las respuestas.
Sumamos la respuesta de 26 y la respuesta de 56 y obtenemos
.
② Cuando el multiplicador se incrementa
en 1, ¿cuánto se incrementa la respuesta?
La idea de Yasuo ▼
Multiplicando
Mira de lado el libro de texto y separa la hoja justo en el centro.
Multiplicador
Producto
6
2
= 12
6
3
=
64=
65=
66=
67=
68=
69=
Si el multiplicador se incrementa en 1,
Es 2 veces la respuesta de 37, por lo tanto son
26
.
la respuesta se incrementa en el valor del
multiplicando.
27
La tabla de multiplicación de 7☐
3
Haz tarjetas y dibujos de La tabla de multiplicación de 6 x ☐
la tabla de multiplicación
61=6 … seis por uno es 6
seis
6 ☐.
doce
1
Hay 7 plumones en cada
caja. ¿Cuántos plumones hay
62=12 … seis por dos es12
dieciocho
63=18 … seis por tres es 18
veinticuatro
64=24 … seis por cuatro es 24
treinta
65=30 … seis por cinco es 30
66=36 … seis por seis es
treinta y seis
67=42 … seis por siete es
36
cuarenta y dos
42
cuarenta y ocho
68=48 … seis por ocho es
48
cincuenta y cuatro
69=54 … seis por nueve es
54
en 4 cajas?
① Escribe una multiplicación.
② Obtén la respuesta.
2 Haz una tabla de multiplicación para 7 ☐. Usa lo
que aprendiste sobre la tabla de multiplicación y cuánto
se incrementa la respuesta cuando el multiplicador
4 Calcula estas cantidades usando multiplicaciones.
aumenta en 1.
① El número total de pececitos ② El número total de donas.
71=
72=
73=
Para 7 ☐,la respuesta
se incrementa en …….
74=
75=
76=
5 Inventa un problema que se resuelva con la tabla
77=
de multiplicar 6 ☐.
78=
La respuesta para 72 es la misma que la de 27.
La respuesta para 73 es la misma que la de 37.
Así que podemos construir la tabla hasta 76.
28
79=
29
3
Haz tarjetas y dibujos de La tabla de multiplicación de 7 x ☐
1 Cada niño recibe un
siete
la tabla de multiplicación
71=7 … siete por uno es 7
7 ☐ .
72=14 … siete por dos es 14
catorce
veintiuno
73=21 … siete por tres es 21
veintiocho
74=28 … siete por cuatro es 28
75=35 … siete por cinco es
76=42 … siete por seis es
La tabla de multiplicación de 8 x☐
treinta y cinco
35
listón de 8 cm.
¿Cuántos cm de listón se
necesitan para 3 niños?
cuarenta y dos
42
cuarenta y nueve
77=49 … siete por siete es
78=56 … siete por ocho es
Hay 7 días en la semana.
¿Cuántos días hay en 3 semanas?
8cm
8cm
para uno
para uno
para uno
49
cincuenta y seis
79=63 … siete por nueve es
4
8cm
56
sesenta y tres
63
① Escribe una multiplicación.
② Obtén la respuesta.
2
Haz una tabla de multiplicación para
81=
8 ☐ usando lo que has aprendido y las 8 2 =
reglas de la multiplicación.
83=
84=
5
85=
Multiplica el número del
86=
centro por los números que
están alrededor del círculo y
escribe las respuestas en el
espacio correcto.
30
Cuando el
multiplicador se
incrementa en 1, la
respuesta …
La respuesta a 83
es igual a la
respuesta de 38,
¿verdad?
87=
88=
89=
31
3 Haz tarjetas y dibujos
de la tabla de multiplicación
para 8 ☐.
La tabla de multiplicación de 8 x ☐
ocho
81=8 … ocho por uno es 8
dieciseis
82=16 … ocho por dos es 16
83=24 … ocho por tres es
veinticuatro
24
84=32 … ocho por cuatro es
La tabla de multiplicación de 9☐
treinta y dos
32
cuarenta
85=10 … ocho por cinco es 40
86=48 … ocho por seis es
87=56 … ocho por siete es
cuarenta y ocho
48
cincuenta y seis
88=64 … ocho por ocho es
56
sesenta y cuatro
64
1
Un equipo de béisbol tiene 9 jugadores.
¿Cuántos jugadores hay en 4 equipos?
① Escribe una multiplicación.
② Obtén la respuesta.
4 Cada niño recibe 8 hojas de papel de color, ¿cuántas hojas
se necesitan para 6 niños?
2
Haz una tabla de multiplicación
91=
para 9 ☐. Usa lo que has aprendido 9 2 =
y las reglas de la multiplicación.
93=
94=
95=
5
Multiplica el número del
96=
centro por los números que
97=
están alrededor del círculo y
escribe tus respuestas en el
espacio correcto.
32
Podemos obtener las
respuestas de lo que
hemos aprendido,
excepto 91 y 99.
Cuando el multiplicador
se incrementa en 1, la
respuesta …
98=
99=
33
3 Hagamos tarjetas y
dibujos de la tabla de
multiplicación para 9 □.
La tabla de multiplicación de 1□
La tabla de multiplicación de 9 x □
nueve
91=9 … nueve veces uno es 9
dieciocho
92=18 … nueve veces dos es 18
veintisiete
93=27 … nueve veces tres es 27
trenita y seis
94=36 … nueve veces cuatro es 36
95=45 … nueve veces cinco es
96=54 … nueve veces seis es
cuarenta y cinco
45
1
Una familia hizo una fiesta de
cumpleaños. Prepararon 3 caramelos,
2 naranjas y un pastel para cada persona.
¿Cuántas de estas cosas necesitaron si
cincuenta y cuatro
54
sesenta y tres
97=63 … nueve veces siete es 63
asistieron a la fiesta 4 personas?
setenta y dos
98=72 … nueve veces ocho es 72
ochenta y uno
99=81 … nueve veces nueve es 81
Caramelos
3 4
=
Naranjas
2 4
=
=
Pastel
4
Inventa un problema de multiplicación que esté
relacionado con la imagen de abajo.
2
Hagamos una tabla de multiplicación para
1 □.
3
Hagamos tarjetas y
dibujos de la tabla de
multiplicación para 1 □.
El secreto de 9 x □
● Dile
a todos lo que
observas en la tabla
de multiplicación
para 9×□.
34
¿Cómo son los
números de las
respuestas de
9□?
9
18
27
36
45
54
63
72
81
Si sumamos el número
que está en el lugar de las
unidades y el número que
está en las decenas, las
respuestas siempre son …
La tabla de multiplicación de 1 x □
1 1 = 1 … una vez uno es
1 2 = 2 … una vez dos es
1 3 = 3… una vez tres es
uno
1
dos
2
tres
3
cuatro
1 4 = 4 … una vez cuatro es 4
1 5 = 5 … una vez cinco es
1 6 = 6 … una vez seis es
1 7 = 7 … una vez siete es
cinco
5
seis
6
siete
7
ocho
1 8 = 8 … una vez ocho es 8
1 9 = 9 … una vez nueve es
nueve
9
35
Cuál cálculo
1
1
Hay 8 fresas en cada plato. Hay 3 platos.
¿Cuántas fresas hay?
¿Qué es lo que
nosotros deseamos
saber?
páginas 27-35
① 62
② 83
③ 71 ④ 12
⑤ 67
⑥ 94 ⑦ 87
⑧ 99
⑨ 85
⑩ 15
⑪ 73
⑫ 68
⑬ 65
⑭ 18
⑮ 96
⑯ 95
⑰ 98
⑱ 79
⑲ 93
⑳ 14
㉑
91
㉒
㉓
㉔
81
2
¿Qué es lo
que nosotros
sabemos?
Hagamos multiplicaciones.
77
63
Hay 6 donas en cada caja. Hay 4 cajas.
¿Cuántas donas hay en total?
página 27
2
Hay 9 donas en la caja. Si te comes 7, ¿cuántas
quedan?
3
Hay 9 naranjas en el canasto y 4 naranjas en el
plato. ¿Cuántas naranjas hay en total?
4
Se dieron lápices a 7 niños. Cada niño recibió
3 lápices.
¿Cuántos lápices se dieron en total?
36
3 Cada niño recibe 7 fichas.
¿Cuántas fichas se necesitan para 8 niños?
página 29
37
12
1
Multiplicación (4)
Hagamos multiplicaciones.
① 6×6
② 1×3
③ 8×4 ④ 9×2
⑤ 7×5
⑥ 6×1 ⑦ 1×7
⑧ 6×9
⑨ 8×9
⑩ 8×6
⑪ 9×7
⑫ 7×8
2
Compramos 8 bolsas de naranjas. Había 5 naranjas en cada bolsa.
La tabla de multiplicación
1 Hagamos una tabla de multiplicación y busquemos sus secretos.
①
Hagamos una tabla de multiplicación.
multiplicador
multiplicando
fila del 1
¿Cuántas naranjas había en total?
①
Haz un dibujo.
②
Escribe una expresión matemática y obtén la respuesta.
fila del 2
fila del 3
fila del 4
3
Cuenta la cantidad de
usando la multiplicación.
①
②
fila del 5
fila del 6
fila del 7
fila del 8
fila del 9
4
"
16 es la respuesta para 2 en la
fila del 8. 82=16
Haz un problema para 73 usando las
②
palabras “galleta” y “plato".
■ Ir a la página 78
38
Ir a la página 83
Colorea la tabla en
la página 92.
Busca los secretos en la tabla de multiplicación.
¿Cómo se
incrementan las
respuestas?
¿Dónde están
las mismas
respuestas?
¿Cómo están
alineados los
números?
39
③ Di lo que has descubierto sobre la tabla de
2
Comparemos las respuestas cuando el multiplicando es
3 y cuando el multiplicador es 3.
multiplicación.
El descubrimiento de Yoko ▼
En la fila del 5, en el lugar de las unidades está
0 o 5, y así sucesivamente.
① Comparemos la respuesta de 35 y la respuesta de
53.
5, 10, 15, 20, 25
El descubrimiento de Yoshio ▼
Las mismas respuestas están junto a
la diagonal, opuestas una contra otra.
② ¿Qué es lo que observas?
El descubrimiento de Yasuo ▼
Hay respuestas que aparecen más de una vez.
En la multiplicación la respuesta es la
El 2 aparece 2 veces, el 4 aparece 3 veces, y el 6
misma si intercambiamos el multiplicando
aparece 4 veces.
y el multiplicador.
Hay muchos
secretos,
¿verdad?
Pareciera que aún hay
más secretos.
3
Escribe los números que faltan en el
① 3×8=
③
En esta tabla de
multiplicación, el número
de monedas coincide con la
respuesta para cada
multiplicación.
×5=5×6
② 4×
=7×4
④ 9×2=2×
Encontremos todas las expresiones multiplicativas para las
siguientes respuestas.
①
40
×3
.
9
②
12
③
36
④
54
41
Un juego con la multiplicación
1
2
Realiza el juego de la multiplicación ① de la página
Haz el juego de la multiplicación ② de la página 90
para que recuerdes mejor la tabla de multiplicación.
90 para que recuerdes mejor la tabla de multiplicación
① Escribe las respuestas en los espacios de la tabla de
abajo.
① Elabora un plan para ganar el juego.
No deberías escribir
25 porque sólo
aparece una vez en la
tabla.
columna
fila
Deberías escribir 12
porque aparece 4
veces en la tabla.
② Observa la tabla de multiplicación y encuentra las
respuestas que sólo aparecen una vez.
Un ejemplo es 25
③ Encuentra las respuestas que aparecen 4 veces. Un
ejemplo es 12
④ Comencemos el juego.
② Comencemos el juego.
Haz un dado
utilizando una
caja vacía.
42
43
1
Las tablas de abajo son una parte de la tabla de multiplicación.
¿ Cuáles son los lugares adecuados para las tablas:
aa,
y
? Justifica tus respuestas.
②
①
● Traza líneas para unir los números que están en el
lugar de las unidades en las respuestas de 3□.
Haz lo mismo para las otras multiplicaciones.
③
12 14 16 18
12 18 24 30
4
6
18 21 24 27
14 21 28 35
6
9
24 28 32 36
16 24 32 40
8
12 16 20
30 35 40 45
18 27 36 45
④
,
Hagamos patrones
con la multiplicación
8
10
12 15
Comienza con 0 y
termina con 0.
3×1=
3×2=
3×3=
3×4=
3×5=
3×6=
3×7=
3×8=
3×9=
3
6
9
12
15
18
21
24
27
10 15 20 25
multiplicador
36 42 48 54
multiplicando
42 49 56 63
fila del 1
48 56 64 72
fila del 3
54 63 72 81
fila del 4
fila del 2
fila del 5
fila del 6
fila del 7
fila del 8
fila del 9
2
Escribe todas las multiplicaciones cuya respuesta sea 24.
■ Ir a la página 45
44
■ Ir a la página 79
■ Ir a la página 84
45
Busquemos ejemplos de multiplicación en la ciudad.
Hay muchas cosas con
los mismos números
en la ciudad.
¿Te refieres a que hay muchas
cosas que se pueden contar
mediante la multiplicación?
Vamos a
comprobar.
●
Yo encontré 84 para las
ventanas de un edificio.
Busca con tus amigos algunas cosas
3 lápices en cada paquete.
Hay 5 paquetes en un
negocio. Encontré 35.
que se puedan contar usando la
multiplicación.
Cada señal de
tránsito tiene 3
luces.
Yo encontré 56
en un almacén.
Multiplicación en la ciudad
Es un grupo de
Modo que se expresa
como 31.
●
Di a tus amigos lo
que encontraste
diseñando un
periódico.
Hay 5
manzanas
en cada canasto así
que el total es 56.
3 lápices en
cada bolsa,
es 35.
Si pensamos este
grupo de ventanas
como un grupo,
obtenemos 48.
46
47
G
4
1
R
U
C
13
Q
10 11
Hagamos multiplicaciones.
① 2×4
② 5×1
③ 3×7
④ 2×3 ⑤ 6×9
⑥ 8×2
⑦ 7×6
⑧ 6×4
⑨ 8×7
⑩ 9×5
⑪ 3×6
⑫ 5×5
⑬ 4×3
⑭ 8×8
⑮ 1×9
⑯ 7×2 ⑰ 4×6
⑱ 1×6
⑲ 3×9
⑳ 9×8
2
El metro
Había 6 manzanas en cada
bolsa. Una niña compró 7
1
bolsas. ¿Cuántas manzanas
compró en total?
3
Yoshie extendió sus brazos y midió su longitud con
una cinta. El largo de sus brazos extendidos fue
11
3 grupos de 30 cm y 25 cm más.
Longitud de los brazos de Yoshie
Inventa un problema para 86 usando las palabras "plato" y
"caramelo".
11
4
Longitud(2)
Mide el largo y el ancho del cuadro de abajo y exprésalos
en milímetros.
30 cm
30 cm
30 cm
25 cm
¿Cuántos cm miden sus brazos extendidos?
100 cm es “1 metro” y se expresa
como 1 m.
1 m = 100 c m
8
El metro (m) es otra unidad de longitud.
48
49
30 cm
30 cm
30 cm
25 cm
Cálculo de longitudes
15 cm
1m
Una tira de madera de 1m es útil para medir objetos largos.
115 cm= 1 m 15 cm
m
1
2
1
Un pedazo de cinta se cortó en 2 partes que
midieron 3m, 20cm y 2m respectivamente.
3C
m 20 B
cm
cm
1
2C
m
5
Midamos el ancho de una jardinera como la que
① ¿Cuánto mide de largo la cinta original?
se muestra.
3m 20cm + 2m
¿Cuántos metros y centímetros mide el ancho?
La idea de Tadashi ▼
La idea de Sayuri ▼
¿Cuántos centímetros son en total?
Yo sumo los números con la
misma unidad.
3m y 2m dan 5m.
C
C
B
5m y 20cm dan
m
m cm
3 20
+2
cm.
② ¿Cuál es la diferencia entre las longitudes de las dos
1 Midamos varias cosas usando una
cintas?
tira de madera de un metro de largo.
2 ¿Cuántos metros y centímetros mide
1
la cinta de abajo?
de largo. ¿Cuál es la diferencia entre las longitudes de las
¿Cuántos centímetros son en total?
dos cuerdas?
2
1m
50
Hay una cuerda de 13 m de largo y una cuerda de 2m
30 cm
Calculemos.
① 24 m+ 15 m
② 23 m 50 cm- 15 m
51
1
Mide las longitudes de estas cintas
página 50
(m)
C
① ¿Cuántos metros y centímetros miden de largo la cinta roja y la
cinta azul?
② ¿Cuántos centímetros miden de largo la cinta roja y la cinta
1
.
Escribe las unidades correctas en el
① El grosor de un cuaderno.
3
② El ancho de un salón de clase.
7
③ La longitud de un escritorio.
60
④ La altura del edificio de un colegio.
20
2
Pon las siguientes medidas en orden, del más largo al más corto.
3m
7 cm
2 m 80 cm
azul?
2
Calcula las siguientes longitudes.
①
8 m 20 cm+3 m
②
2 m 30 cm+25 cm
③
7 m 15 cm−4 m
④
1 m 72 cm−40 cm
3
Mide las longitudes de varios objetos que están a nuestro alrededor.
• Primero inténtalo adivinando.
página 51
página 50
3
Haruko midió el ancho y la altura de un librero.
Ancho: una tira de madera de 1 m cupo una vez
y quedaron 28 cm.
Altura: Una tira de madera de 30 cm cupo dos
veces y quedaron 10 cm.
• Luego mídelos para comprobar.
① ¿Cuántos metros y centímetros miden el ancho y la altura
del librero?
② ¿Cuál es más largo, el ancho o la altura?
¿Cuántos centímetros más largo?
■ Ir a la página 54
52
■ Ir a la página 80
■ Ir a la página 86
53
La regla larga
●
14 Números mayores que 1000
Construye una regla larga con cinta de papel y mide las
longitudes de varios objetos.
Cuenta el número de granos de
arroz que hay en un tazón.
Haz una escala de 1 cm,
10 cm y 1 m usando
colores diferentes .
Recuerda cómo contar
números hasta 1000.
¿Cuántos grupos de
1000 se forman?
54
10 grupos de 100 son 1000.
¿Cuántos grupos de 1000 hay?
55
Cuando hay 2 grupos de 1000,
lo llamamos "dos mil"
③
¿Cómo puedes decir el número total de
granos de arroz?
El número que está formado por la suma de dos mil, trescientos,
cuarenta y seis se llama ``dos mil trescientos cuarenta y seis”.
Este número se escribe así: 2346.
El lugar que ocupa el 2 en el número 2346
se llama "unidades de millar".
1
¿Cuántos
millares
centenas
decenas
unidades
dos2mil
tres cientos
3
cuarenta
4
2
3
4
seis
6
6
hay?
① ¿Cuántos grupos de 100 hay?
② ¿Cuántos grupos de 1000 se forman?
2
¿Cuántas hojas de papel hay?
ones
place
unidades
56
tens
place
decenas
9 grupos de cien.
centenas
hundreds
place
② 3 grupos de mil y
thousands
millaresplace
①
①
②
③
③ 5 grupos de mil y 7 grupos de diez.
57
unidades
cada caja tiene 10
decenas
Cada paquete tiene 10 cajas y
centenas
.
millares
3 Cuenta el número de
8
¿Qué número es mayor?
①
4950,5190
4900
.
① ¿Cuántos hay?
5100
5200
4950
②
② ¿Cuántos grupos de 100 se
4
¿Cuáles son los siguientes números?
①
El número que se construye con 7 grupos de 1000.
②
El número que se construye con 60 grupos de 100.
5
Expresa con palabras los siguientes números.
①
6472 ②
6
Escribe las siguientes cantidades usando números arábigos.
1509 ④
7003
③
④
8400
millares centenas decenas unidades
8500
8600
9253,9238
9220
9230
millares centenas decenas unidades
9240
9250
millares centenas decenas unidades
5769,5764
5750
¿Qué lugar hace
más fácil ver
cuál es mayor?
5190
8340,8610
8300
necesitan para obtener 2300?
3085 ③
5000
millares centenas decenas unidades
5760
5770
5780
① Tres mil setecientos cuarenta y cinco.
② Siete mil veintiocho.
③
7
Tres mil uno.
9
④
Cinco mil
números del más chico al más grande.
Escribe las siguientes cantidades usando números arábigos.
① El número que es la suma de 3 grupos de 1000, 9 grupos de
100, 2 grupos de 10 y 7 grupos de 1.
② El número que es la suma de 6 grupos de 1000 y 2 grupos de 10.
③ El número que es la suma de 9 grupos de 1000 y 1 grupo de 1.
58
Traza líneas para conectar estos
④ El número que es la suma de 18 grupos de 100.
5500
5600
5400
5200
5100
4100
5700
5300
5000
5800
4900
4800
3800
4600
4700
3900
4500
4000
4200
4300
4400
59
10 Usa la recta numérica de abajo para responder lo siguiente.
① ¿Qué números corresponden a
,
y
?
1
¿Cuántas hojas de papel hay?
página 57
② Dibuja una ↑ para señalar el punto de la recta que
10
corresponde a 3200.
③
1000
1000
1000
Escribe el número que es 800 unidades mayor que 3200.
Luego escribe el número que es 300 unidades menor que 3200.
11 ¿Cuántas hojas de papel hay?
Mil,
dos mil,
tres mil, …
nueve mil, ¿Cuál es
el que sigue?
El número formado por 10 grupos de 1000
se llama "diez mil" y se escribe 10 000.
100
10
10
10
página 58
2
Lee los siguientes números.
①
7492
3
Escribe los siguientes números.
①
El número que es la suma de 7 grupos de 1000, 5 grupos de
② 2018
③
6501
④ 8001
página 58, 60
100 y 4 grupos de 1.
②
El número que es la suma de 50 grupos de 100 y 50 grupos
de 1.
③
El número que es 1000 unidades mayor que 8000.
④
El número que es 500 unidades menor que 4000.
4
Para el número 5800, escribe los números correctos en el
de abajo.
páginas 58,60
①
El 5 indica que hay 5 grupos de
②
5800 se forma con
③
El número que es 200 unidades mayor que 5800 se construye
a partir de
60
10
.
grupos de 100.
grupos de 1000.
61
1
①
Escribe los siguientes números.
El número que es la suma de 8 grupos de 1000 con 4 grupos de
100 y 6 grupos de 1.
El número que es la suma de 43 grupos de 100 y 60 grupos de 1.
③
El número que es 1000 unidades mayor que 5000.
④
El número que es 200 unidades menor que 7000.
Prepara 2 tarjetas para cada uno
①
de abajo.
Revuelve las tarjetas y
②
Cada niño toma una tarjeta y la
pone en uno de los 4 cuadrados.
③
① 7 indica que hay 7 grupos de
.
② 7400 es un número que es
Haz esto 4 veces para
completar todos los cuadrados.
grupos de 100.
③ El número que es 400 unidades menor que 7400 está formado por
grupos de 1000.
3 Escribe los números que faltan en los
1 al 9 .
colócalas mirando hacia abajo.
Analiza el número 7400, escribe los números correctos en
el
●
de los números del
②
2
¿Cuál número
es mayor?
④
El niño que construye el
número mayor es el ganador.
de manera que la
respuesta en cada caso sea 7620.
① El número que es
grupos de 10.
② El número que es la suma de
de 100 y
grupos
de 10.
③ El número que es la suma de
grupos de 1000 y
④ El número que es la suma de
grupos de 100 y
■ Ir a la página 63
62
grupos de 1000,
■ Ir a la página 81
de 10.
No estoy seguro
donde poner
el 7.
Cambia las reglas
del juego de modo
que quien construye
el número menor
sea el ganador.
Juega de nuevo.
de 10.
■ Ir a la página 87
63
15
Triángulos y cuadriláteros
La figura que se construyó usando
3 líneas rectas se llama "triángulo".
La figura que se construyó usando 4
líneas rectas se llama "cuadrilátero".
3
Encuentra los triángulos y cuadriláteros.
Líneas rectas
1
Usa un cordón para hacer la cuna del gato como se
muestra arriba.
2
Haz una línea recta.
① Extiende una banda elástica.
② Dobla un pedazo de papel.
La línea que es como una banda elástica
estirada, se llama "línea recta".
3
Dibuja una línea recta
usando una regla y verifica
que la línea esté realmente
recta comparándola con una cuerda estirada.
64
2 Separa en 2 grupos las figuras que se formaron con
líneas rectas.
La jirafa está
encerrada por 3
líneas rectas.
Encuentra las figuras que no
son triángulos ni cuadriláteros.
Piensa por qué razón estas
formas son diferentes.
El venado está
encerrado por 4
líneas rectas.
66
67
4
Dibuja varios triángulos y cuadriláteros
uniendo los puntos con líneas rectas.
5
Corta el papel para
hacer las siguientes formas.
① 2 triángulos.
1
Busca triángulos y cuadriláteros.
2
Dibuja varios triángulos y cuadriláteros uniendo los puntos con
líneas rectas.
página 67
página 68
② 2 cuadriláteros.
③ Un triángulo y un cuadrilátero.
6
Triángulos y cuadriláteros
1
Busca objetos que tengan forma de triángulo o
cuadrilátero.
Trata de encerrar
cada animal con
la menor cantidad
de líneas.
Conecta los puntos utilizando
líneas rectas para encerrar a cada animal.
65
68
69
16 Suma y resta
1
Colorea con rojo los triángulos y con azul los cuadriláteros.
1
Compara los dos cálculos siguientes.
① 2
8 niños estaban jugando y 4
niños más se les unieron.
pero 4 niños se fueron a casa.
¿Cuántos niños hay en total?
¿Cuántos niños quedaron?
Todos los niños :
Recorta las figuras que tienen la misma forma y diseña patrones.
Primeros niños : 8 Niños que quedaron
8+4=
②
3
Construye varios triángulos uniendo los puntos con líneas
rectas.
Ejemplo
Hay 6 flores rojas y 7
Niños que se fueron: 4
12-4=
Hay flores rojas y blancas.
¿Cuántas flores hay en
flores blancas.
total?
¿Cuántas flores rojas hay?
flores blancas
6+7=
■ Ir a la página 88
Niños que quedaron :
El total de flores es 13. Hay 7
flores rojas : 6
■ Ir a la página 82
Todos los niños : 12
flores blancas.
Total de flores:
70
12 niños estaban jugando,
Total de flores : 13
flores rojas :
flores blancas : 7
13-7=
La suma y la resta tienen
efectos opuestos.
71
2
3
27 pasajeros iban en un
Yoshiko tiene unas fichas.
Le dio 6 a su hermana y le
autobús.
quedaron 18.
Subieron más pasajeros, ahora
hay 34 en total.
¿Cuántas fichas tenía al
¿Cuántos nuevos pasajeros
principio?
subieron?
En este problema, se
usó la palabra
"quedaron", así que
ésta es una resta, ¿estás
de acuerdo?
Dice "en total", pero
¿es éste un cálculo
de suma?
Total de pasajeros :
Número de pasajeros que
iban en el autobús:
①
Elnúmero quedio:
:
El número que dio
Número de pasajeros que
subieron después :
Representa a los pasajeros que subieron después
con ☐ y escribe una expresión matemática con ☐.
②
:
4
①
Número total : 15
El número que dió :
Escribe en la gráfica los números que conoces y
haz la operación para encontrar cuántos pasajeros
Construye problemas mirando las figuras de abajo.
②
Número Total : 18
subieron después.
72
El número que quedó : 9
Número Original : 8
:
El número que compraron
73
17 Resumen del Segundo Grado
1 Construye varios números
3 Hagamos problemas de multiplicación para 46.
Un problema para
1368
4
6
Hay 4 fresas en cada plato.
usando tarjetas marcadas con
¿Cuántas fresas hay en 6 platos?
1 , 3 , 6 y 8 .
Y construye:
El número mayor ………
①
Hagamos otro problema cambiando los números en el
② Haz otro problema cambiando
.
.
El número menor ………
2
Calcula.
Un problema para 6 5
Hay 6 rebanadas de pan en cada bolsa.
¿Cuántas rebanadas de pan hay en 5 bolsas?
Suma cada pareja de
números y escribe la suma
en el recuadro que está
arriba de ellos.
4 Inventa 4 multiplicaciones en las que
todos los dígitos sean diferentes.
En cada pareja de números
resta el número menor del
mayor y escribe la respuesta
en el recuadro que está
debajo de ellos.
74
36=18,39=27,
57=35,49=36.
¡Oh no!, usé el 3 dos veces.
36=18,
39=27,
57=35.
Aún puedo usar 0,
4, 6 y 9.
=
=
=
=
Eso significa que
puedo terminar con
88=64.
75
5
Mide la longitud de estas líneas.
¿Cuántos mm miden de largo?
6
¿Cuál unidad es mejor para medir las longitudes de abajo?
m,cm,mm
① El largo de un pasillo.
7
② El grosor de un libro.
Dibuja varios triángulos y cuadriláteros uniendo
los puntos con líneas rectas.
76
Inventemos problemas de multiplicación 11
¿Qué estás haciendo?
12
¿Puedes encontrar el cofre del tesoro? 13
¿Qué día es?
14
Dibuja conectando los puntos
15
Ordenemos los asientos
11
Encuentra la respuesta para 3 × 12 12
Calculando longitudes
13
Cálculos con dinero
14
Doblando y cortando
15
77
Inventemos problemas de multiplicación
●
Inventa un problema de multiplicación.
Puedo hacer uno
colocando el mismo
número de algo en cada
caja.
●
¿Qué estás haciendo?
●
Haz cada una de las multiplicaciones que están a la izquierda.
Si encuentras la respuesta en la misma fila del lado derecho colorea
O en cada
plato.
ese casillero.
62,56,66,68,37,74,83
32 30 24 12 27 28 36 48 21
46,67,96,27,57,49,58
54 30 72 22 25 38 12 56 42
88,27,47,79,85,99,76
63 62 50 13 67 21 83 28 43
92,58,89,49,57,66,97
45 63 72 36 74 30 18 62 38
69,94,58,63,77,22,88
62 56 38 49 50 64 16
93,89,65,38,84,92,43
21 73 16 27 26 30 13 10 32
64,82,29,88,98,23,66
24 64 16
6
73 22 36 18 62
76,74,82,73,87,92,33
6
2
9
59,38,86,48,98,77,29
40 41 35 73 32 16 34 28 42
haz un "libro de la multiplicación"
97,84,36,99,87,64,72
63 32 14 81 62 16 56 28 59
y muéstraselo a tu grupo.
68,64,48,78,83,39,47
34 26 23 56 21 41 27 57 29
86,77,97,28,83,39,65
41 67 48 21 42 28 49 19 35
93,69,72,56,79,82,48
52 14 40 28 12 66 54 33 21
36,47,76,37,75,24,98
8
67,96,78,63,72,39,79
18 45 19 42 17 64 54 65 58
46,66,74,95,78,88,99
21 36 64 26 59 87 45 58 69
Después de inventar el problema,
48 26
16 26 29 36
2
43
20 58 11 19
4
35 32 74
Pon el libro de cabeza.
Verás que los cuadrados forman 2 números.
¿Qué haces a esa hora cada día?
¿Qué estás haciendo?
78
79
¿Qué día es?
¿Puedes encontrar el cofre del tesoro?
●
Escribe las siguientes cantidades usando números arábigos.
Entrada
Reglas
Partida
Horizontal
Vertical
② Dos mil ochocientos cincuenta y uno.
Usa una regla y un lápiz.
Debes cambiar de dirección después
① Cinco mil ochocientos sesenta y cuatro.
③ La respuesta a 9 8.
② Doscientos noventa y tres.
④ La respuesta a 88 +8.
⑤ El número que es la suma de 5 grupos de 100 y 11 grupos
de moverte 3 cm.
No debes cruzar sobre rocas, árboles
y agujeros.
⑤ El número que es 80 unidades menor que 6000.
⑥ El número que es la suma de 16 grupos de 100 y 5
de 1.
⑦ El número que es la suma de 2 grupos de 100, 9 grupos de
grupos de 1.
⑦ El número que es 19 unidades más grande que 200.
10 y 6 grupos de 1.
⑧ El número que es una unidad menor que 100.
⑨ El número que es la suma de 12 grupos de 100 y 7 grupos
de 1.
⑩ Cuatro mil novecientos cinco.
Encuentra el
camino más corto
Cofre del Tesoro
80
Escribe los números correctos en el
Mes :
a
b
, Día :
c
d
. Es el día
.
en Japón.
81
Dibuja conectando los puntos
●
Ordenemos los asientos
Dibuja muchos triángulos y cuadriláteros uniendo puntos mediante
líneas rectas. Combina triángulos y cuadriláteros.
19 niños van en un tren.
El tren tiene una sección con filas de 3
asientos y otra con filas de 2 asientos.
¿Cómo pueden sentarse de modo que
ninguno quede solo?
¿Hay otra
forma?
35 y 22 es una
buena forma de elegir
asientos.
Los niños usan
3
y 2
filas de 3 y
.
Mediante el uso de la
multiplicación combinamos filas
de 3 y filas de 2. Todos podemos
sentarnos de manera que nadie
esté solo.
filas de 2.
¿En serio? ¿Puedes
hacer esto para
cualquier número de
niños?
Trata de nuevo con otros
números.
Yo dibujé
un barco.
82
83
Encuentra la respuesta para 312
② Vamos a obtener la respuesta de 312 usando lo
que hemos aprendido y lo que descubrió Eiko.
Encuentra la respuesta para 312 usando 3□.
①
La idea de Nobuaki ▼
Observa la tabla de multiplicación del 3. ¿Notas cosas
interesantes? Cuéntale a los demás lo que estás pensando.
31= 3
Las respuestas aumentan en 3 cada vez: 39=27,310=30,
311=33. Entonces 312=36.
La idea de Chizuko ▼
32= 6
33= 9
34=12
35=15
36=18
37=21
38=24
39=27
Si sumamos la respuesta a la pregunta 3 9 y la respuesta a 3 3,
podemos obtener la respuesta a la pregunta 3 12.
Es decir, 27 + 9 = 36.
la idea de Masakuni ▼
Si dividimos la tabla en 6, 36=18.
Como 312 son 2 grupos de 36, obtenemos 18+18=36.
El descubrimiento de Eiko ▼
La suma de la respuesta a 3 2
y la respuesta a 3 3 es la
respuesta a 3 5.
84
85
Calculando longitudes
1
La altura de una jirafa es 3 m 30 cm y la altura de un
Cálculos con dinero
1
Si compro una goma en 60 yenes y un
mono es de 70 cm. ¿Cuál es la diferencia en metros y
cuaderno a 80 yenes, ¿cuántos yenes
centímetros de sus alturas?
necesitaré?
3 m 30 cm− 70 cm
La Idea de Takeshi ▼
60 + 80
3 m 30 cm es igual a 330 cm.
Trata de pensar en la
cantidad de monedas de 10
yenes que hay.
Si uso bloques de10, puedo pensar 330-70 como 33-7.
2 Yukie tiene 500 yenes y Satoshi tiene 300 yenes.
Sabemos que 33-7=26.
① ¿Cuántos yenes tienen ellos en total?
Como 26 significa 26 grupos de 10, tenemos 260 cm que es igual
+
a 2 m 60 cm.
Trata de pensar en la cantidad
de monedas de 100 yenes
que hay.
la Idea de Toshiko▼
3 m 30 cm puede separarse en 2 m y 1 m 30 cm.
② ¿Cuál es la diferencia del dinero que tiene
De 1 m 30 cm-70 cm,
cada uno?
obtenemos 130 cm-70 cm=60 cm,
y finalmente 2 m y 60 cm dan 2 m 60 cm.
2
86
Haz los siguientes problemas.
3
Resuelve los siguientes problemas.
① 1 m 40 cm+70 cm
② 2 m 10 cm+1 m 50 cm
① 300+600
② 700+800
③ 4 m 10 cm-80 cm
④ 5 m 20 cm-1 m 80 cm
③ 900-400
④ 1500-600
87
Juego con la multiplicación ①
Doblando y cortando
columna
fila
Dobla varias hojas de papel de color, dibuja 2 líneas rectas
Dado para
las
columnas.
como se muestra y corta la figura.
Dado para
las
filas.
¿Qué tipos de
figuras ves?
①
escribe las respuestas en los cuadrados. Luego cubre las respuestas con
① Observa la figura que obtuviste y di a los demás lo
que ves.
②
Multiplica los números en la fila por los números en las columnas y
30 fichas.
②
Busca figuras similares en nuestro alrededor.
Lanza los 2 dados a la vez. Multiplica los 2 números y di la respuesta.
Si la respuesta es correcta, obtienes la ficha de ese cuadrado.
③
Si no hay fichas sobre el cuadrado que eliges, tienes que poner una
ficha sobre él.
④ Acuerda con tu compañero el número de veces que van a lanzar el dado y
juega en turnos.
⑤
88
El niño que obtiene más fichas es el ganador.
89
Juego con la multiplicación ②
Este es un juego que puede
disfrutar todo el grupo.
① Escribe cualquier número de las
tablas de multiplicar en una tabla de
1
56
14
7
81
5
4
Primera vez
Segunda vez
Tercera vez
Cuarta vez
6
25 42
3
2
28 32 20 16
16 cuadrados.
② Un alumno elige una tarjeta de un
grupo de tarjetas de multiplicación.
③ El alumno hace la multiplicación que
4×5
4×5
muestra la tarjeta y encierra en un ○
5
la respuesta si está en la tabla que
hiciste.
3
2
32 20 16
④ Obtienes 1 punto cuando hay un ○ en
todos los números de una fila, columna
o diagonal.
1
56
obtiene el mayor número de puntos es
14
7
el ganador.
81
5
⑤ Elije 40 tarjetas en total. El que
4
6
25 42
3
2
28 32 20 16
●
Trata con una tabla de 25
cuadrados.
¿Qué número
debo escribir en
el centro de la
tabla?
1 punto
90
91
Tabla de multiplicación
multiplicador
multiplicando
fila del 1
fila del 2
fila del 3
fila del 4
fila del 5
fila del 6
fila del 7
fila del 8
fila del 9
Ilumina las respuestas usando diferentes colores. Usa color
gris
si el número en el lugar de las unidades es 0, amarillo
si el número es 1, y así sucesivamente.
Hay 9
colores diferentes
en la fila del 1.
¿Cuántos colores usaste en
la fila del 5?
multiplicador
multiplicando
92
1
2
3
4
5
6
7
8
9
5
6
7
8
9
fila de 1
1
1
2
3
4
fila de 2
2
2
4
6
8
fila de 3
3
3
6
9
fila de 4
4
4
8
fila de 5
5
5
10 15
20 25 30 35 40 45
fila de 6
6
6
12 18
24 30 36 42 48 54
10 12 14 16 18
12 15 18
12 16
21 24 27
20 24 28 32 36
Descargar