UNIVERSIDAD MAYOR DE SAN SIMÓN FACULTAD DE CIENCIAS Y TECNOLOGÍA Departamento de Química Texto guía para el Ingreso a la Facultad de Ciencias y Tecnología QUÍMICA Autores: Lic. Esp. Ronald Hosse S. Ing. Boris Moreira Rosas Ing. Henry Antezana Fernandez Lic. Edwin Escalera Mejía Jamil Humberto Calle Cochabamba, diciembre de 2009 PRÓLOGO El presente “Cuadernillo de Química” comprende una serie de temas que cubren el desarrollo del programa Pre- Facultativo de la Facultad de Ciencias y Tecnología de la Universidad Mayor de San Simón. La resolución de problemas resulta esencial para el aprendizaje de la química Los ejemplos (problemas resueltos) aparecen en los lugares adecuados dentro de cada capítulo con el fin de ayudar al estudiante a desarrollar las técnicas propuestas. Dichos ejemplos, así como sus resoluciones, se encuentran claramente identificados. En cada capítulo se proporcionan problemas sin resolver que sirven de refuerzo inmediato a los conceptos adquiridos y que se complementan con ejercicios de práctica al final de cada capítulo. Creemos que con el estudio y la resolución de los problemas del presente cuadernillo el estudiante estará con mayor confianza y apreciará sin lugar a dudas “la importancia de la química”, llamada la ciencia central para el siglo XXI. Los Autores CONTENIDO Unidad 1 Introducción a la química………………………………………………………..…………..pág. 1 1.1 Clasificación de la Materia 1.2 Propiedades de la Materia 1.3 Cambios físicos y químicos 1.4 Estados de la Materia 1.5 Densidad y Gravedad Específica 1.6 Temperatura 1.7 Análisis Dimensional y Factores de Conversión 1.8 Sistema Internacional de Unidades 1.9 Notación Científica 1.10 Problemas Adicionales 1.11 Autoevaluación Unidad 2 Estructura de los Átomos…………………………………………………………………..pág. 15 2.1 2.2 2.3 2.4 2.5 El Átomo Partículas Subatómicas, Radiactividad, Rayos X y Modelos Atómicos Estructura Nuclear Espectros Atómicos, Ondas La Mecánica Cuántica: Cuantos, Fotones, Efecto Fotoeléctrico, Niveles de Ondas de de Broglie. 2.6 Números Cuánticos, Orbitales Atómicos, Configuraciones Electrónicas y 2.7 Problemas Adicionales 2.8 Autoevaluación Energía del Átomo y Orbitales de Valencia Unidad 3 Enlace Químico……………………………………………..………………………………..pág. 27 3.1 Introducción 3.2 Electronegatividad 3.3 Símbolos de Lewis y La Regla del Octeto 3.4 Tipos de Enlace: Iónico y Covalente 3.5 Estructuras de Lewis y Números de Oxidación 3.6 Polaridad del Enlace Covalente, Resonancia 3.7 Formas Moleculares y Fuerzas Intermoleculares 3.8 Problemas Adicionales Unidad 4 Átomos y Moléculas: Fundamentos de Estequiometría……………………….……….…..pág. 37 4.1 Masas Atómicas, Composición, Abundancia Isotópica y Masas Moleculares 4.2 El mol, Numero de Avogadro y Volumen Molar 4.3 Leyes fundamentales de la química 4.4 Composición Porcentual, Formulas Empíricas y Moleculares 4.5 Problemas Adicionales 4.6 Autoevaluación Unidad 5 Igualación de Ecuaciones Químicas ………………………………………….…..pág. 51 5.1 Escritura y Clasificación de las Reacciones Químicas, Igualación de Reacciones Simples 5.2 Igualación de Ecuaciones Químicas por el Método Ion electrón 5.3 Problemas Adicionales iii Unidad 6 Cálculos Químicos, Estequiometría…………………………………………………………..pág.57 6.1 Introducción 6.2 Pureza de las Sustancias 6.3 Estequiometría de las Reacciones 6.4 Reactivo Limitante y Rendimiento 6.5 Problemas Adicionales 6.6 Autoevaluación Unidad 7 Gases Ideales……………………………………………………………………………....…..pág. 69 7.1 Introducción 7.2 Propiedades de los gases 7.3 Leyes de los Gases: Ley de Boyle, Gay-Lussac, y Combinada 7.4 Ecuación de Estado de los Gases Ideales 7.5 Ley de las Presiones Parciales de Dalton y Recolección de Gases sobre agua 7.6 Ley de Difusión de Graham 7.7 Estequiometría Gaseosa 7.8 Problemas Adicionales 7.9 Autoevaluación Unidad 8 Soluciones ……………………………………………………………………………..…..pág. 83 8.1 Introducción 8.2 Concentración de las Soluciones: Soluto/Solvente y Soluto/Solución 8.3 Preparación, Dilución y Mezcla de Soluciones 8.4 Estequiometria de las Soluciones, Valoraciones o Titulaciones 8.5 Propiedades coligativas 8.6 Problemas Adicionales 8.7 Autoevaluación Unidad 9 Termoquímica…………………………………………………………………………..….…..pág. 99 9.1 Introducción 9.2 Energía: Unidades 9.3 Ecuaciones Termoquímicas 9.4 Leyes Termoquímicas 9.5 Estequiometría de las Reacciones Termoquímicas Anexos…………………………………………………………………………………….…..pág. 102 ANEXO A: Respuestas a Problemas del texto ANEXO B: Tablas y Factores de conversión ANEXO C: Respuestas a Problemas del texto iv Unidad 1 Introducción a la química. 1.1 Clasificación de la Materia. La química es la ciencia que describe la materia, sus propiedades físicas y químicas, los cambios que experimenta, el comportamiento y las transformaciones intrínsecas que sufre, además de las variaciones de energía que están involucrados en dichos procesos. Materia Todo lo que ocupa un lugar en el espacio Sustancias Mezclas Materia conformada por un solo tipo de átomos o moléculas. Formado por dos o más sustancias. Elementos. Compuestos Formado por la agrupación de un solo tipo de átomos. Formado por el enlace entre átomos de distintos elementos. Mezclas Homogéneas Mezclas Heterogéneas Ej. Solución acuosa. Ej. Un mineral. Figura 1.1 Clasificación de la materia Materia.- Es todo aquello que tiene masa y ocupa un lugar en el espacio, por tanto es todo aquello que existe en el universo Masa y peso son dos términos diferentes, pero que se relacionan de la siguiente manera: Masa.- Es una medida de la cantidad de materia Peso.- Es la fuerza que ejerza la gravedad sobre un objeto de masa m P=m×g donde g = 9,8 m/s2 La materia puede encontrarse en diferentes formas, en estado puro (sustancias) o en mezclas Sustancia.- generalmente puras, están constituidas a su vez por compuestos o elementos.se caracterizan por tener propiedades químicas y físicas características de las mismas. Los Elementos son formas básicas de la materia están constituidos por un solo tipo de átomos. Ejemplos: C, Na, Au, O2, He, Hg, etc. Figura1.2 electrolisis del agua 1 QUÍMICA Tecnología Texto guía para el ingreso a la Facultad de Ciencias y Compuestos: son combinaciones químicas perfectamente homogéneas de varios átomos de distintos elementos ej.Na2CO3, CH3COOH, C12H22O11, H2O, NH3, etc. Mezcla.- estas no tienen composición constante, por ejemplo una taza de café, todas las tazas de café tienen distintas composiciones, y en consecuencia sus propiedades son variables. Figura simple. 1.3 Filtración Problemas Resueltos 1. Identificar cada una de las sustancias siguientes como un gas, un líquido, o un sólido bajo condiciones ordinarias: a) Oro b) Etanol c) Helio d) Bromo e) Monóxido de carbono, CO Solución: a) El oro, según la Tabla Periódica de los Elementos es un elemento metálico que se encuentra en estado sólido b) El etanol es el alcohol que se encuentra presente en muchas bebidas alcohólicas, como el whisky, vodka, ron, cerveza, los cuales son preferentemente líquidos. c) El helio es un gas, que se utiliza para inflar globos. Este elemento monoatómico se encuentra en el grupo 18 de la Tabla Periódica, la cual también nos indica que se trata de un gas. d) El bromo es el único elemento no metálico líquido, en condiciones normales que se encuentra en la Tabla Periódica. e) El monóxido de carbono es un compuesto gaseoso, que resulta de la mala combustión de carbón o algún hidrocarburo. Problemas Propuestos Definir en forma clara y concisa los siguientes términos, y dar dos ejemplos ilustrativos de cada uno: a) Sustancia b) Mezcla c) Elemento d) Compuesto 2. Clasificar cada uno de los siguientes materiales como elemento, compuesto o mezcla, e indicar por qué motivo: a) Bronce, b)Té, c)Uranio, d) Mineral de Fe, e) Metano y f) Dióxido de carbono 3. ¿Qué diferencia hay entre mezcla homogénea y heterogénea? Dar dos ejemplos de cada una. 1. 1.2 Propiedades de la Materia Para diferenciar las muestras de diferentes tipos de materia se determina y comparan sus propiedades, entre ellas están las propiedades físicas y químicas. Las propiedades físicas: Son aquellas que se pueden medir u observar sin alterar la composición de la sustancia. Ej.: la masa, el peso, el color, la densidad, dureza, el punto de fusión, el punto de ebullición, etc. Las propiedades químicas: Son aquellas que pueden ser observadas solo cuando una sustancia sufre un cambio en su composición. Ej.: encendido de un cerillo de fósforo, combinación de dos o más elementos, etc. Las propiedades de la materia se pueden clasificar también como propiedades extensivas o intensivas. Las propiedades extensivas dependen de la cantidad de materia Ejemplos: la masa, el volumen, inercia, etc. 2 Introducción a la Química. Las propiedades intensivas no dependen de la cantidad de materia Ejemplos: la densidad, color, temperatura, etc. 1.3 Cambios Físicos Y Cambios Químicos Cambios físicos.- Se presentan sin que se altere la composición de la sustancia. Ejemplos: los cambios de estado, cortar, picar, romper, pintar de otro color, etc. Es importante distinguir entre la propiedad y el cambio. Ejemplos: Propiedad física Cambio físico Punto de fusión Fusión de una sustancia Solubilidad Disolver una sustancia Tamaño Cortar un material Cambios químicos.- Se presenta solo cuando la composición de la sustancia se modifica. Ejemplos: La oxidación de hierro, la fermentación, la putrefacción, la digestión de los alimentos, la producción de una sustancia nueva,etc. Aquí también es importante distinguir entre el cambio y la propiedad. Propiedad química Cambio químico Combustión Quemar un papel Electrólisis del agua Separar los componentes del agua Problemas Resueltos 1. 2. 3. Indicar cuáles de los siguientes se pueden clasificar como cambio químico o cambio físico: a) Deslustre de la plata b) Fusión del hielo c) Corte de un diamante d) Combustión de la gasolina e) Conversión del vino en vinagre. Solución: a) , d) y e)Cambio químico b) y c) Cambio físico Al intentar la caracterización de una sustancia, un químico hace las observaciones siguientes: La sustancia es un metal blanco como de plata y lustroso. Funde a 649°C y hierve a 1105°C. Su densidad a 20°C es 1,738 g/mL. La sustancia arde al aire, produciendo una luz blanca intensa. Reacciona con el cloro para dar un sólido quebradizo, blanco. La sustancia puede ser laminada en hojas delgadas o estirarse como el alambre. Es un buen conductor de la electricidad. ¿Cuáles de estas características son propiedades físicas y cuáles son químicas? Solución: Propiedades físicas: Color, lustroso, punto de fusión, punto de ebullición, densidad, el laminado (maleable), estirado (dúctil) y buen conductor eléctrico. Propiedades químicas: Arde al aire produciendo una luz blanca intensa; reacciona con el cloro para producir un sólido quebradizo y blanco. El vodka, una bebida alcohólica se puede separar de varias sustancias; las dos principales son los líquidos agua y etanol. Basado en sus experiencias diarias, ¿qué diferencias hay en las propiedades físicas y químicas de estas sustancias? Solución: Enumeraremos solamente algunas de las propiedades más conocidas. Propiedades físicas: el agua es incolora e inodora. El etanol es incoloro, pero tiene un olor característico. El etanol se evapora más rápidamente que el agua. El etanol permanece líquido a una temperatura en la cual el agua se congela. Propiedades químicas: El etanol es inflamable, el agua no lo es. También un exceso de alcohol, cuando se ingiere, reacciona en forma diferente en nuestro organismo de como lo hace un exceso de agua. 3 QUÍMICA Tecnología 4. 5. Texto guía para el ingreso a la Facultad de Ciencias y Basado en sus experiencias de todos los días, ¿cuáles son las diferencias en las propiedades físicas y químicas de los metales sólidos hierro y oro? Solución: Propiedades físicas: El oro es amarillo, el hierro es gris. El hierro es atraído por imán, el oro no. el hierro se oxida fácilmente, el oro no. Propiedades químicas: El hierro reacciona con el oxígeno en presencia de agua para formar orín o herrumbre. El oro no reacciona con el oxígeno bajo condiciones normales. En la descripción siguiente indicar cada una de las propiedades o características como intensiva o extensiva: La muestra amarilla es sólida a 25 °C. Su masa es 6,0 g y tiene una densidad de 2,3 g/mL. Solución: Masa es un propiedad extensiva; color, estado físico (es decir, sólido), temperatura, y densidad son propiedades intensivas. Problemas Propuestos 1. 2. 3. ¿Cuáles de las siguientes propiedades son extensivas y cuáles intensivas? Explicar por qué. a) Temperatura b) Color del cobre c) Volumen d) Densidad e) Punto de fusión f) Masa Establecer si las siguientes propiedades son químicas o físicas y ¿por qué? a) El punto de fusión del plomo b) Dureza del diamante c) Color de un sólido d) Color de una pintura e) Capacidad de combustión El calor requerido por gramo para evaporar el agua líquida, ¿es una propiedad intensiva o extensiva? 1.4 Estados de la materia. La materia se clasifica en tres estados de agregación: Sólido, en este estado las sustancias son rígidas y tienen forma definida. El volumen de los sólidos no varia en forma considerable con los cambios de temperatura y presión Líquido, en este estado las partículas están confinadas en un volumen dado, los líquidos fluyen y toman la forma del recipiente que los contiene, su volumen no cambia notablemente, son muy difíciles de comprimir. Figura 1.4 Ordenamiento de las moléculas en los Gaseoso, en este estado las partículas tienden a estados sólido, líquido y gaseoso respectivamente. ocupar todo el volumen del recipiente en que se encuentran, son mucho mas ligeros que los líquidos y sólidos, fáciles de comprimir, se expanden fácilmente al aumentar la temperatura Cualquier sustancia puede existir en los tres estados de agregación esto se debe a las condiciones del sistema en que se encuentren, es decir que depende de las propiedades de cada sustancia se las encontrara en estado solido, liquido o gaseoso; entonces la variación de la temperatura y la presión ocasionan cambios de estado de las sustancias. 4 Figura 1.5 Cambios de estado. Introducción a la Química. 1.5 Densidad y Peso Específico. La densidad es una propiedad intensiva de la materia, empleada ampliamente para caracterizar las sustancias. Se define como la cantidad de masa en unidad de volumen de la sustancia. Densidad masa volumen El peso específico es una relación adimensional. En realidad debe considerarse como la relación entre dos densidades entre la sustancia de interés y la correspondiente a la sustancia de referencia. La sustancia de referencia para los líquidos y sólidos es el agua y para los gases el aire. PE ρ Sustancia ρ H2 O ( 4 º C ) PEgas ρgas ρ aire ( 0 º C,1atm ) Problemas Resueltos 1. Un cuarto de libra de mantequilla empaquetada mide 1 4 5 5 de pulgada 1 de pulgada por 16 16 11 de pulgada. 16 a) ¿Cuál es la densidad de la mantequilla en g/mL? b) Flotará o se sumergirá la mantequilla en agua a 4 °C. Solución: a) La masa de la mantequilla en gramos es 1 453.6g Libra de mantequilla 113,4g 4 1libra El volumen de la mantequilla es 5 5 11 1 plg 1 plg 4 plg 8,07 plg 3 16 16 16 3 2,54 cm 8,07 plg = 132,2 mL 1 plg 3 Usando la ecuación de la densidad: m 113,4g 0.858g mL v 132,2mL b) Como la densidad de la sustancia es menor que 1 g/mL, flotará sobre el agua 2. 3 El mercurio tiene una densidad de 13,6 g/mL. ¿Qué volumen en plg ocuparán 34 libras de mercurio? Solución: 1 libra Hg = 453,6 g Hg 1 plg = 2,54 cm 3 1 cm = 1 mL 5 QUÍMICA Tecnología Texto guía para el ingreso a la Facultad de Ciencias y 3 1cm 3 1p lg 453.6g 1mL 3 34librasHg 69.2p lg 1 libra 13 . 6 g _ Hg 1 mL 2 . 54 cm 3. Un recipiente vacío tiene una masa de 120 g y lleno de agua, 190 g. Si al recipiente vacío se agregan 10 g de un metal y luego se llena con agua, la masa resultante es de 194 g. Hallar la densidad del metal. Solución: masa del agua inicial = 190 g – 120 g = 70 g de agua 1 mL agua = 70 mL 1 g agua Volumen del recipiente = 70 g agua masa del agua final = 194 g – 10 g – 120 g = 64 g Volumen del agua = 64 mL Volumen que ocupa el metal = 70 mL – 64 mL = 6 mL Densidad del metal = 4. 10 g metal g = 1, 7 6 mL de metal mL ¿Cuántos gramos de Cu ocuparán el mismo volumen que 100 g de Hg? Solución: La densidad del Hg es 13,55 g/mL y del Cu de 8,92 g/mL 1 mL Hg 100 g Hg 13, 55 g Hg 7, 38 mL Hg 8, 92 g Cu 7,38 mL Cu 65, 8 g Cu 1 mL Cu 5. Una solución de HCl tiene una densidad de 1,13 g/mL. a) Calcular la masa de 720 mL de la solución. b) El volumen ocupado por 585 g de la solución. Solución: 1,13 g solución = 813,6 g solución 1 mL solución 1 mL solución 585 g solución = 517,7 mL solución 1,13 g solución a) 720 mL solución b) 6. Dentro de un cilindro hueco de 25 cm de altura y 10 cm de diámetro, se introduce un otro cilindro macizo, de la misma altura, pero de 6 cm de diámetro. Todo el sistema tiene una masa de 280 g. Se introduce luego un gas el mismo que ocupa todos los espacios vacíos, y el conjunto tiene una masa ahora de 283,5 g. Hallar la densidad del gas. Solución: 2 Volumen de un cilindro = π r h masa del gas = 283,5 g – 280 g = 3,5 g 2 2 3 Volumen del cilindro de d 10 cm = 3,1416 (10/2) cm 25 cm =1963,5 cm 2 2 3 Volumen del cilindro de d 6 cm =3,1416 (6/2) cm 25 cm = 706,86 cm 3 3 3 Volumen que ocupa el gas = 1963,5 cm – 706,86 cm = 1256,64 cm = 7. 6 3,5 g = 2,78 10 -3 g/cm 3 1256,64 cm 3 La gravedad específica del alcohol etílico es 0,79. ¿Qué volumen de alcohol tendrá la misma masa que 23 mL de agua. Solución: La densidad del alcohol etílico es 0,79 g/mL Como la densidad del agua es 1 g/mL, su masa será de 23 g de agua Introducción a la Química. Según el problema hay 23 g de alcohol etílico, entonces: 1 mL alcohol 23 g alcohol = 29 mL alcohol 0,79 g alcohol 8. Un estudiante determina el volumen de un pedazo de hierro como 0,880 mL y por medio de una balanza establece que su masa es de 6,92 g. ¿Cuál es la densidad del hierro? Solución: Como se conoce la masa y el volumen de hierro se reemplaza en la ecuación de la densidad: m 6,92g 7,86 g mL v 0,880mL Problemas Propuestos 1. 2. 3. 4. 5. 6. 7. 8. 1.6 Calcular la densidad de: a) Una barra cilíndrica de aluminio de masa 25,07 g, radio de 0,750 m y altura 5,25 cm. b) Un pedazo de aluminio de masa igual a 37,42 g y que al sumergirse en una probeta graduada, el nivel de agua aumenta en 13,9 mL. Un recipiente de vidrio tiene una masa de 25,60 g estando vacío y 35,55 g cuando se llena con agua a 20 °C. La densidad del agua a esta temperatura es de 0,998 g/mL. Cuando se colocan 10,20 g de municiones de plomo en el recipiente y se llena éste nuevamente con agua a 20 °C, resulta una masa de 44,83 g. ¿Cuál es la densidad del plomo metálico? El metanol es un líquido que tiene una gravedad específica de 0,792. Calcular su densidad en las siguientes unidades: g/mL; libras/galón y libras/pie cúbico. Un gas a 25°C llena exactamente un recipiente cuyo volumen previamente ha sido determi3 nado como de 1,05 10 mL. Se pesan el recipiente y el gas y se encuentra que tiene una masa de 837,6 g. Cuando el recipiente está vacío, tiene una masa de 836,2 g. ¿Cuál es la densidad del gas a 25 °C? a) Calcular la densidad del mercurio si 100 g ocupan un volumen de 7,36 mL. b) Calcular la masa de 65,0 mL de mercurio. Un estudiante necesita 15,0 g de etanol para un experimento. Si la densidad del etanol es 0,789 g/mL, ¿cuántos mL de alcohol se necesitan? Un pedazo de cobre se coloca en una probeta que contiene agua. El volumen total aumenta 17,43 mL. ¿Cuál es la masa del pedazo de cobre? a) Calcular el volumen de 100 libras de oro en mL. b) Considerar que la muestra de oro del inciso a, es un cubo perfecto, ¿cuál será la longitud de cada lado del cubo en pulgadas? Temperatura La temperatura es la medida del nivel térmico y la energía calorífica de un cuerpo. Escalas de temperatura: 7 QUÍMICA Tecnología Texto guía para el ingreso a la Facultad de Ciencias y Ecuaciones que relacionan las escalas: 5 ( º F 32 ) 9 9 º F ( º C 32 ) 5 K º C 273 º C º R º F 460 Figura 1.6 Escalas termométricas Problemas Resueltos 1. Convertir: a) 105 °F en °C Solución: a) b) 0 °F en °C c) 300 K en °F C 5C 5C F 32F 105F 32F = 9F 9F C 5C 5C F 32F 0F 32F = 9F 9F °B d) 100°A °F en °C 30° -20° 120° 50° 41°C b) 18°C c) °C = 300 – 273 = 27°C 9F 9F C 32F = 27C 32F = 80,6°F 5C 5C 5C 5C C F 32F 100F 32F = 9F 9F F = d) 38°C 2. a) Deducir una relación matemática entre las escalas de temperatura °A y °B si el agua ebulle a 30°A y a –20°B y congela a 120°A y 50°B, respectivamente. c) Según la relación anterior, ¿a cuántos ° B equivalen –10°A? Solución: a) ∆°A = 30°A – 120°A = –90°A ∆°B = –20°B – 50°B = –70°B A 90 A 9 A B 70B 7 B A - 120 A 9 A B- 50 B 7 B 8 Introducción a la Química. A 9 A ( B - 50 B) +120 A 7 B B 7 B ( A -120 A) + 50 B 9 A b) Usando la ecuación B 3. 7 B 7 B ( A -120 A)+ 50 B= (-10 A -120A)+ 50 B 9 A 9 A = – 51,1°B a) El punto de ebullición del neón es – 246°C. Expresar esta temperatura en °F. b) El oxígeno líquido hierve a –297,4°F. Expresar esta temperatura en °C. c) ¿Cuál es la temperatura en °C que es doble de la dada en °F? d) La temperatura más fría registrada fuera de un laboratorio ha sido de –126,9°C. Expresar esta temperatura en kelvin. Solución: 9F - 246C 32F = - 411 F 5C 5C b) C 297F 32F = -183 C 9F a) F = c) Sea X = la temperatura en ∆°F, entonces ∆°C = 2X Reemplazando en la ecuación y realizando las operaciones correspondientes: 2X (9 ) = 5(X – 32) de donde: X = – 12,3 d) K = 273,15 + (– 126,9 ) = 146,3 K Problemas Propuestos 1. 2. Si el pronóstico del clima para el día indica que la temperatura llegará a 30°C, ¿cuál es la temperatura que se predice: a) En K? b) En °F? Convertir 25°C en: a) °F b) K 1.7 Análisis dimensional y factores de conversión El análisis dimensional es una estrategia de resolución de problemas, sencilla de manejar y de muy poca memorización, y se basa principalmente en las relaciones que existen entre diferentes unidades de una misma cantidad física. Nosotros sabemos que un día tiene 24 Horas. Entonces: 1 dia 24 Horas De aquí que podemos encontrar nuestro factor unitario: 1 dia 1 24 horas 24 horas 1 1 dia 9 QUÍMICA Tecnología Texto guía para el ingreso a la Facultad de Ciencias y Como ambas relaciones son igual a uno, estaremos seguros que al multiplicar estos factores por cualquier cantidad no estaremos variando ni la cantidad, ni las propiedades, solo estaremos cambiando las unidades. Problemas resueltos. 1.- Una persona trabaja 8 Hrs. por día, ¿Cuántas horas trabaja a la semana? si una semana tiene 7 días. Solución: 2.- 8 horas 7dias horas 56 1 dia 1semana semana Calcular la masa en kilogramos de una persona que pesa 180 lbs. 180libras 3.- 453.6 g 1 Kg 81.6Kg. 1 libra 1000 g 3 calcular el volumen de una habitación en m en la cual entran 32000 litros de aire.(1 3 litro=1000cm y 1m = 100cm) 3 1000cm 3 1m 32000litros 32m 3 1 litro 100cm 1.8 Sistema internacional de unidades. Las unidades principales del sistema internacional. Las unidades fundamentales del sistema internacional son 7, todas las demás unidades se derivan de estas 7 unidades fundamentales. UNIDAD FÍSICA NOMBRE SÍMBOLO Longitud Metro m Masa Kilogramo kg Tiempo Segundo s Corriente eléctrica Ampere A Temperatura Kelvin K Cantidad de sustancia Mol mol Intensidad luminosa Candela cd También existen muchos prefijos que se usan con frecuencia en el sistema internacional para denotar cantidades muy grandes o cantidades muy pequeñas. prefijo 10 PREFIJOS UTILIZADOS EN EL SISTEMA INTERNACIONAL. símbolo Significado Notación científica Tera T 1 000000000000 1012 Giga G 1000000000 109 Mega M 1 000000 106 Kilo k 1 000 103 Deci d 0.1 10-1 Centi c 0.01 10-2 Introducción a la Química. Mili micro m µ 0.001 0.000001 10-3 10-6 Nano n 0.000000001 10-9 pico p 0.000000000001 10-12 femto f 0.000000000000001 10-15 Problemas resueltos 1. Realizar las siguientes conversiones de unidades: a) 10,0 cm a km (b) 1,33 kg a libras Solución: a) 1 km = 1000 m y 1 m = 100 cm (c) 37,5 mL a L 1 m 1 km -4 10 cm 1 10 km 100 cm 1 000 m b) 1 libra = 0,4536 kg 1 lb 1, 33 kg 0, 4536 kg = 2, 93 lb c) 1 L = 1000 mL 1L -4 37,5 mL 3,75 10 L 1000 mL Problemas Propuestos 1. 2. 3. 4. 5. 6. 7. 8. El radio de un átomo de aluminio es de 1,43 Å. ¿Cuántos átomos de aluminio se tendrían que colocar uno junto a otro para formar un fila de 1,00 pulgadas (plg.) de longitud? Suponer que el átomo de aluminio es esférico. Un experimento de laboratorio necesita 0,500 g de un alambre de cobre cuya densidad es 8,94 g/ mL. Si el diámetro del alambre es de 0,0179 pulgadas, ¿cuál ha de ser la longitud en cm? El 2 volumen del cilindro = π r L, donde r es el radio y L la longitud. a) ¿Cuántos centímetros hay en 1 kilómetro? b) ¿Cuántos kilogramo hay en 1 miligramo? c) ¿Cuántos nanosegundos hay en 10 milisegundos? d) ¿Cuántos terámetros hay en 100 micrómetros? El radio de un átomo de oro es 0,99Å. ¿Cuál es la distancia en nanómetros y picómetros? De acuerdo a estimaciones, un gramo de agua de mar contiene 4,0 pg de Au. Si la masa total 12 de los océanos es 1,6 10 Tg. ¿Cuántos gramos de oro se hallan presentes en los océanos de la Tierra? Se mide la estatura de una persona, que es 67,50 pulgadas. ¿Cuál es su estatura en centímetros? a) Un hombre tiene una masa de 185 libras. ¿Cuál es su masa en gramos? b) Determinar la longitud en kilómetros de una pista de automóviles de 500 millas. Un automóvil se desplaza a 28 millas/galón de gasolina. ¿Cuántos kilómetros viaja por litro? 1.9 Notación Científica Problemas Resueltos 11 QUÍMICA Tecnología Texto guía para el ingreso a la Facultad de Ciencias y ¿Cuántas cifras significativas hay en cada uno de los números siguientes? 23 a) 4,003 b) 6,02 10 c) 5000 Solución: a) Cuatro, los ceros en este caso, forman parte de la medición. b) Tres, el término exponencial no adiciona cifras significativas al número c) Infinita cantidad de cifras significativas y aunque este número se puede escribir como 5 3 10 , el cual también tiene infinita cantidad de cifras significativas. 2. ¿Cuántas cifras significativas hay en los siguientes números?: a) 20,0008 b) 0,0025 c) 987,500 Solución: a) En el número 20,0008 los ceros son parte de la medición, por lo tanto este número tiene 6 cifras significativas. b) El número 0,0025; los ceros sólo indica la posición de la coma, por que este número solamente tiene 2 cifras significativas. c) En 987,500 los ceros ubicados después del número son también cifras significativas, por lo que este número presenta 6 cifras significativas. 3. ¿Cuántas cifras significativas tienen las siguientes cantidades? a) 2,75 m b) 0,020 kg c) 3,505 mm Solución: 1. Número 4. Nº cifras significativas 2,75 3 0,020 2 3,505 4 Comentario 2 y 7 son ciertos y el 5 se incluye como establece la definición El cero es una cifra significativa si se encuentra a la derecha del número, los ceros ubicados a la izquierda no son cifras significativas por que solo denotan la posición de la coma decimal 3, 5 y el 0 son dígitos ciertos y el último cinco es el dígito aumentado Expresar los siguientes números en notación científica: a) 18300 b) 81 300 000 c) 0,0029870 d) 0, 000 00025 Solución: a) En el número 18300, la coma decimal se desplaza 4 lugares hacia la izquierda para dar un número comprendido entre 1 y 10 de la siguiente manera 1,8300 para que el reproducir el número original se debe multiplicar el número por una potencia de 10 positiva, a saber; 4 4 1,8300 10 , también se acostumbra a representarlo de la siguiente manera: 1,83 10 . b) El número 81 300 000 expresado como un número comprendido entre 1 y 10 se desplaza la coma a la izquierda 7 lugares, a saber: 8,1 300 000, para reproducir el número original se debe 7 7 multiplicar por una potencia de 10 positiva, es decir: 8,1 300 000 10 o bien 8,13 10 . c) En la cantidad 0,0029870 la coma decimal se desplaza hacia la derecha 3 lugares para dar un número comprendido entre 1 y 10, es decir 2,9870, luego para reproducir el número –3 original se debe multiplicar 2,9870 por una potencia de 10 negativa, es decir: 2,9870 10 . d) En el número 0, 000000 25 la coma decimal se desplaza hacia la derecha 7 lugares para dar el número 2,5 el cual se debe multiplicar por una potencia de 10 negativa para reproducir –7 el número original, de la siguiente manera: 2,5 10 La notación científica permite determinar o indicar el número de cifras significativas. Problemas Propuestos 1. Realizar los siguientes cálculos y dar las respuestas con el número adecuado de cifras significativas: a) 123,4 + 12,34 + 1,234 b) 123,4/12,34 c) 6,524 – 5,624 d) 5,0 + 0,005 e) 16,0 18,75 0,375 f) 1 0625/505 2. ¿Cuál es la diferencia entre 4,0 g y 4,00 g? 12 Introducción a la Química. 3. 4. 1.10 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. Una balanza tiene una precisión ±0,001 g. Una muestra que pesa alrededor de 25 g se pesa en esta balanza. ¿Cuántas cifras significativas se deberán informar para esta medición? ¿Cuántas cifras significativas hay en cada una de las mediciones siguientes? 4 3 a) 3,549 g b) 2,3 10 cm c) 0,00134 m Problemas Adicionales Definir los siguientes términos e ilustrar cada uno con un ejemplo específico: a) Materia b) Masa c) Energía d) Energía cinética e) Energía potencial a) ¿Cuál es el área de un rectángulo de 1,23 cm de ancho y 12,34 cm de largo? b) Expresar 1,47 millas en pulgadas. c) El radio del átomo de fósforo es de 1,10Å. ¿Cuál es la distancia expresada en centímetros y nanómetros? Una muestra de oro tiene una masa de 0,234 mg. ¿Cuál es su masa en gramos y en centigramos? ¿Cuántos decímetros cuadrados hay en 215 centímetros cuadrados? Una muestra de 47,3 mL de etanol tiene una masa de 37,32 g. ¿Cuál es su densidad? La densidad de la sal de mesa es 2,16 g/mL a 20 °C. ¿Cuál es su gravedad específica? Realizar las siguientes conversiones: a) 7,58 m a km b) 758 cm a m c) 478 kg a g d) 9,78 g a kg e) 1392 L a mL f) 3692 mL a L 3 g) 1126 dm a mL h) 0,786 mL a L i) 1/4 milla a m j) 1,27 pies a cm k) 65 millas a km Realizar las siguientes conversiones: a) 8 pulgadas cúbicas a mL b) 1,00 metro cúbico a pies cúbicos c) 3,0 onzas a Kg. d) 2,35 libras a kg El radio de un átomo de aluminio es 1,43 Å. ¿Cuántos átomos de aluminio se tendrían que colocar uno junto a otro para formar una fila de 1,00 pulgada de longitud? Suponer que el átomo de aluminio es esférico. Tres estudiantes distintos pesan un mismo objeto con diferentes balanzas. Las masas obtenidas por cada uno son: a) 15,02 g b) 15,0 c) 0,01502 kg ¿Cuántas cifras significativas tienen cada pesada? ¿Cuántas cifras significativas hay en? 2 a) 2,6 10 cm 12. 3 –3 b) 2,40 10 cm 3 3 Un hombre respira en promedio unos 8,50 x 10 L de aire al día. La concentración de plomo en un aire urbano altamente contaminado es –6 7,0 10 3 g Pb/m de aire. Suponga que el –6 13. 14. 75% de las partículas de plomo en el aire tienen un diámetro menor de 1,0 10 m, y que el 50% de estas partículas es retenido por los pulmones. Calcular cuál es la masa de plomo absorbida de esta manera por un hombre normal que viva en este ambiente durante un año. Clasificar las siguientes propiedades en extensivas e intensivas: d) Masa a) Reactividad b) Punto de ebullición c) Color e) Dureza f) Tamaño atómico g) Temperatura h) Calor i) Densidad Definir los siguientes términos: a) Materia b) Masa c) Peso 13 QUÍMICA Tecnología 15. Texto guía para el ingreso a la Facultad de Ciencias y e) Mezcla. d) Sustancia a) Normalmente, el cuerpo humano puede soportar una temperatura de 105°F por cortos periodos sin sufrir daños permanentes en el cerebro u otros órganos vitales. ¿Cuál es esa temperatura en grados Celsius? b) El etilenglicol es un compuesto orgánico líquido que se utiliza como anticongelante en los radiadores de los automóviles. Se congela a – 11,5°C. Calcular esta temperatura de congelación en grados Fahrenheit. 3 16. c) La temperatura de la superficie del Sol es de unos 6,3 10 °C. ¿Qué temperatura es ésta en grado Fahrenheit? El aceite se extiende en una capa delgada sobre el agua cuando se presenta un derrame de 3 17. 18. 19. petróleo crudo. ¿Cuál es el área en metros cuadrados que cubren 200 cm de aceite si la capa que se forma tiene un espesor de 0,5 nm? Suponer que se dan tres cubos, A, B y C uno es de magnesio, el otro de aluminio y el tercero es de plata. Los tres cubos tienen la misma masa, pero A tiene un volumen de 25,9 mL; B un volumen de 16,7 mL y C de 4,29 mL. Establecer de qué material es cada cubo. Suponer que 1,0 mL equivalen a 20 gotas, ¿cuántas gotas tiene un galón? Una muestra de 35,0 mL de alcohol etílico de densidad igual a 0,789 g/mL se vierte en una probeta cuya masa es de 49,28 g. ¿Cuál será la masa de la probeta con el alcohol? 1.11 Autoevaluación: Preguntas tipo Examen de Ingreso 1. Un cm3 es lo mismo que: A) 100 mm 2. C) 0,4 pulg3 B) 1 mL D) 1 L E) Ninguno Un litro, una unidad de volumen del sistema internacional, se aproxima mucho al del sistema ingles: 3. A) Galón B) Pie cúbico D) Frasco volumétrico E) Ninguno C) Pinta Calcular la densidad del elemento oro, a partir de la siguiente información: Masa de una moneda de oro = 13,512 g Volumen de la moneda y del agua = 25,1 mL Volumen del agua sola = 24,4 mL A) 19,303 4. C) 19,3 D) 19 E) Ninguno 3 Cuando la densidad del plomo 11,2 g/mL, se expresa en lb/pie es: A) 2,60 5. B) 20 B) 699 C) 11,2 D) 0,179 E) Ninguno Una esfera metálica tiene un diámetro de 0,20 pulgadas y una masa de 0,0066 onzas. ¿Cuál es la densidad del metal en g/mL? A) 18 14 B) 2,7 C) 0,18 D) 3,6 E) Ninguno Introducción a la Química. 6. Se estima que un automóvil recorre, en carretera 41 millas por galón de gasolina. ¿Cuántos litros de gasolina necesitarán para hacer un viaje por carretera de 500 kilómetros? B) 3,0 103 A) 74 7. C) 29 D) 5,2 E) Ninguno Un examen de química de un típico estudiante de química de primer año consiste en páginas que miden 8(1/2) 11 pulgadas o bien la impresionante cifra de 93 1/2 pulgadas cuadradas. ¿Cuál es el área aproximada en una cifra significativa de una cara de una pagina de tales dimensiones en metros cuadrados? A) 0,001 8. B) 2 C) 0,01 D) 0,06 E) Ninguno La densidad del cobre es 8,92 g/mL. La masa de un trozo de cobre que tiene un volumen de 9,5 mL es A) 2,58 9. B) 85 C) 0,94 D) 1,07 E) Ninguno Si se pudiera contar los átomos individuales a una velocidad de un átomo por segundo, ¿alrededor de cuántos años harían falta para contar 6,02 1023 átomos?(considere un año como 365,25 días) A) 1,907x1016 10. B) 540000 C) 2,907x109 D) 6,02 1023 E) Ninguno la presión se define como la fuerza ejercida de manera perpendicular sobre una superficie, esta se mide en pascales (Pa=N/m2); un pascal se define como un newton(N) sobre metro cuadrado (m2). Con esta información calcule la presión en Pa que ejerce una mujer sobre un taco de sus zapatos de alfiler, que tienen un área de 1cm2; la masa de una mujer promedio es de 50Kg y la gravedad es 9.8 m/s2. A) 50 B) 500 C) 4,9x106 D) 5,0x10 E) Ninguno 15 Unidad 2 Estructura de los Átomos 2.1 El átomo. Estructura del átomo Un átomo se define como la unidad básica de un elemento que puede intervenir en una reacción química, también un átomo es la unidad fundamental de la materia, es indivisible y esta formado por electrones en sus capas y por protones y neutrones en su núcleo. El electrón Se encuentra alrededor del núcleo formando capas u orbitales con su trayectoria, todos son de carga negativa igual a - 1,6022. 10-19 Coulomb, y tienen una masa de 9,1. 10-28 gramos. El protón y el núcleo En muchos experimentos anteriores se descubrió que el átomo era eléctricamente neutro, esto se debe a que en el núcleo existen partículas con carga positiva de la misma magnitud que las cargas de un electrón, estos son los protones que tienen una carga de 1,6022. 10-19 Coulomb, y una masa de 1,67262. 10-24 Figura 2.1 Evolución de la teoría del modelo atómico. gramos. A su vez también se encontró que el núcleo de un átomo tenía una alta densidad, esto se debía a la presencia de otras partículas que no tenían carga eléctrica pero que si aumentaban considerablemente el peso del átomo. A estas partículas se las llama neutrones, que no tienen carga electrica pero tienen una masa de 1,67493. 10-24 gramos. 2.2 Partículas Subatómicas, Radiactividad, Rayos X y Modelos Atómicos Orbitales atómicos Las funciones de onda que representa el movimiento del electrón en el átomo se denominan orbitales y vienen determinados por los valores de los tres números cuánticos (n, l, m). El orbital es la región en la cual hay mayor probabilidad de encontrar al electrón. La forma y el tamaño del orbital electrónico dependen de su nivel de energía y son descritos matemáticamente por funciones de onda. Existen cuatro tipos de orbitales que se denotan s, p, d y f Configuración Electrónica El ordenamiento electrónico que se describen para cada átomo se conoce como configuración electrónica del estado basal. Esta corresponde al átomo aislado en su interior d energía o estrado no excitado. La cantidad máxima de número de electrones en cada orbital es: 2 6 10 14 s = 2 (s ) p = 6 (p ) d = 10 (d ) f = 14 (f ) 15 QUÍMICA tecnología Texto guía para el ingreso a la facultad de ciencias y Para el desarrollo de la configuración electrónica de un elemento se utilizara el siguiente diagrama: Para el manejo de este diagrama se empieza con la primera fecha de la izquierda 1s, se pasa sucesivamente a las siguientes es decir: 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d 7p Números cuánticos Los números cuánticos desempeñan papeles importantes para describir los niveles de energía de los electrones y la forma de los orbítales que indica su distribución espacial del electrón. Existen cuatro números cuánticos: Número cuántico principal (n) Figura 2.2 regla de Hund para la escritura de la Permite determinar la energía y el tamaño del Configuración Electrónica orbital. Sus valores son n= 1, 2, etc. Para calcular el número de orbitales se utiliza la formula n2 2 Para el cálculo del número máximo de electrones se utiliza 2n Número cuántico subsidiario (o azimutal) (l) Indica los subniveles energéticos, indicando la forma de la región espacial que ocupa el electrón puede tomar valores integrales de cero hasta (n-1) l = 0, 1, 2,3….. 4(n-1) Por tanto el valor máximo de l es (n-1). El número cuántico subsidiario, indica el subnivel o un tipo especifico de orbital. Número cuántico magnético (m) Indica la orientación espacial del orbital atómico. En cada subnivel m puede tomar valores integrales desde –l hasta cero e incluyendo +l m= (-l),…...0,…..(+l) El valor máximo depende de l: El número cuántico de giro o del spin (s) Describe la orientación del orbital del campo magnético que este produce. Puede tomar valores de +1/2 y -1/2 para los valores de n, l y m. Problemas Resueltos 1. Indique si cada una de las siguientes afirmaciones es cierta o falsa. En caso de que sea falsa corríjala para que sea cierta. a) Según Dalton los átomos de un elemento dado son idénticos a los átomos de otros elementos relacionados. b) Según Dalton los átomos se pueden dividir en partículas más pequeñas durante algunos procesos de reacción química. c) La teoría atómica de Dalton fue aceptada de inmediato por los científicos a nivel mundial. Solución: (a) falso. Según Dalton los átomos de un elemento dado siempre son distintos a los átomos de cualquier otro elemento (b) Falso. Los átomos son indivisibles durante las reacciones químicas (c) Falso. La teoría de Dalton no fue aceptada de manera general durante muchos años. 2. ¿Qué quiere decir que los átomos de hidrogeno excitados siempre emiten radiación a las mismas longitudes de onda discretas, es decir, que solo se emiten ciertos tipos de fotones cuando un átomo de hidrogeno libera su exceso de energía? 16 Estructura de los átomos. Solución: Solo ciertos niveles de energía son permitidos para el electrón del átomo de hidrógeno. Estos corresponden a energías definidas y bien diferenciadas. Cuando un electrón se desplaza de un nivel permitido a otro emite un fotón de radiación característica. 3. La energía de un fotón que se emite corresponde a la diferencia de energía entre el estado excitado del átomo emisor y su estado. Solución: Estado de energía inferior (suele ser el estado basal) 4. ¿Por qué se sabe que los niveles de energía del átomo de hidrogeno no son continuos como sugirieron originalmente los físicos? Solución: El átomo de hidrógeno solo emite luz de determinadas longitudes de onda fijas. Si los niveles de energía del hidrógeno fuesen continuos el átomo de hidrógeno emitiría energía de todas las longitudes de onda. Problemas Propuestos 1. 2. 3. 4. 5. 6. 2.3 ¿Cuál fue la evidencia utilizada para llegar a la conclusión de que los rayos catódicos consisten de partículas con carga negativa? ¿Por qué el modelo nuclear de Rutherford del átomo es más consistente con los resultados del experimento de dispersión de partículas que el modelo del budín de pasas de Thompson? Describa las contribuciones a la teoría atómica hechos por los siguientes científicos: a) Dalton b) Thompson c) Millikan d) Rutherford Considerando las partículas que forman un átomo, ¿cuáles tienen la menor masa? c) Neutrón d) Electrón e) Rayos X a) Protón b) Partícula alfa Completar los espacios respectivos: a) los rayos alfa son........... con carga........... b) los rayos beta son............. con carga........... c) los rayos gamma son ........... con carga........... y fueron descubiertos por .................................... a) ¿A qué se llaman rayos canales? b) ¿Qué son los rayos X? Estructura Nuclear Como ya hemos visto el átomo esta conformado por electrones, protones y neutrones. Definiremos a Z como el número de electrones, y A como el numero de partículas del núcleo. Z=numero de electrones = numero de protones. Z corresponde al número atómico. A=numero de protones +numero de neutrones. A corresponde a la masa atómica. A – Z= numero de neutrones. 12 Ejemplo: este átomo tiene una masa atómica de 12, un numero atómico de 6,contiene: 6C 6 protones,6 electrones y 6 neutrones. Isotopos. Los isotopos son átomos de un mismo elemento, con las mismas propiedades, con el mismo numero atómico, pero de diferente masa atómica, esto se debe a que un isotopo ha ganado o perdido 1 o mas neutrones de su núcleo. 17 QUÍMICA tecnología Texto guía para el ingreso a la facultad de ciencias y Ej.- el carbono 14 es un isotopo del carbono 12 que utilizan los arqueólogos en la determinación del tiempo de vida de una muestra orgánica, ósea nos dice hace cuantos años atrás tuvo vida dicha muestra. Ej. Determinar el número de electrones, protones y neutrones en los dos isotopos. Solución. 14 6 Electrones. Protones. Neutrones 12 6 C 6 6 8 C 6 6 6 Iones. Los iones son partículas atómicas que por intercambio electrónico an perdido o ganado uno o más electrones. Ej. Determinar el numero de electrones, protones y neutrones del Ca y Ca+2 Solución. Ca+2 18 20 20 Ca 20 20 20 Electrones. Protones. neutrones. Problemas Resueltos 1. 1. 2. 3. El isótopo de sodio: 24 11Na se usa como trazador en los coágulos de sangre. Determinar cuántos: a) protones tiene en su núcleo. b) neutrones tiene el núcleo. c) electrones hay en el átomo de sodio–24 1+ d) electrones y protones hay en el ión Na Resp. a) 11, b) 13, c) 11, d) 10 y 11 Problemas propuestos ¿Cuál es el número de protones y electrones en: 1– a) un ión F b) una molécula de F2 c) una molécula de HCl d) una molécula de H2O Los nombres que se han dado a los isótopos del hidrógeno son deuterio y tritio, isótopos que tienen uno y dos neutrones respectivamente, en el interior del núcleo. Escribir el símbolo químico completo para el deuterio y el tritio. Llenar los espacios es el cuadro siguiente: Partícula protones neutrones electrones Carga neta 18 16 8O 185 3+ 75Re 16 16 2– 41 34 2– 78 117 74 Estructura de los átomos. 2.4 Espectros Atómicos y Ondas Problemas Resueltos: 1. La luz amarilla emitida por una lámpara de sodio tiene una longitud de onda de 589 nm ¿Cuál es la frecuencia de esta radiación? Solución: = 3 10 8 m/s 1 nm 14 = 5,02 10 1/s ó Hz 589 nm 10 -9 m 2. Un rayo láser, que se utiliza para soldar retinas desprendidas, produce una radiación con una –14 frecuencia de 4,69 10 Hz. ¿Cuál es la longitud de onda de esta radiación?. Solución: = 3 10 8 m s = 6,4 10 -7 m 14 s 4,69 10 Problemas Propuestos 1. 2. 3. Calcular la longitud de onda en metros de la radiación con las siguientes frecuencias: 15 –1 14 –1 12 –1 a) 4,80 10 s b) 1,18 10 s c) 5,44 10 s Calcular la frecuencia de radiación de las siguientes longitudes de onda: –9 a) 97 774 Å b) 492 nm c) 4,92 10 cm Determinar las frecuencias de la luz de las siguientes longitudes de onda: a) 1,0 Å b) 5000 Å c) 4,4 µm d) 89 m e) 562 nm 2.5 La Mecánica Cuántica: Cuantos, Fotones, Efecto Fotoeléctrico y Niveles de Energía del Átomo. Problemas resueltos 1. Calcular la energía que un objeto puede absorber de la luz amarilla cuya longitud de onda es 589 nm. Solución: 3 10 8 m/s 1 nm 14 -9 = 5,09 10 Hz 589 nm 10 m –34 14 1– –19 E = h = 6,626 10 J s 5,09 x 10 s = 3,37 10 J = 2. Un láser que emite energía luminosa en pulso de duración corta, tiene una frecuencia de 4,69 14 –2 10 Hz y emite 1,3 x 10 J de energía durante cada pulso. ¿Qué cuanto de energía emite en cada pulso? Solución: –34 Ecuanto = 6,626 10 14 –19 J s 4,69 10 s1– = 3,10 10 J 1 cuanto 1,3 10 -2 J = 4,18 1016 cuantos -19 3,10 10 J 3. El efecto fotoeléctrico consiste en la emisión de electrones de la superficie de un metal, cuando el metal es irradiado por la luz. Si la luz con una longitud de onda de 400 nm cae sobre 19 QUÍMICA tecnología Texto guía para el ingreso a la facultad de ciencias y –19 la superficie de potasio metálico, se liberan electrones con una energía cinética de 1,38 10 J. a) ¿Cuál es la energía de un fotón de 400 nm? –19 b) Si 1,38 10 J de energía del fotón incidente es transmitida al electrón liberado como energía cinética, ¿cuánta energía se requiere para liberar el electrón del metal? c) ¿Cuáles son la frecuencia mínima o de umbral y la correspondiente longitud de onda de la luz requerida para liberar un electrón del potasio? Solución: a) E foton = hc 6,626 10 -34 J. s 3 10 8 m/s 1 nm J -9 = 4,97 10 -19 = foton 400 nm foton 10 m b) Efotón = W + Ec –19 –19 –19 W = 4,97 10 J – 1,38 10 J = 3,59 10 J c) W = h o W 3,59 10 -19 J = = 5,41 1014 s 1 -34 h 6,626 10 J s c 3 10 8 m 10 9 nm = 555 nm o = = o 5,41 1014 s 1 s 1 m o = 4. Calcular la longitud de onda de la luz que corresponde a la transición del electrón del átomo de hidrógeno del estado n = 4 al n = 2. ¿El átomo emite o absorbe la luz? 1 1 ergios – = -4,09 10 -12 ergios 16 4 -27 6,626 10 ergios s 3,0 x 10 8 m 1 nm = -9 = 486 nm 4,09 10 -12 ergios s 10 m Solución: E = 21,79 10 -12 La luz es emitida por el átomo. 5. ¿Para cuál de las siguientes transiciones es absorbida la energía y para cuál es emitida? a) n = 1 a n = 4 b) n = 4 a n = 3 c) n = 2 a n = 3 d) n = 4 a n = 2 Solución: a) Se absorbe energía, ya que los electrones se mueven de un nivel de energía bajo a uno alto. b) Se emite energía, puesto que el electrón se mueve de un nivel de alta energía a otro de bajo energía. c) Se absorbe energía, debido a que los electrones realizan una transición de un nivel de baja energía a otro de alta energía. d) Se emite energía, ya que los electrones se mueven de un nivel de alta energía a otro de baja energía. Problemas Propuestos 1. 2. 3. 20 ¿Cuál es la frecuencia y energía por cuanto de: a) Luz roja con una longitud de onda de 700 nm? b) Luz violeta con una longitud de onda de 400 nm? –16 ¿Cuántos fotones hay en una señal de luz de 1,00 10 J con una longitud de onda de 500 nm? ¿Cuál es la longitud de onda de la línea espectral que corresponde a una transición electrónica del nivel n = 4 al nivel n = 1 en el átomo de hidrógeno? Estructura de los átomos. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. ¿Cuál es la longitud de onda de la línea espectral que corresponden a una transición electrónica del nivel n = 4 al nivel n = 3 en el átomo de hidrógeno? Calcular la longitud de onda en nm para la primera línea de la serie de Lyman de n = 2 a n = 1. –19 En una transición del átomo de litio, la diferencia de energía es de 3,25 10 J. Calcular la longitud de onda, en nm, de la luz emitida en este tránsito. 9 Calcular la longitud de onda de De Broglie de un electrón que viaja a 3,00 10 cm/s. ¿Cuál es la longitud de onda de De Broglie de una persona de 70,0 kg corriendo a la velocidad de 2,70 m/s? Calcular la longitud de onda de la línea de hidrógeno que corresponde a la transición del electrón del estado n = 4 al n = 1. 6 ¿Cuál es la longitud de onda característica de un electrón con una velocidad de 5,97 10 m/s? Enumerar los siguientes tipos de radiación electromagnética en orden decreciente de longitud de onda: a) La radiación de un horno de microondas. b) La luz roja emitida por el quemador de un horno eléctrico caliente. c) La radiación infrarroja emitida por el quemador de un horno eléctrico caliente. d) La luz ultravioleta de una lámpara solar. e) La radiación cósmica proveniente del espacio exterior. 14 a) ¿Cuál es la longitud de onda de la radiación cuya frecuencia es 4,62 10 Hz? b) ¿Cuál es la frecuencia de la radiación cuya longitud de onda es 180 nm? Una luz de neón emite radiación de 616 nm de longitud de onda. ¿Cuál es la frecuencia de esta radiación?. ¿Se emite o se absorbe energía cuando se efectúan las transiciones electrónica siguiente en el átomo de hidrógeno? a) de n =3 a n = 6 b) de n = 5 a n = 2 a) Determinar la longitud de onda de una pelota de tenis de 58 g que viaja a 130 millas/hora. b) Determinar la longitud de onda de una persona de 85 kg esquiando a 60 km/h. 2.6 Números Cuánticos, Orbitales Atómicos, Configuraciones Electrónicas y electrones de valencia Problemas Resueltos 1. De la siguiente serie de números cuánticos indicar los que no son posibles, y de sus razones: a) 2, 1, 1, +1/2 b) 3, 2, 1, +1/2 c) 4, 0, 2, + 1/2 d) 3, 2, 0, –1/2 e) 1, 0, 0, 1 Solución: La serie de números cuánticos que no son posibles son c) y e) La serie 4, 0, 2, + 1/2 no puede ser posible debido a que el subnivel s cuyo valor numérico es 0, no puede tener un número cuántico magnético de 2. La serie 1, 0, 0, 1 no es posible debido a que el electrón tiene un espín de ± 1/2 2. Cuáles son los posibles valores de m para: a) l = 0 b) l = 3 c) n = 3 Solución: a) Si l = 0 los valores permitidos para m es únicamente 0 b) Si l = 3, los valores permitidos para m son iguales a: +3, +2, +1, 0, –1, –2, –3 c) Si n = 3, l tendrá 3 subniveles, s, p y d, los valores permitidos para m son: 0; +1, 0, –1 y +2, +1, 0, –1, –2. 3. Cuando l = 2 a) ¿Con qué letra se designa el subnivel? b) ¿Cuál es el valor mínimo de n? c) ¿Cuál es el número máximo de electrones en este subnivel? Solución: 21 QUÍMICA tecnología Texto guía para el ingreso a la facultad de ciencias y a) La letra que designa al nivel l = 2 es d. b) El valor mínimo de n es 3. c) El número máximo de electrones en este subnivel es 10. 4. Cuántos orbitales hay en: a) El nivel principal n = 4 b) un subnivel 3d c) un subnivel f Soluciones: 2 a) El número de orbitales es igual a n de donde hay 16 orbitales. b) El número de orbitales es igual a 2l +1 entonces (2 x 2 + 1) es 5. c) El número de orbitales es igual a 7. 5. a) ¿Cuántos electrones caben en el nivel principal en que n = 2? b) ¿Cuál es la capacidad electrónica del subnivel 3d? Solución: 2 a) Como este nivel tiene n orbitales y en cada orbital no puede haber más de dos electrones entonces habrá 8 electrones. b) La capacidad del orbital d es de 10 electrones. 6. ¿Cuál es la capacidad electrónica total del cuarto nivel principal de energía? Solución: El número de orbitales del nivel donde n = 4 es 16 y como cada orbital no puede contener más de dos electrones se tiene un total de 32 electrones 7. Escriba las configuraciones espectrales del estado fundamental de los siguientes átomos: a) Sr b) Sn c) Ni Solución: 2 2 6 2 6 2 10 6 2 a) Sr: 1s 2s 2p 3s 3p 4s 3d 4p 5s 2 2 6 2 6 2 10 6 2 10 2 b) Sn: 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 2 2 6 2 6 2 8 c) Ni: 1s 2s 2p 3s 3p 4s 3d ¿Cuál de las siguientes configuraciones son de átomos en estado fundamental y cuáles de átomos en estado excitado? ¿Cuáles son imposibles? 2 2 2 2 1 2 8 1 a) 1s 2s b) 1s 2s 3p c) [Ne] 3s 3p 4s 2 6 2 2 3 2 5 1 d) [He] 2s 2p 2d e) [Ar] 4s 3d f) [Ne] 3s 3p 4s Solución: a) Estado fundamental. b) Estado excitado, puesto que el electrón 2p ha sido promovido al orbital 3p. c) Imposible puesto que el orbital p solo puede contener 6 electrones. d) Imposible, puesto que en el nivel con n = 2 no pueden caber más de 8 electrones y no existe el orbital 2d. e) Estado fundamental de un elemento de transición. f) Excitado, puesto que el electrón 3p ha sido promovido al orbital 4s 8. 9. Asignar los cuatro números cuánticos a: a) Los electrones 3s del Mg b) El electrón 4s del K c) Todos los electrones 3d del Ni d) Todos los electrones 3p del Cl Solución: 2 a) Mg: [ Ne] 3s . Los cuatro números cuánticos para el electrón 11 y 12 son: n l m s m 3 0 0 +1/2 3 0 0 –1/2 b) K: [Ar]4s. Los cuatro números cuánticos para el electrón 19 son: 22 Estructura de los átomos. 8 n l m s 4 0 0 +1/2 m 2 c) Ni: [Ar] 3d 4s . Los cuatro números cuánticos para los electrones 3d son: l n m s -2 2 3 2 -2 +1/2 3 2 -1 +1/2 3 2 0 +1/2 3 2 +1 +1/2 3 2 +2 +1/2 3 2 -2 -1/2 3 2 -1 -1/2 3 2 0 -1/2 -1 m 0 +1 +2 5 d) Cl : [Ne] 3s 3p . Los cuatro números cuánticos para los electrones 3p son: n l m s -1 3 1 -1 +1/2 3 1 0 +1/2 3 1 +1 +1/2 3 1 -1 - 3 1 0 - m 0 +1 Problemas Propuestos: 1. a) ¿Cuál, es la designación para el nivel n = 5 y subnivel l = 1? b) ¿Cuántos orbitales hay en este subnivel? c) Indicar los valores para el número cuántico magnético para cada uno de estos orbitales. 23 QUÍMICA tecnología 2. Texto guía para el ingreso a la facultad de ciencias y Teniendo los valores de los números cuánticos del último electrón identificar el elemento correspondiente: n 5 4 6 6 3. 4. 5. l 3 2 1 2 m –1 0 +1 –2 s +1/2 –1/2 –1/2 –1/2 a) ¿Cuál es la configuración electrónica de la capa externa de los elementos del grupo 17 de la Tabla Periódica de los Elementos? 2 b) ¿Qué grupo de los elementos se caracteriza por tener una configuración electrónica ns ? c) Escribir la configuración electrónica del bismuto. Usar la Tabla Periódica para escribir la configuración electrónica de los siguientes átomos: a) N b) Te c) Br Indicando la configuración abreviada, y los electrones de valencia. Dar los valores de los números cuánticos del último electrón de los elementos siguientes: 2– 2+ a) Cr b) La c) Sn d) S e) Ba f) Eu 2.7 Problemas Adicionales 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 24 El núcleo de un átomo también puede contener , que son neutros. Aunque el núcleo de un átomo es muy importante, es eldel átomo lo que determina sus propiedades químicas. Diga si es cierto o falso que el número de masas de un núcleo representa el número de protones en el núcleo. El número derepresenta la suma del número de protones y neutrones en el núcleo. ¿Qué partículas subatómicas contribuyen en su mayor parte a la masa del átomo? ¿Qué partículas subatómicas determinan las propiedades químicas en el átomo? ¿Qué le ocurre a una molécula cuando absorbe radiación? Un átomo libera su exceso de energía emitiendo de radiación electromagnética. La velocidad a que la radiación electromagnética se desplaza a través del vacío es . Los niveles de energía del hidrogeno (y otros átomos) están lo que significa que solo están permitidos ciertos valores de energía. En teoría atómica moderna un representa una región del espacio en la cual hay mayor probabilidad de encontrar un electrón. Solo dos electrones pueden ocupar un orbital determinado dentro de un átomo y para estar en el mismo orbital es preciso que tengan opuestos. El radio aproximado de un átomo de hidrógeno en 0,0529 nm, y el de un protón, 1,5 10–15 m. Suponiendo que el átomo de hidrógeno y el protón son ambos esféricos, calcular la fracción de 3 espacio en un átomo de hidrógeno que ocupa el núcleo. V= (4/3)πr para una esfera. Suponer que el interior del ojo humano necesita 10–17 J de energía luminosa para « ver» un objeto. ¿Cuántos fotones de luz verde (longitud de onda = 495 nm) se necesitan para generar esta energía mínima? El agua absorbe radiación de microondas de longitud de onda de 3 mm. ¿Cuántos fotones se necesitan para elevar la temperatura de una taza de agua (250 g) de 25°C a 75°C en un horno de microondas usando esta radiación? El calor específico del agua es 4,184 J/g °C. Un láser de argón emite luz azul de una longitud de onda de 488,0 nm. Cuántos fotones se emiten por este láser en 2,00 segundos, operando a una potencia de 515 miliwatios? Un vatio (una unidad de potencial) es igual a 1 julio/segundo. La luz verde tiene una longitud de onda de 5,0 102 nm. ¿Cuál es la energía en joules de un fotón de luz verde? ¿Qué energía en joules tiene 1,0 mol de fotones de luz verde? Estructura de los átomos. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. Calcule la longitud de onda y la frecuencia de la luz que se emite cuando un electrón cambia de n = 3 a n = 1 en el átomo de H. ¿En que región del espectro se encuentra esta radiación? ¿Qué forma general tienen los orbitales 2p? ¿En qué se parecen los orbitales 2p individuales y en qué difieren? ¿Cuáles de las siguientes designaciones de los orbitales no son correctas? d) 2p e) 5f f) 6s a) 1p b) 3d c) 3f ¿Por qué los dos electrones del subnivel 2p del carbono ocupan orbitales 2p distintos? Cuantos electrones de valencia tiene cada uno de los siguientes átomos? a) nitrógeno Z = 7 b) cloro Z = 17 c) sodio Z = 11 d) aluminio Z = 13 Indique qué conjunto de electrones de orbitales se llena en último término en cada uno de los siguientes elementos. a) cromo Z = 24 b) plata Z = 47 c) uranio Z = 92 d) germanio Z = 32 1 Escriba la configuración general de valencia (por ejemplo, ns para el grupo 1) para el grupo en el cual se encuentra cada uno de los elementos siguientes. a) bario Z = 56 b) bromo Z = 35 c) telurio Z = 52 d) potasio Z = 19 e) azufre Z = 16 La estación de radio de música clásica KMFA de Santa Cruz emite a una frecuencia de 89,5 MHz ¿Cuál es la longitud de onda de su señal en metros? Números cuánticos: a) ¿Cuáles son los valores posibles de l cuando n = 4? b) Cuando l = 2, (cuales son los valores posibles de m? c) Para un orbital 4s, ¿cuáles son los valores posibles de n l y m? d) Para un orbital 4f, ¿cuáles son los valores posibles de n, l y m? En cierto estado excitado posible, el átomo de H tiene su electrón en un orbital 4p. Mencione todos los conjuntos posibles de números cuánticos n, l y m para este electrón. Explique brevemente por qué cada uno de los siguientes no constituye un conjunto posible de números cuánticos para un electrón de un átomo. a) n = 2, l = 2, m, = 0 b) n = 3, l = 0, m, = – 2 c) n = 6, l = 0, m, = 1 ¿Cuál es el número máximo de orbitales que pueden identificarse mediante cada uno de los siguientes conjuntos de números cuánticos? En caso de que su respuesta sea "ninguno", explique el por qué. a) n = 3, l = 0, m = + 1 b) n = 5, l = 1 c) n = 7, l = 5 d) n = 4, l = 2, m = – 2 2.8 Autoevaluación: Preguntas Tipo Examen de Ingreso 1. ¿Cuál de los siguientes elementos contiene el mayor número de neutrones? A) 112Cd B) 112In C) 112Ag D) 114Ag E) Ninguno 2. Un núcleo de 56Co contiene: A) 27 protones, 29 neutrones y 27 electrones B) 29 protones, 27 neutrones y 29 electrones C) 29 protones, 27 neutrones D) 27 protones, 29 neutrones E) Ninguno 25 QUÍMICA tecnología Texto guía para el ingreso a la facultad de ciencias y 3. Un isótopo específico tiene un número atómico de 18 y un número de masa de 35. ¿Cuántos electrones hay en el átomo neutro? A) 8 B) 17 C) 18 D) 35 E) Ninguno 4. ¿Cuál de los siguientes iones tiene 16 protones y 18 electrones? A) S2+ B) Ar2– C) Cl1– D) K1+ E) Ninguno 52 3+ La especie Cr contiene: A) 24 protones, 24 neutrones y 24 electrones B) 24 protones, 28 neutrones y 24 electrones C) 52 protones, 52 neutrones y 49 electrones D) 24 protones, 28 neutrones y 21 electrones E) Ninguno Si un elemento tiene varios isótopos, todos éstos tienen: A) La misma masa atómica. B) El mismo número de p. C) El mismo número de n. D) El mismo número de p y n. E) Ninguno 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 26 El núcleo del átomo de 238U contiene: A) 92 electrones y 92 protones B) 92 electrones y 238 protones C) 146 neutrones y 92 protones D) 146 electrones y 92 protones E) Ninguno En experimentos con el tubo de rayos catódicos se ha demostrado: A) Que todos los núcleos contiene protones. B) Que todas las formas de la materia contienen electrones. C) Que todos los rayos positivos eran realmente protones. D) Que todas las partículas alfa eran más pesadas que los protones. E) Ninguno El número de orbitales en un subnivel d es: A) 1 B) 3 C) 5 D) 7 E) Ninguno En un átomo de cobalto en su estado basal el número total de niveles ocupados por uno o más electrones es: A) 1 B) 2 C) 3 D) 4 E) Ninguno Considerar el átomo de cobalto en su estado basal, el número total de orbitales ocupados por uno o más electrones es: A) 15 B) 12 C) 9 D) 6 E) Ninguno En un átomo de cobalto en su estado basal, el número total de subniveles ocupados por uno o más electrones es: A) 9 B) 7 C) 5 D) 4 E) Ninguno Las líneas de los espectros atómicos proporcionan una medida directa de: A) El número de protones en el núcleo B) La energía absoluta de un nivel de energía electrónico C) El número de electrones de un átomo D) La diferencia de energía entre dos niveles de energía E) Ninguno Si un átomo de fósforo ganará tres electrones adicionales, la partícula resultante tendría: A) Cargas negativas y sería isoelectrónica con el argón B) Cargas negativas y serían isoelectrónica con el neón C) Cargas positivas y sería isoelectrónica con el argón D) Cargas positivas y sería isoelectrónica con el magnesio E) Ninguno Estructura de los átomos. 15. 16. 17. 18. 19. 20. El número máximo de electrones que pueden estar ordenados en un subnivel para el cual l = 3 es: A) 2 B) 10 C) 6 D) 14 E) Ninguno ¿Cuál de los subniveles siguientes tiene espacio para 10 electrones? A) 5s B) 4p C) 2p D) 3d E) Ninguno Un electrón con el siguiente conjunto de números cuánticos n = 4, l = 2, m = 0, s = 1/2, estaría clasificado como un: A) Electrón 3d B) Electrón 4d C) Electrón 3p D) Electrón 4p E) Ninguno Todos los electrones de un subnivel d deben tener un número cuántico de: A) n = 3 B) m = 2 C) l = 2 D) n = 4 E) Ninguno El átomo más ligero con un subnivel 3d lleno en el estado basal es: A) Zn B) Ga C) Kr D) Cu E) Ninguno El número total de electrones p en el estado basal de un átomo de galio es: A) 6 B) 3 C) 13 D) 1 E) Ninguno 27 Unidad 3 Enlace Químico 3.1 Introducción El enlace químico se define como la fuerza de atracción electrostática que hay entre átomos, compuestos o moléculas. Por ejemplo, cuando un átomo se acerca a otro, los electrones del orbital de valencia, interaccionan primero antes que los núcleos puedan acercarse. 3.2 Electronegatividad Se define, como el poder que tiene un átomo de atraer electrones hacia él. La electronegatividad en la tabla periódica aumenta de: Izquierda a derecha y de abajo hacia arriba, sin contar los gases nobles. figura 3.1 Dirección en el aumento de electronegatividad en la tabla periódica Electronegatividad nos permite diferenciar los tipos de enlaces que pueden existir en un compuesto. 3.3 Símbolos de Lewis y la Regla del Octeto Los elementos cercanos a los gases nobles tienden a ganar, perder o compartir electrones para adquirir la configuración de ocho electrones de valencia de los gases nobles. Esto se conoce como la regla del octeto que fue enunciada por el químico estadounidense Gilbert N. Lewis. El helio es el único que tiene una configuración de dos electrones de valencia. Los elementos cercanos al helio tienden a adquirir una configuración de valencia de dos: el hidrógeno ganando un electrón, el litio perdiéndolo, y el berilio perdiendo dos electrones. Ej.: la estructura de Lewis para el cloruro de hidrogeno (también conocido como acido clorhídrico) Las estructuras de N2 y CO2 se pueden expresar ahora como: Estas estructuras de Lewis muestran la configuración de ocho electrones de valencia de los gases nobles para cada átomo. Probablemente el 80% de los compuestos covalentes pueden ser representados razonablemente por las estructuras electrónicas de Lewis. El resto, en especial aquellos que contienen elementos de la parte central de la tabla periódica, no puede ser descrito normalmente en términos de estructuras de gases nobles. 27 QUÍMICA tecnología Texto guía para el ingreso a la facultad de ciencias y Excepciones a la regla del octeto Ej.: moléculas que tienen más de 8 electrones: el P en el PCl5 (tiene 10 electrones) el S en el SF6 que forma 6 enlaces (12 electrones). Moléculas que tienen menos de 8 electrones: Berilio y el Boro que tienen 4 y 6 electrones alrededor, respectivamente. El nitrógeno en el NO2, que tiene 7 electrones alrededor del Nitrógeno Problemas Resueltos 1. ¿Cuál es el símbolo de Lewis para el arsénico, As? Solución: . . . . As . . As As : . . . . . . . As As . . Problemas Propuestos 1. 2. 3. Escribir el símbolo de Lewis para cada uno de los siguientes elementos: a) Fósforo b) Galio c) Silicio d) Helio ¿Cuál es el símbolo de Lewis para cada uno de los siguientes átomos o iones? 3– 2+ d) Ba a) S b) I c) P ¿Cuál de los siguientes átomos no se encuentra nunca con más de un octeto de electrones a su alrededor: S, C, P, Br? 3.4 Tipos de Enlace: Iónico y Covalente Tipos de enlace Polar Covalente Enlace Apolar (no polar) Iónico E > 1,5 Enlace iónico. 0,7 < E < 1,5 Enlace covalente polar E < 0,7 Enlace covalente no polar o apolar Donde: E = Diferencia de electronegatividad E = E2 -E1 (valor absoluto) La diferencia de electronegatividades entre dos átomos que forman un enlace (E) se calcula a partir de los datos mostrados en una tabla periódica, estos son relativos y solo nos sirve para calificar al tipo de enlace formado entre estos dos átomos. 28 Enlace químico. Enlace covalente En un enlace covalente, los dos átomos enlazados comparten electrones. Ej.: CH4, H2O Enlace covalente apolar Si los átomos enlazados son no metales e idénticos (como en N2 o el O2), los electrones son compartidos por igual por los dos átomos, Figura 3.2 Enlace covalente apolar y el enlace se llama covalente apolar. Enlace covalente polar Si los átomos son no metales pero distintos (como en el óxido nítrico, NO), los electrones son compartidos en forma desigual y el enlace se llama covalente polar. Polar, porque la molécula tiene un polo eléctrico positivo y otro negativo. Enlace iónico Cuando una molécula contiene átomos de metales y no metales, los electrones son atraídos con más fuerza por los no metales, que se transforman en iones con carga negativa; los metales, a su vez, se convierten en iones con carga positiva. Entonces, los iones de diferente signo se atraen electrostáticamente, Figura 3.3 enlace iónico (se puede notar que el que cede el electrón es el menos formando enlaces iónicos. electronegativo. Na.) Las sustancias iónicas conducen la electricidad cuando están en estado líquido o en disoluciones acuosas, pero no en estado cristalino, porque los iones individuales son demasiado grandes para moverse libremente a través del cristal. Ej.: Sal común NaCl 29 QUÍMICA tecnología Texto guía para el ingreso a la facultad de ciencias y Problemas Resueltos 1. Diagramar las reacciones entre los átomos de: a) Cl y Ca b) Na y O c) Al y O Solución: (a) (b) (c) : Cl . + . . Ca + . Cl: 1- 1+ Na . + . O . + . Na > Na 1- : Cl: Ca 2- : O: >Ca Cl2 1+ Na > Na O 2 2- . . O. . Al . . 2+ > : Cl : d) Cl y O 3+ : O: Al 2- + . O. : O: > >Al 2 O3 3+ . Al . Al 2- : O: . O. 2. Usando la regla del octeto predecir la fórmula del compuesto formado a partir del hidrógeno y azufre. Solución: H 1s 1 H. H H H: S : 1s S [Ne] 3s 2 3p 4 . 3s Configuración electrónica o H . S: S 3p Diagrama del orbital Símbolos de Lewis H S: enlace químico Problemas Propuestos 1. Utilizar la diferencia de electronegatividad para establecer cuales de las siguientes sustancias son iónicas o covalentes: a) NaH b) MgH2 c) AlH3 d) SiH4 e) PH3 f) H2S g) HCl 2. ¿Cuántos átomos de hidrógeno se deben enlazar con el selenio para que este átomo tenga un octeto de electrones en la capa de valencia? Utilizar los símbolos de Lewis para indicar la reacción que se efectúa entre: a) Na e H b) Al y F Predecir la fórmula química del compuesto iónico que se forma entre los pares de los elementos siguientes: 3. 4. 30 Enlace químico. a) Ca y Cl 3.5 c) Sr y S b) Ca y O d) Mg y N Estructuras de Lewis y Números de Oxidación Números de oxidación Se define como el número de electrones que un elemento utiliza para formar un enlace químico con otro elemento de diferente y/o igual electronegatividad. El elemento más electronegativo tendrá número de oxidación negativo, mientras que el menos electronegativo tendrá positivo su número de oxidación. Para ello: 1º Se identifica el más electronegativo. 2º Contar sus electrones, incluyendo los pares de electrones que pertenecen al enlace, cuando los átomos son diferentes; si son iguales se cuenta el electrón compartido y no el par. Para el elemento menos electronegativo contar solo los electrones no enlazados. La diferencia entre los electrones de valencia que el elemento tiene y los electrones del enlace determinan su número de oxidación. Problemas Resueltos 1. Escribir las estructuras de Lewis para las siguientes especies químicas: 2– 2– d) SO3 e) NO2 a) [SO4] b) [CO3] c) HClO3 Solución: 2- : O: :O S >O: .. :..O : O: a) C .. :O 2- : O: .. ..O: .. :..O : Cl H .. ..O: c) b) : O: . d) .. :..O S .. ..O: e) .. :..O Escribir la estructura de Lewis de: a) CHCl3 b) PCl3 Solución: N ..O: 2. .. :..Cl : ..Cl: H .. : Cl : C :P :..Cl: : ..Cl : c) [NH4]1+ : ..Cl: 31 QUÍMICA tecnología Texto guía para el ingreso a la facultad de ciencias y 3. Determinar los números de oxidación de las siguientes sustancias: 2– a) [CO3] b) NO2 c) SO3 d) H2O2 Solución: a) 2- :O O: C : O: C = 4 – 0 = 4+ por ser el menos electronegativo tiene signo positivo O = 6 – 8 = 2– por ser el más electronegativo tiene signo negativo b) . N :O N = 5 – 1 = 4+ O = 6 – 8 = 2– O: por ser el menos electronegativo tiene signo positivo por ser el más electronegativo tiene signo negativo c) :O O: S : O: S = 6 –0 = 6+ 0 = 6– 8 = 2– con signo positivo, tiene menor electronegatividad con signo negativo, mayor electronegatividad d) H O O H H = 1 – 0 = 1+ O = 6 – 7 = 1– menor electronegatividad mayor electronegatividad : O: e) H S O : S = 6 – 0 = 6+ H = 1 – 0 = 1+ O = 6 – 8 = 2– 32 O : H O menor electronegatividad respecto al oxígeno menor electronegatividad respecto al oxígeno mayor electronegatividad e) H2SO4 Enlace químico. Problemas Propuestos 1. Representar las estructuras de Lewis para las siguientes moléculas: 1– a) PCl3 b) HCN c) [ClO3] 2. ¿Cuál es el número de oxidación del elemento subrayado en cada uno de los siguientes compuestos?: 2– a) P2O5 B) NaH d) SnBr4 c) [Cr2O7] e) BaO2 Dibujar las estructuras de Lewis para: 1– a) SiH4 b) [ClO2] c) HBrO3 d) CO e) TeCl2 Escribir las estructuras de Lewis para: 1– a) H2O2 b) [CN] c) HOCl Dibujar las estructuras de Lewis para cada uno de los siguientes compuestos. Identificar los que no obedecen la regla del octeto y explicar por qué no lo hacen: a) NO2 b) GeF4 c) BCl3 d) XeF4 Dibujar las estructuras de Lewis para cada uno de los siguientes iones: 1– 2– 1– a) [SO3] b) [I3] c) [O2] 3. 4. 5. 6. 3.6 Polaridad del Enlace Covalente, Resonancia Problemas Resueltos 1. Usando la electronegatividad dados en la tabla periódica, colocar los siguientes enlaces en orden decreciente de su polaridad: N – F; N – N; N– O; N – S Solución: ∆ (N – F) = 3,1 - 4,1 = 1,0 ∆ (N – N) = 3,1 – 3,1 = 0 ∆ ( N – O ) = 3,1 - 3,5 = 0,4 ∆ ( N – S ) = 3,1 – 2,4 = 0,7 Entonces: N – F > N – S > N – O > N – N 2. ¿Cuál de los enlaces siguientes es menos polar? Si – P, Si – As o P – Ge Solución: ∆ (Si – P) = 1,7 – 2,1 = 1,6 ∆ (Si – As) = 1,7 – 2,2 = 0,5 ∆ (P – Ge) = 2,1 – 2,0 = 0,1 El enlace menos polar es el P – Ge 3. ¿Sobre qué átomo se localiza la carga parcial positiva en los siguientes enlaces polares? a) N – O b) F – Br c) H – O d) N – C Solución: N 4. O F Br H O N C ¿Hacía qué átomo se desplazan los electrones en los siguientes enlaces? a) C – Cl b) O – S c) H – F d) Cl – I Solución: a) Hacía el átomo de cloro puesto que este átomo es mas electronegativo carbono. b) Hacía el átomo de oxígeno que es más electronegativo que el azufre. c) Hacía el átomo de flúor que es más electronegativo que el hidrógeno. que el 33 QUÍMICA tecnología Texto guía para el ingreso a la facultad de ciencias y d) Hacía el átomo de cloro que es más electronegativo que el yodo. Problemas Propuestos 1. ¿Cuál de los siguientes enlaces es más polar: a) B – Cl o C – Cl? b) P – F o P – Cl? Indicar en cada caso cuál átomo tiene la carga negativa parcial. ¿Cuál de los siguientes enlaces es más polar? a) S – Cl o S – Br b) Se – Cl o Se – Br Dibujar las estructuras de resonancia para cada una de las siguientes especies químicas: a) SO3 b) HNO3 Dibujar las formas o híbridos de resonancia de las siguientes sustancias: a) [NO2]1– b) [CO3]2– c) [SCN]1– 2. 3. 4. 3.7 Formas Moleculares y Fuerzas Intermoleculares Problemas Resueltos 1. Dibujar las estructuras de Lewis y deducir la geometría de: a) HOCl Solución: H b) C2HCl .. .. ..O ..Cl : H Angular C c) [OCN] C .. ..Cl: 1– .. :O d) [HCO2] .. H C N: C .. ..O: : O: lineal lineal 1– triangular o plana 2. Dibujar las estructuras de Lewis y describir la geometría de: 1– a) SiF4 b) Cl2CO c) [BrO3] d) NI3 Solución: .. : F: .. : ..F Si .. ..F : :..F : Tetrahédrica 3. .. : ..Cl C .. ..Cl : .. :..O .. Br .. 1- .. ..O: :..I .. N : O: :..O: :..I : plana piramidal piramidal Describir la geometría de una molécula en la que el átomo central tenga: a) Cinco enlaces b) Cuatro enlaces y un par no compartido c) Tres enlaces y dos pares no compartidos Solución: a) Bipirámide trigonal; b) Tetraedro distorsionado; c) En forma de T 4. Ordenar las siguientes sustancias por orden creciente de su punto de ebullición 34 .. ..I : Enlace químico. c) Ne a) Ar b) He Solución: He < Ne < Ar < Xe d) Xe 5. Considerar los compuestos: a) PCl5 b) SeCl4 c) SF5Cl ¿Cuántos pares de electrones rodean al átomo central en cada caso? Solución: Cl F .. Cl Cl P Cl Cl Cl S F Cl Cl F Cl Se F Cl F de electrones a) 5 pares de electrones b) 5 pares de electrones c) 6 pares 6. ¿Cuales de las siguientes moléculas podrán tener fuerzas dipolares? a) CO b) CO2 c) F2 c) H2S Solución: El CO y H2S por la diferencia de electronegatividad y la forma de la molécula es: C O .. ..S H H ¿Cuál de las siguientes moléculas presenta enlace de hidrógeno? a) CH3F b) CH3 – OH c) CH3– O – CH3 d) NH3 Solución: Forman enlace puente de hidrógeno el F, N y O cuando el hidrógeno está enlazado directamente con ellos. a) No presenta enlace de hidrógeno debido a que los átomos de hidrogeno están enlazados al carbono. b) Forman enlace de hidrógeno, el átomo de hidrógeno está enlazado al oxígeno. c) No forma enlace de hidrógeno. d) Forma enlace de hidrógeno, el átomo de hidrógeno está enlazado al nitrógeno. 7. 8. ¿En cuál de los siguientes procesos es necesario romper enlaces covalentes o simplemente para vencer las fuerzas intermoleculares existentes? a) Disolviendo yodo I2 en agua. b) Hirviendo agua. d) Descomponiendo N2O4 en NO2. c) Sublimando hielo seco, CO2. e) Electrólisis del agua. Soluciones: a) Al disolver el yodo en el agua simplemente se vence las fuerzas intermoleculares debido a que no esta ocurriendo reacciones químicas. b) Para hervir el agua se deben vencer las fuerzas intermoleculares, puesto que el agua no cambia de identidad. c) Cuando se sublima el hielo seco se tiene que vencer las débiles fuerzas intermoleculares. d) En la descomposición del N2O4 a NO2 se tiene que romper enlaces covalentes. e) En la electrólisis del agua se tiene que romper los enlaces covalentes 9. Clasificar las siguientes sustancias como iónicas, moleculares, de red covalente a 25 °C y 1 atm: a) PCl3 b) MgO c) cuarzo, SiO2 d) CO2 35 QUÍMICA tecnología Texto guía para el ingreso a la facultad de ciencias y Solución: a) El PCl3 es una sustancia molecular formada por enlaces covalentes. b) El MgO es una sustancia iónica. c) El cuarzo es una molécula gigante formada por una red covalente. d) Es una sustancia molecular. Problemas Propuestos 1. 2. 3. Predecir la geometría para: 2– a) H2S b) [CO3] Predecir si las moléculas que siguen son polares o no polares: a) BrCl b) SO2 c) SF6 ¿Son polares o no polares las siguientes moléculas? a) NF3 b) BCl3 3.6 Problemas Adicionales 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Definir y explicar concretamente los siguientes conceptos: a) Electronegatividad b) Enlace covalente c) Enlace de Puente de Hidrógeno d) Enlace Iónico Clasificar los siguientes enlaces como iónicos, covalente polar o no polar: a) HCl b) KF c) el enlace C–C en CH3–CH3 Dibujar las estructuras de Lewis para el: a) AlI3 b) PF5 El berilio forma con el cloro un compuesto de fórmula empírica BeCl2. ¿Cómo podría usted determinar si el compuesto es iónico o no? (El compuesto no se disuelven en agua) Predecir si los compuestos formados por cada uno de los siguientes pares de elementos serán iónicos o covalentes. Escriba la fórmula para cada uno de estos compuestos. a) I y Cl b) K y Br c) Mg y F d) Al y F Escribir las estructuras de Lewis para las siguientes moléculas: a) ICl b) PH3 c) CS2 d) P4 e) H2S f) N2H4 g) HClO3 h) COBr2 Trazar las estructuras de Lewis para: a) NCl3 c) H3PO4 e) H2S b) H2CO3 d) C2H6 f) CS2 Localizar los enlaces covalentes coordinados en las moléculas. De los enlaces Al-Cl, Cl-Cl, H-Cl y K-Cl ¿Cuál es no polar?, ¿Cuál es iónico? Ordene los enlaces por polaridad creciente? A) H-Cl < Cl-Cl < Al-Cl < K-Cl B) Cl-Cl < H-Cl < Al-Cl < K-Cl C) Al-Cl < H-Cl < Cl-Cl < K-Cl D) K-Cl < H-Cl < Al-Cl < Cl-Cl E) Ninguno 2- El número de pares de electrones libres en el átomo central del ión SO3 es: A) 0 B) 1 C) 2 D) 3 Determine cuál de las siguientes moléculas es polar: A) SO2 B) BF3 C) CO2 D) CCl4 E) Ninguno E) Ninguno 11. Ordenar en forma creciente de su polaridad los siguientes pares de enlaces. A) Al – O B) C – O C) P – O D) Na – O E) K – O 12. Escriba estructuras de Lewis para las siguientes especies, e indique la molécula que tiene dos dobles enlaces. 22A) H2C2O4 B) [HPO4] C) CH3 D) S2O3 E) Ninguno 36 Enlace químico. 13. Considere el ion poliatómico IO65-. Escriba la estructura de Lewis e indique: ¿cuántos pares de electrones hay alrededor del átomo central de yodo?. A) 4 B) 5 C) 6 D) 7 E) Ninguno 14. Determinar los números de oxidación de cada uno de los átomos de las siguientes especies: A) [CO3]2B) NO2 C)SO3 D)H2O2 E) H2SO3 37 Unidad 4 Átomos y Moléculas, Fundamentos de Estequiometría 4.1 Masa Atómica, Composición, Abundancia Isotópica y Masa Molecular Átomo.- Los átomos son las partículas más pequeñas de la materia. Ej.: O, N, S, P, Fe. El peso de un átomo es del orden de 10-22g. Los átomos están formadas por partículas aun más pequeñas, siendo los más principales: protón, neutrón y electrón, partículas que se diferencian entre sí por su tamaño y su carga eléctrica. - -28 Electrón (e ).- Partícula de carga negativa (-1) y tiene una masa de 9.10 x 10 g Protón (p+).- Partícula de carga positiva (+1) y tiene una masa de 1.6725 x 10-24g. Neutrón (n0).- Partícula de carga neutra y tiene una masa de 1.6748 x 10-24g. Molécula.- Es la partícula mínima de un compuesto y que todavía conserva sus propiedades físicas y químicas. Una molécula se forma de la unión de 2 o más átomos. Ej.: O2, H3PO4, H2O, etc. Masa o peso atómico absoluto.- Es la masa real, del átomo de un elemento tomada en condiciones normales de presión y temperatura (CNPT) y resulta ser tan pequeña que no se utiliza para los cálculos químicos. Así por ej.: el peso atómico absoluto del hidrógeno es 1,673 x 10-23g. Masa o peso atómico relativo.- es la masa del átomo de un elemento, comparado con la masa de otro elemento tomado como patrón. Actualmente se toma como patrón a la 1/12 parte del átomo del carbono 12. Conocido como uma (unidad de masa atómica). Molécula-gramo.- (masa molecular), es la sumatoria de pesos atómicos de los átomos presentes en una molécula. Ej.: El peso molecular (masa molecular) del ácido sulfúrico (H2SO4) se calcula de la siguiente forma: MASA ATÓMICA H S O 1 32 16 ÁTOMOS PRESENTES EN LA MA * #ÁTOMOS EN LA MOLÉCULA MOLÉCULA 2 1 4 2 32 64 98 TOTAL Masa atómica, composición, abundancia isotópica 37 QUÍMICA tecnología. Texto guía para el ingreso a la facultad de ciencias y La masa atómica promedio de cada elemento, se determina utilizando las masas de los diversos isótopos de un elemento y su abundancia relativa, de la siguiente manera: Masa Atómica Promedio = m A n % m 1 A 1% m 2 A 2 % + + .................... n 100 100 100 La abundancia relativa es la cantidad en porcentaje que existe de su isotopo correspondiente, como es relativa la suma de todas siempre es igual a 100 100% = A1 + A 2 .......... ..... An La masa atómica promedio (MAP), es la masa que se encuentra en la tabla periódica. Problemas Resueltos 28 1. En la naturaleza se encuentran tres isótopos de silicio: Si (92,21%) que tiene una masa 29 30 atómica de 27,97693 u; Si (4,70%) que tiene una masa de 28,97649 u; y Si (3,09%) que tiene una masa de 29,97375 u. Calcular la masa atómica promedio del silicio. Solución 27,97693 92,21 28,97649 4,70 29,97376 3,09 masa atómica promedio Si = + + 100 100 100 = 28,09 u 2. Calcular la masa molecular de: a) Sacarosa, C12H22O11 b) Nitrato de calcio, Ca(NO3)2 c) Hidróxido de aluminio, Al(OH)3 d) Metanol, CH3OH Solución: a) masa molecular C12H22O11 = 12 12 + 1 22 + 11 16 = 342 b) masa molecular Ca(NO3)2 = 40,1 + 14 2 + 16 6 = 164,1 c) masa molecular Al(OH)3 = 27 + 3 16 + 1 3 = 78 d) masa molecular CH3OH = 12 + 1 4 + 16 = 32 Problemas Propuestos 1. 2. 3. 4. 5. 6. 7. Por análisis espectrométrico de masas se ha encontrado que en el naturaleza las abundancias relativas de los diferentes átomos isotópicos del silicio son: 92,23% de masa 27,977 u ; 4,67% de masa 28,976 y 3,10% de masa atómica 29,974. Calcular la masa atómica promedio del Silicio. El boro natural consta de 80% del B–11 (masa = 11,009) y 20% del otro isótopo. Para poder explicar la masa atómica de 10,811, ¿cuál debe ser la masa atómica del otro isótopo? 35 37 El Cl y el Cl son los únicos isótopos naturales del cloro. ¿Qué distribución porcentual explicaría la masa atómica de 35,4527? El cobre tiene dos isótopos de masas: 63,96 (70,5 %) y 64,96 (29,5 %). Calcular la masa atómica del Cu. El bromo consta de dos isótopos de masas: 78,92 y 80,92. Estimar las abundancias de cada uno de estos isótopos. El magnesio tiene tres isótopos de masas: 23,98 (78,6%), 24,98 (10,1%) y 25,98 (11,3%), Calcular la masa atómica del magnesio. El neón consta de tres isótopos de masas: 20,00; 21,00 y 22,00. La abundancia del isótopo del centro es de 0,26%. Estimar las otras dos abundancias. 4.2 El mol, Número de Avogadro y Volumen molar 38 Átomos y moléculas, fundamentos de estequiometria. Mol.- Es una unidad básica del Sistema Internacional, definida como la cantidad de una sustancia que contiene tantas entidades elementales (átomos, moléculas, iones, electrones u otras partículas) 23 como 12 gramos de carbono 12, y que contiene siempre 6.023 x 10 partículas individuales. 23 1 mol O = 16 g O = 6,023 x 10 átomos 1 mol O2 = 32 g O2 = 6,023 x 1023 moléculas 23 1 mol H2O = 18 g H2O = 6,023 x 10 moléculas Número de Avogadro Es el número de partículas químicas contenidos en un mol de sustancias que numéricamente 23 es igual a 6,023 x 10 . Ley de Avogadro. Ley fundamental en química que establece que bajo idénticas condiciones de temperatura y presión, volúmenes iguales de gases contienen el mismo número de moléculas. Esta ley fue enunciada por primera vez como hipótesis por el físico italiano Amadeo Avogadro en 1811. Volumen molar Es el volumen que ocupa un mol de gas en condiciones normales de presión y temperatura, se conoce como volumen molar. Este volumen es casi siempre una ctte, para todos los gases. El volumen molar de un gas ideal es 22,4 L, es decir: 1 mol H2 = 22,4 L H2 1 mol Cl2 = 22,4 L Cl2 Se definen condiciones normales de presión a la presión atmosférica a nivel del mar, la presión atmosférica a nivel del mar es 1 atmosfera o 760 torricelis, y temperatura normal a 0ºC o 273 K Para elementos: P.A.(g) = 1 Átomo-mol = 6,023 x 1023 Átomos = 22,4 L en c.n. (solo gases.) Para moléculas: P.M.(g) = 1 molécula-mol = 6.023 X1023 Moléculas = 22,4 L en c.n. (gases) Problemas Resueltos 1. ¿Cuántos moles de glucosa, C6H12O6 hay en: a) 538 g b) 1,00 g de esta sustancia? Solución: 1 mol C6H12O6 = 180 g C6H12O6 1 mol C 6 H12 O6 = 2,99 moles C 6 H12 O 6 180 g C 6 H12 O6 a) 538 g C 6 H12 O6 1 mol C 6 H12 O6 180 g C 6 H12 O 6 b) 1 g C 6 H12 O 6 2. = 5,56 10 -3 moles C 6 H12 O 6 a) ¿Cuál es la masa en gramos, de 0,433 moles de C6H12O6? b) ¿Cuál es la masa en gramos de 6,33 moles de Na2CO3 39 QUÍMICA tecnología. Texto guía para el ingreso a la facultad de ciencias y c) ¿Cuántos moles de NaHCO3 hay en 5,08 g de esta sustancia? Solución: a) 1 mol C6H12O6 = 180 g C6H12O6 180 g C 6 H12 O 6 0,433 moles C6 H12 O 6 1 mol C6 H12 O6 b) 1 mol de Na2CO3 = 106 g Na2CO3 = 77,9 g C 6 H12 O 6 106 g Na 2CO3 6,33 moles Na 2 CO3 1 mol Na 2CO3 = 671 g Na 2CO3 c) 1 mol NaHCO3 = 84 g NaHCO3 1 mol NaHCO3 = 0,06 moles NaHCO3 5,08 g NaHCO3 84 g NaHCO3 3. a) ¿Cuántas moléculas de C6H12O6 hay en 5,23 g de C6H12O6? b) ¿Cuántos átomos de oxígeno hay en 4,20 g de NaHCO3? Solución: a) 1 mol C6H12O6 = 180 g C6H12O6 23 1 mol C6H12O6 = 6,02 10 moléculas C6H12O6 1 mol C H O 6,02 1023 moléculas C H O 6 12 6 6 12 6 5,23 g C6 H 12O6 180 g C H O 1 mol C H O 6 12 6 6 12 6 = 1,75 1022 moléculas C6H12O6 b) 1 mol NaHCO3 = 84 g NaHCO3 1 mol NaHCO3 = 3 mol O 23 1 mol O = 6,02 10 átomos O 1 mol NaHCO 3 4,20 g NaHCO3 84 g NaHCO3 3 mol O 6,02 1023 átomos O 1 mol O 1 mol NaHCO3 = 9,03 1022 átomos de O 4. a) ¿Cuál es la masa, en gramos de 0,0885 moles Mg(NO3)2? b) ¿Cuántos moles hay en 5,20 g de Mg(NO3)2? c) ¿Cuántos átomos de nitrógeno hay en 75 mg de Mg(NO3)2? Solución: 148,3 g Mg(NO ) 3 2 0,0885 moles Mg(NO ) a) 3 2 = 13,1 g Mg(NO 3 )2 1 mol Mg(NO3 )2 1 mol Mg(NO ) 3 2 = 0,035 moles Mg(NO 3 )2 148,3 g Mg(NO 3 )2 1 g Mg(NO ) 1 mol Mg(NO ) 2 moles N 3 2 3 2 c) 75 mg Mg(NO 3 )2 1000 mg Mg(NO ) 148,3 g Mg(NO ) 1 mol Mg(NO ) 3 2 3 2 3 2 b) 5,20 g Mg(NO 3 )2 5. 6,02 10 23 átomos N = 6,09 10 20 átomos N 1 mol N Calcular la masa en gramos de cada uno de los siguientes: a) 0,00850 moles de SO2 22 b) 3,58 10 átomos de Ar 20 c) 1,50 10 moléculas de cafeína, C8H10N4O2 Solución: 64 g SO 2 = 0,544 g SO 2 1 mol SO2 a) 0,00850 moles SO 2 40 Átomos y moléculas, fundamentos de estequiometria. 40 g Ar 1 mol Ar = 2,38 g Ar 23 6, 02 10 átomos Ar1 mol Ar b) 3,58 1022 átomos Ar 1 mol cafeína 194gca 0,048g _ cafeina 23 6,02 10 moléculas cafeína 1 mol _ cafeina c) 1,50 1020 moléculas cafeína 6. Calcular las moléculas que hay en cada una de las siguientes muestras: a) 0,150 moles de acetileno, C2H2 un combustible que se emplea en soldadura. b) una tableta de 500 mg de vitamina C, C6H8O6. –5 c) un copo de nieve promedio que contiene 5,0 10 g de H2O. Solución: 23 a) 0,150 moles C 2 H 2 6,02 10 moléculas C 2 H 2 = 9,03 10 22 moléculas C H 2 2 1 mol C 2 H 2 23 b) 500 mg 1 g 1 mol 6,02 10 moléculas = 1.71 10 21 moléculas 1000 mg 176 g 1 mol 23 c) 5,0 10 -5 g H O 1 mol H 2 O 6,02 10 moléculas H 2 O = 1.67 1018 moléculas H O 2 2 18 g H O 1 mol H 2 O 2 7. Calcular el número de moléculas en: a) 0,0350 moles de propano, C3H8, un hidrocarburo combustible, b) una tableta de 100 g de tylenol, C8H9O2N, un analgésico que se vende bajo el nombre de paracetamol. c) una cucharadita de azúcar de mesa, C12H22O11 que tiene una masa de 12,6 g. Solución: 23 a) 0,0350 moles C H 6,02 10 moléculas C3 H 8 = 2,108 10 22 moléculas C3 H 8 3 8 1 mol C3 H 8 23 b)100 g C H O N 1 mol C 8 H9 O 2 N 6,02 10 moléculas C 8 H 9 O 2 N = 4 10 23 moléculas C 8 H 9 O 2 N 8 9 2 151 g C 8 H 9 O 2 N 1 mol C 8 H 9 O 2 N 23 c) 12,6 g azúcar 1 mol azúcar 6,02 10 moléculas azúcar = 2,2 10 22 moléculas azúcar 342 g azúcar 1 mol azúcar 8. El nivel de concentración permisible del cloruro de vinilo, C2H3Cl, en la atmósfera en una –6 planta química es 2,05 10 g/L. ¿Cuántos moles de cloruro de vinilo en cada litro representa esta cantidad? ¿Cuántas moléculas por litro? Solución: 2,05 10 -6 g C 2 H 3Cl 1 mol C 2 H3 Cl 3,28 10 -8 moles C 2 H3 Cl = 1L 1L 62,45 g C 2 H 3Cl 2,05 10 -6 g C 2 H3 Cl 1L 9. 1 mol C 2 H 3Cl 62,45 g C 2 H 3Cl 6,02 10 23 moléculas C 2 H3 Cl 1 mol C 2 H3 Cl 16 2 10 moléculas C 2 H3Cl 1L Se requieren alrededor de 2,510-5 g de tetrahidrocanabinol, THC, el ingrediente activo de la marihuana, para producir intoxicación. La fórmula molecular del THC es C21H30O3. a) ¿Cuántos moles de THC representan estos 25 µg? b) ¿Cuántas moléculas hay en 2,5 10-5 g? Solución:a) 2,5 10-5 g THC 1 mol THC = 7,6 10-8 moles THC 330 g THC 1 mol THC 6, 02 10 23 moléculas THC 16 b) 2, 5 10 -5 g THC = 4, 56 10 moléculas THC 330 g THC 1 mol THC 41 QUÍMICA tecnología. Texto guía para el ingreso a la facultad de ciencias y 10. La hemoglobina, proteína portadora del oxígeno en las células rojas de la sangre, tiene cuatro átomos de hierro por molécula y contiene 0,340% en masa de hierro. Calcular la masa molecular de la hemoglobina. Una molécula de hemoglobina tiene 4 átomos de Fe. Solución: Sea X masa molecular de la hemoglobina 1 mol Hemo6,02 10 23 moléculas Hemo 0,340 g Fe = 100 g Hemo X g Hemo 1 mol Hemo 1 mol Fe 56 g Fe 4 átomos Fe 23 1 molécula Hemo 6,02 10 átomos Fe 1 mol Fe 11. Expresar en gramos la masa de una molécula de SO2? 1 mol SO2 23 6,02 10 moléculas SO2 Solución:1 moléculas SO2 X = 64 g SO 2 1 mol SO2 100 4 56 = 65882 0,340 -22 = 1,06 10 g SO2 12. ¿Cuántas moléculas de CO2 se encuentran en 1 L de aire en c.n., si el contenido en volumen del CO2 en el aire es de 0,03%? 1 mol CO2 6, 02 1023 moléculas CO2 Solución: 1 L aire 0,03 L CO2 100 L aire 1 mol CO 2 22,4 L CO2 = 8,07 1018 moléculas CO 2 13. La masa de 200 mL acetileno en c.n., es igual a 0,232 g. Determinar la masa molecular del acetileno. Solución: Sea X masa molecular del acetileno 1 mol gas 200 mL gas = 0,232 g gas X g gas 0, 232 22400 = 26 X = 200 22 400 mL gas 1 mol gas Problemas Propuestos 1 2. 3. 4. 5. 6. 7. 8. 42 Calcular el número de moles de 3,61 g de: a) Cl b) Cl2 c) NaCl d) CaCl2 Transformar en moles lo siguiente: a) 1,34 g H2 b) 1,34 g de Cu c) 1,34 g de N2O d) 2,91 g C e) 2,91 g de CO f) 2,91 g CO2 Calcular la masa en gramos de 2,42 moles de: d) H2O2 a) H b) H2 c) H2O La densidad del alcohol metílico o metanol, C2H6O a 25 °C es de 0,785 g/mL. Calcular: a) La masa molecular del C2H6O b) El número de moles en 252 mL de C2H6O c) La masa de 1,62 moles C2H6O Calcular: a) La masa en gramos de un átomo de molibdeno, Mo. b) El número de átomos que hay en 1 mg de Mo. Calcular: 20 a) la masa de 1,5 10 átomos de cobre b) el número de átomos que hay en un gramo de cobre a) ¿Cuantos moles de oxígeno hay en 0,265 moles de sulfato de cobre(II), CuSO4? b) ¿Cuántos moles de Na2CO3 hay en 0,124 moles de Na? c) ¿Cuántos moles de Ba hay en 0,64 moles O en el Ba3(PO4)2? a) Calcular el número de átomos de hidrógeno presentes en 39,6 g de (NH4)2SO4. b) En 0,50 moles de P4O10 cuántos moles de P contiene? Átomos y moléculas, fundamentos de estequiometria. 9. 10. 11. 12. 13. 14. 15. 16. 4.3 a) ¿Cuántos moles de SO2 hay en 156 g de este gas? b) ¿Cuántos moles de NaHCO3 están contenidas en 2,0 libras de NaHCO3? El fulminato de mercurio, Hg(CNO)2 es un explosivo muy sensible al choque y que se usa en la fabricación de fulminantes. ¿Cuántos gramos de este compuesto hay en 0,500 moles de fulminato de mercurio? Una conocida marca comercial de sal yodada contiene 0,010% en masa de KI. ¿Cuántos moles de KI se encuentran en un paquete ordinario de esta sal cuya masa es de 26 onzas? Uno de los primeros gases propulsores usado para aerosol en envases metálicos fue el monóxido dinitrógeno llamado también gas hilarante. ¿Cuántos gramos de N2O están contenidos en un envase de aerosol cargado con 5,6 moles de dicho gas? –23 Un átomo de un elemento tiene una masa de 9,786 10 g. ¿Cuál es la masa atómica del elemento? Una muestra de gas, ocupa un volumen de 150 mL en c.n. y tiene una masa de 0,624 g. Calcular su masa molecular. Calcular la masa molecular del gas si la masa de 600 mL de éste en c.n. es igual a 1,714 g. ¿Cuántos moles de O2 se encuentran contenidos en 1 L de aire en c.n., si hay 21% en volumen de O2 en el aire? Leyes fundamentales Son leyes que se refieren a las cantidades de sustancia que toman parte en las reacciones químicas y las hay de dos tipos: leyes ponderales y volumétricas. Leyes ponderales, que se refieren a los pesos y se aplican a sustancias sólidas, liquidas y gaseosas. Leyes volumétricas, que se refieren a los volúmenes y solo son aplicables a sustancia gaseosas. Ley de la conservación de la materia (Lavoisier) Enunciado: que la masa se los reactantes es la misma que la masa de los productos, en una reacción química. Ej.: CaCO3 + 2HCl CaCl2 + CO2 + H2O 100g + 73g = 111g + 44g + 18g 173g = 173g Ley de las proporciones definidas de Proust. Enunciado: Cuando 2 o más elementos se combinan para formar un compuesto determinado, estos lo hacen siempre en proporciones fijas e invariables. Ej.: 2H2 + O2 2H2O 4g 32g 2g 16g 4/32 = 0,125 (proporción fija) 2/16 = 0,125 (proporción fija) Ley de las proporciones múltiples de (Dalton) Enunciado: Cuando 2 o más elementos se combinan para formar otro compuesto, la masa de uno de ellos es constante, mientras que la del otro varia en relación de números enteros y sencillos. Ej.: SO = 32g de S se combinan con 1 x 16g O SO2 = 32g de S se combinan con 2 x 16g O SO3 = 32g de S se combinan con 3 x 16g O 1,2 y 3: son números enteros y sencillos; 43 QUÍMICA tecnología. Texto guía para el ingreso a la facultad de ciencias y Ley de las combinaciones gaseosas. Gay Lussac Enunciado.- Cuando reaccionan los gases los volúmenes de las sustancias reaccionantes y los productos; siempre guardan entre si, una relación de números enteros y sencillos, medidos en ciertas condiciones de presión y temperatura. N2 + 3H2 2NH3 1vol + 3vol 2vol 1L + 3L 2L 1ml + 3ml 2ml Problemas Resueltos 1. El Cu y el O se combinan en 2 proporciones, formando dos óxidos de cobre que contienen, respectivamente, 79,9 % y 58,83 % de Cu. Comprobar con ello la ley de las proporciones múltiples de Dalton. Solución: Cu O Cu/Cu : O/Cu Cu : O 79,9 20,1 1 : 0,25 1: 1 0,25 58,83 41,17 1 : 0,70 1: 3 0,25 2. Se hacen reaccionar 20 g de plata con 5,47 g de cloro. ¿Qué masa de AgCl se forma? ¿Qué elemento y en qué cantidad está en exceso? Solución: De la relación que existen entre la plata y el cloro según la fórmula: 108 g Ag = 3, 05 35, 45 g Cl De la reacción de combinación: 20 g Ag = 3, 66 5, 47 g Cl Se debe usar la relación 3,05 de acuerdo a la ley de Proust es la que determina la cantidad de Ag que reacciona 108 g Ag 5, 47 g Cl 35, 45 g Cl = 16,66 g Ag Se forman 16,66 g Ag + 5,47 g Cl = 22,13 g AgCl La plata está en exceso: 20,0 g Ag – 16,66 g = 3,34 g Ag Problemas Propuestos 1. Se analizan 3 muestras diferentes, que solo contienen los elementos A y B: La muestra 1 pesa 24 g y contiene 3 g de B La muestra 2 tiene 12,5 % de B en peso La muestra 3 está compuesta por 11,375 lb de A y 1,625 lb de B. Es probable que: a) Las tres muestras corresponden a compuestos idénticos. b) Solo las muestras 1 y 2 sean compuestos idénticos y la 3 sea un compuesto diferente. c) Solo las muestras 2 y 3 sean compuestos idénticos y la 1 sea un compuesto diferente. d) Cada una de las muestras sea un compuesto diferente. e) Al menos una de las muestras sea una mezcla. 2. Se analizaron 2 muestras formadas por Co y O, dando los siguientes resultados: Muestra 1 : 30 g de Co y 16,27 g de O Muestra 2 : 0,95 g de Co y 0,244 g de O ¿Pertenecen ambas muestras a un mismo compuesto? ¿En qué basa su respuesta? 44 Átomos y moléculas, fundamentos de estequiometria. 3. Supóngase que el elemento X se combina con el elemento Z, para dar 2 compuestos diferentes. En el primero, 8 g de X están combinados con 18 g de Z; el segundo consta de un 25 % de X y un75 % de Z, en peso. ¿Se cumple la Ley de Dalton? 4.4 Composición Porcentual, Formulas Empíricas y Moleculares Composición porcentual.- El porcentaje en masa en que contribuye cada uno de los elementos en una sustancia se denomina el porcentaje. %elemento = masa del elemento 100 masa molecular del compuesto Formula Empírica.- Es la relación entre el menor número entero de átomos presentes en una molécula de un compuesto. La formula empírica es la más simple porque utiliza como subíndices el conjunto de enteros más pequeños que expresas las proporciones de los átomos presentes. Formula Molecular.- Indica el número real de átomos presentes en la molécula. La formula molecular puede ser igual a la formula empírica o un múltiplo entero de ella. FM = FE × Φ ; Φ= ctte. = PM(formula molecular) PM(formula empirica) Problemas Resueltos 1. Calcular el porcentaje en masa de cada elemento en los siguientes compuestos: a) CO2 b) SF4 c) NH4Br Solución: a) % C = 12 100 = 27,27% 44 100 – 27,27 = 72,73% O b) % S = 32 100 = 30% 100 – 30 = 70% F 108 c) % N = 14 100 = 14,3% y %Br = 80 100 = 81,6% 98 98 2. 100 – 14,3 – 81,6 = 4,1% H Determinar las fórmulas empíricas de los siguientes compuestos, si una muestra contiene: a) 0,014 moles de S y 0,042 moles de O b) 5,28 g de Sn y 3,37 g de F c) 29,1% de Na, 40,6% S y 30,3% O. Solución: a) S: 0,014 ÷ 0,014 = 1 O: 0,042 ÷ 0,014 = 3 Fórmula empírica: SO3 b) Sn: 5,28 ÷ 119 = 0,0444 ÷ 0,044 = 1 F: 3,37 ÷ 19 = 0,177 ÷ 0,044 = 4 Fórmula empírica: SnF4 c) 3. Na: 29,1 ÷ 23 = 1,27 ÷ 1,27 = 1 2 = 2 S: 40,6 ÷ 32 = 1,27 ÷ 1,27 = 1 2 = 2 O: 30,3 ÷ 16 = 1,89 ÷ 1,27 = 1,5 2 = 3 Fórmula empírica: Na2S2O3 Determinar las fórmulas empíricas de los siguientes compuestos con las siguientes composiciones en porcentaje: a) 10,4% C, 27,8% S y 61,7% Cl b) 32,79% Na, 13,02% Al y 54,19% F 45 QUÍMICA tecnología. Texto guía para el ingreso a la facultad de ciencias y Solución: a) 4. C: 10,4 ÷ 12 = 0,87 ÷ 0,87 = 1 S: 27,8 ÷ 32 = 0,87 ÷ 0,87 = 1 Cl: 61,7 ÷ 35,45 = 1,74 ÷ 0,87 = 2 Fórmula empírica: CSCl2 b) Na: 32,79 ÷ 23 = 1,43 ÷ 0,48 = 3 Al: 13,02 ÷ 27 = 0,48 ÷ 0,48 = 1 F: 54,19 ÷ 19 = 2,85 ÷ 0,48 = 6 Fórmula empírica: Na3AlF6 El olor característico de la piña se debe al butirato de etilo, un compuesto que contiene carbono, hidrógeno y oxígeno. La composición de 2,78 mg de butirato de etilo produce 6,32 mg de CO2 y 2,58 mg de H2O. ¿Cuál es la fórmula empírica de este compuesto? Solución: 1 mmol CO 1 mmol C 12 mg C 2 6,32 mg CO2 = 1,72 mg C 44 mg CO2 1 mmol CO 2 1 mmol C 1 mmol H O 2 mmol H 1 mg H 2 2,58 mg H 2 O = 0,287 mg H 18 g H O 1 mmol H2 O 1 mmol H 2 2,78 mg Sustancia – (1,72 mg + 0,287 mg) = 0,773 mg O C: 1,72 ÷ 12 = 0,143 ÷ 0,048 = 3 H: 0,287 ÷ 1 = 0,287 ÷ 0,048 = 6 O: 0,773 ÷ 16 = 0,048 ÷ 0,048 = 1 Fórmula empírica: C3H6O 5. Determinar las fórmulas empírica y molecular de cada una de las siguientes sustancias: a) Etilenglicol, la sustancia que se utiliza como componente principal de la mayor parte de las soluciones anticongelantes que tiene la siguiente composición; 38,7% C; 9,7% H y 51,6% O. Su masa molecular es 62,1. b) Cafeína, un estimulante que se encuentra en el café, que tiene, 49,5% C; 5,15% H; 28,9% N y 16,5% O, su masa molecular es de aproximadamente 195. Solución: a) C: 38,7 ÷ 12 = 3,225 ÷ 3,225 = 1 H: 9,7 ÷ 3,225 = 3 O: 51,6 ÷ 16 = 3,225 ÷ 3,225 = 1 Fórmula empírica: CH3O de masa molecular, 31 Ф = 62,1 ÷ 31 = 2 Fórmula molecular: C2H6O2 b) C: 49,5 ÷ 12 = 4,125 ÷ 1,031 = 4 H: 5,15 ÷ 1,031 = 5 N: 28,9 ÷ 14 = 2,064 ÷ 1,031 = 2 O: 16,5 ÷ 16 = 1,031 ÷ 1,031 = 1 Fórmula empírica: C4H5N2O de masa molecular 97 Ф = 195 ÷ 97 = 2 Fórmula molecular: C8H10N4O2 6. La sosa de lavandería, un compuesto que se utiliza para acondicionar el agua dura para lavandería, es un hidrato. Su fórmula se puede escribir como Na2CO3. X H2O donde X es el número de moles de H2O por mol de Na2CO3. Cuando una muestra de 2,558 g de sosa de lavandería se calienta a 125°C, se pierde toda el agua de hidratación, dejando 0,948 g de Na2CO3. ¿Cuál es el valor de X? Solución: Na2CO3: 0,948 ÷ 106 = 0,00894 ÷ 0,00894 = 1 46 Átomos y moléculas, fundamentos de estequiometria. H2O: 1,61 ÷ 18 = 0,0894 ÷ 0,00894 = 10 Fórmula del hidrato: Na CO . 10 H O 2 7. 3 2 La combustión de 0,3082 g de una muestra de hexametilenodiamina, compuestos que se usa en la fabricación del Nylon–66, produjo 0,7003 g de dióxido de carbono y 0,3821 g de agua. En un análisis separado para el nitrógeno, en el que se usaron 1,270 g del mismo compuesto, se obtuvieron 0,3723 g de amoníaco. a) ¿Cuál es la fórmula empírica del compuesto original? b) La densidad de vapor hallada para esta sustancia en c.n. fue de 5,19 g/L. Calcular la fórmula molecular de la hexametilenodiamina. Solución: 1 mol CO 2 0, 7003 g CO 2 44 g CO 2 1 mol C 12 g C = 0,190 g C 1 mol CO2 1 mol C 1 mol H O 2 moles H 1 g H 2 0,3821 g H 2 O = 0, 0424 g H 18 g H O 2 1 mol H 2 O 1 mol H 0,3723 g NH 3 1 mol NH3 1 mol N 14 g N 0, 3082 g Sust = 0, 0744 g N 1, 270 g Sust 17 g NH 3 1 mol NH 3 1 mol N C: 0,190 ÷ 12 = 0,0158 ÷ 0,00531 = 3 H: 0,0424 ÷ 0,00531 = 8 N: 0,0744 ÷ 14 = 0,00531 ÷ 0,00531 = 1 Fórmula empírica: C3H8N, de masa molecular 58 Se X la masa molecular de la sustancia 1 mol Sust X g Sust 5,19 g Sust = 1 L Sus 22, 4 L Sus 1 mol S X = 5,19 22,4 = 116,256 Número de fórmula empírica Ф= 116,256 ÷ 58 = 2 Fórmula molecular: C6H16N2 Problemas Propuestos 1. 2. 3. 4. 5. 6. a) ¿Cuántos átomos están contenido en 92,91 g P4? b) ¿Cuántas moléculas están contenidos en 92,92 g P4? Calcular la masa en kg de: a) un átomo de H b) un átomo de O c) un átomo de U ¿Cuántos moles Fe y S están contenidos en?: a) 1 mol de FeS2 b) 1 kg FeS2 c) ¿Cuántos kilogramos de S están contenidos exactamente en 1 kg de FeS2? A una presa que proporciona agua se le ha agregado 0,10 partes por billón de cloroformo, CHCl3. ¿Cuántas moléculas de CHCl3 estarán contenidas en una gota de 0,05 mL de esta agua? a) ¿Qué es un mol? b) ¿Qué tiene masa es mayor: un mol de potasio o un mol de oro? c) ¿Qué contiene más átomos: un mol de potasio o un mol de oro? d) ¿Qué contiene más electrones: un mol de potasio o un mol de oro? ¿Cuántos moles hay en lo siguiente? a) 22,5 g de Zn b) 0,688 g de Mg 47 QUÍMICA tecnología. Texto guía para el ingreso a la facultad de ciencias y 22 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 48 c) 4,5 10 átomos de Cu d) 382 g de Co e) 0,055 g de Sn f) 8,5 10 moléculas de N2. 24 –23 Se encuentra que un átomo de un elemento desconocido tiene una masa de 1,79 10 g. ¿Cuál es la masa molar de este elemento? Hay aproximadamente 5,0 mil millones de persona en la tierra. Si se distribuyera un mol de dólares por igual entre ellas, ¿Cuántos dólares recibiría cada persona? Si 20 gotas de agua equivalen a 1,0 mL, a) ¿Cuántas gotas hay en una milla cúbica de agua? b) ¿Cuál sería el volumen, en millas cúbicas, de un mol de gotas de agua? Determinar el porcentaje de: a) mercurio en HgCO3 b) oxígeno en Ca(ClO3)2 c) nitrógeno en C10H14N2, (nicotina) d) Mg en C55H72MgN4O5 (clorofila) La fructuosa es un azúcar natural muy dulce que se encuentra en la miel, las frutas y sus jugos. Tiene una masa molecular de 180 y una composición de 40,0% C; 6,7% H y 53,3% de O. Determinar la fórmula molecular de la fructuosa. El arseniuro de galio es uno de los más recientes materiales que se emplean para fabricar chips para supercomputadoras. Su composición es 48,2% de Ga y 51,8% de As. ¿Cuál es su fórmula empírica? En el análisis cuantitativo de 0,4620 g de una sustancia desconocida se determinó que contiene: 0,1945 g de carbono; 0,02977 g de hidrógeno y 0,2377 g de oxígeno. Determinar el porcentaje en masa de cada uno de los elementos presentes en la sustancia desconocida. Una muestra de 1,74 g de un compuesto que contiene solamente carbono e hidrógeno se quemo en oxígeno y se obtuvo 5,28 g de dióxido de carbono, CO2 y 2,70 g de agua, H2O. ¿Cuál es la composición porcentual del compuesto? El colesterol es un compuesto que contiene carbono, hidrógeno y oxígeno. La combustión de una muestra de 9,50 g del compuesto produjo 29,20 g de CO2 y 10,18 g de H2O. ¿Cuál es la composición en porcentaje del compuesto? Los compuestos que contienen S son un componente indeseable en algunos aceites. La 2– cantidad de azufre en un aceite puede determinarse por oxidación del S a sulfato [SO4] , y precipitación del ión sulfato como sulfato de bario BaSO4, el cual puede recogerse, secarse y pesarse. De 8,25 g de una muestra de aceite, se obtuvieron 0,929 g de BaSO4. ¿Cuál es el porcentaje en masa de S en el aceite? Se analizaron diversos compuestos y se determinó que tiene la siguiente composición porcentual: a) 65,20% de As ; 34,80% de O b) 40,27% de K; 26,78% de Cr ; 32,96% de O c) 26,58% de K, 35,35% de Cr; 38,07% de O Un compuesto orgánico no identificado, contiene sólo carbono, hidrógeno y oxígeno. Se somete a análisis por combustión. Cuando se queman 228,4 mg del compuesto orgánico puro en un tren de combustión se obtienen 627,4 mg de CO2 y 171,2 mg de H2O. a) Determinar la masa de carbono, hidrógeno y oxígeno. b) Determinar la fórmula empírica del compuesto orgánico. Por calentamiento de 7,50 g de un hidrato de CoCl2 en el vacío, se eliminó el agua y quedaron 4,09 g de CoCl2. ¿Cuál es la fórmula de este hidrato? Una muestra de 6,2 g de un compuesto que contiene vanadio y cloro se disolvió en agua. La adición de una sal de plata en agua precipita AgCl, que es insoluble en agua. El proceso produjo 17,19 g de AgCl. ¿Cuál es la fórmula empírica del cloruro de vanadio? La testosterona, hormona sexual masculina contiene carbono, hidrógeno y oxígeno. Su composición porcentual en masa, es de 9,79% de H y de 11,09% de O. Cada molécula contiene dos átomos de Oxígeno. Determinar: a) la masa molecular b) la formula molecular de dicha hormona. Átomos y moléculas, fundamentos de estequiometria. 22. 23. 24. 25. El octanaje de una gasolina se basa en tomar como referencia el compuesto isooctano, al cual se asigna un octanaje de 100. Cuando 0,2351 g del isooctano se hicieron reaccionar en un cámara de combustión, se transformó en dióxido de carbono y agua. El CO2 fue recogido y pesado como BaCO3. Si el BaCO3 obtenido tiene una masa de 3,2488 g, ¿cuál es la fórmula empírica del isooctano? El paraldehído, droga hipnótica y sedante, tiene una fórmula empírica C2H4O. Su densidad de vapor en c.n. es 5,90 g/L. ¿Cuál es su fórmula molecular? La nicotina, alcaloide tóxico presente en las hojas de tabaco tiene una masa molecular de 162,2. Su fórmula empírica es C5H7N. ¿Cuál es su fórmula molecular? El oro de los tontos es un compuesto de hierro y azufre, una pirita de hierro. Una muestra de 0,6814 g de esta pirita fue tostada al aire, con lo que todo el azufre se transformo en SO2 cuya masa fue de 0,7276 g. ¿Cuál es la fórmula empírica de la pirita? 4.5 Problemas Adicionales 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Encontrar la fórmula empírica de los compuestos cuyas composiciones porcentuales se dan a continuación: a) 29,5 % Ca; 23,5 % S; 47 % O b) 26,5 % K; 35,4 % Cr; 38,1 % O Determinar la fórmula verdadera de una sustancia de masa molecular 229,8 la cual está compuesta de 65,19 % de arsénico y 34.81 % de oxígeno. Un compuesto contiene 92,25 % de carbono y 7,75 % de hidrógeno. Cuál es la fórmula molecular, si 1 L de su vapor en condiciones normales de presión y temperatura tiene una masa de 3,48 g. Encontrar la composición centesimal de: a) CaCO3 b) Na2SO4 Por combustión de 0,6678 g de un compuesto orgánico, se obtuvieron 0,9795 g de CO2 y 0,2609 g de H2O. 0,2933 g del compuesto orgánico en c.n. desplazan 74,66 mL de H2O. Determinar la fórmula molecular del compuesto. Cuál es el porcentaje de agua en el yeso, CaSO4. 2H2O? Un compuesto contiene C, H, Br y posiblemente O. Por combustión de 0,1868 g de muestra se obtienen 0,2000 g de CO2 y 0,0955 g de H2O. La fusión de 0,1550 g del compuesto con peróxido de sodio, acidificación con ácido nítrico y posterior precipitación con AgNO3, produce 0,2369 g de AgBr. Calcular la fórmula empírica del compuesto. Determinar las fórmulas empírica y molecular de cada una de las siguientes sustancias: a) Epinefrina (adrenalina), una hormona secretada al torrente sanguíneo en momentos de peligro o de tensión que tiene: 59,0% C, 7,1% H; 26,2% O y 7,7% N. Su masa molecular es aproximadamente 180. b) Nicotina, un componente del tabaco, que tiene: 74,1% C; 8,6% H y 17,3% N, su masa molecular es 160±5 El ciclopropano, sustancia utilizada con oxígeno como anestésico general, contiene solamente dos elementos, carbono e hidrógeno. Cuando 1,00 g de esta sustancia se quema completamente se producen 3,14 g de CO2 y 1,29 g de H2O. ¿Cuál es la fórmula empírica del ciclopropano? La sal de Epsom, un laxante enérgico empleado en medicina veterinaria, tiene la fórmula MgSO4 X H2O. Cuando 5,061 g de este hidrato se calientan a 250°C, se pierde toda el agua de hidratación, dejando 2,472 g de MgSO4. ¿Cuál es el valor de X? 4.6 Autoevaluación: Preguntas Tipo Examen de Ingreso 49 QUÍMICA tecnología. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 50 Texto guía para el ingreso a la facultad de ciencias y El rubidio presente en la naturaleza tiene sólo dos isótopos. Uno de ellos consta de un átomo con una masa de 84,912 u; el otro tiene 86,901 u. ¿Cuál es el porcentaje de abundancia en la naturaleza del isótopo más pesado? A) 15% B) 28% C) 37% D) 72% E) Ninguno Existen tres isótopos del silicio presentes en la naturaleza: Si, con abundancia natural de 92,21% y masa de 27,97693 u Si, con abundancia natural de 4,70% y masa de 28,97649 u Si, con abundancia natural de 3,09% y masa de 29,97376 u A partir de estos datos, calcular la masa atómica relativa del silicio A) 28 B) 28,98 C) 28,08561 D) 28,09 E) Ninguno ¿Cuál de las muestras siguientes contiene el mayor número de átomos? A) 1,0 g de Au B) 1,0 g de H2O C) 1,0 g de He D) 1,0 g de C8H18 E) Ninguno E) todos los anteriores contiene el mismo número de átomos Una botella contiene x átomos de carbono que tienen una masa de 6,00 g. Si se desea otra botella que contenga un número igual de átomos de níquel, ¿qué masa (g) de níquel se debe tomar? A) 52,7 B) 1,23 C) 23,7 D) 29,4 E) Ninguno Una sola hoja de rasurar contiene un total de 8,4 x 1021 de átomos, 57% de los cuales son átomos de hierro, 14% de cromo y 29% átomos de carbono. ¿Cuánta masa de carbono contiene la hoja? A) 0,049 B) 0,14 C) 2,1 D) 0,17 E) Ninguno El arsenato de calcio, Ca3(AsO4)2, es una sustancia peligrosa, usado hace tiempo para matar insectos en las plantas. ¿Cuál es la masa de 0,586 moles de arsenato de calcio? A) 233 B) 23 C) 159 D) 23,3 E) Ninguno ¿Cuántos átomos de nitrógeno están presentes en 0,50 libras de nitrato de amonio, NH4NO3? A) 1,7 1024 B) 7,5 1021 C) 3,8 1021 D) 3,4 1024 E) Ninguno El número de Avogadro de los átomos de criptón tiene una masa de: A) 83,8 u B) 1,00 g C) 83,8 g D) 5,04 1025 g E) Ninguno 21 La masa de 3,01 10 átomos de mercurio es: A) 1,00 B) 2,00 C) 5,00 10–5 D) 200 E) Ninguno La masa total de 1,00 docenas de átomos de carbono es: A) 144 B) 1,0 C) 2,39 10–22 D) 2,00 10–23 E) Ninguno ¿Cuántos átomos en total hay en 1,00 moles libras de CO2? A) 6,023 1023 B) 18,06 1023 C) 3 D) 8,19 1026 E) Ninguno ¿Cuántos átomos de oxígeno hay en una muestra de 42 g de dicromato de amonio, (NH4)2Cr2O7. A) 7,0 1023 B) 1,0 1023 C) 6,0 1023 D) 1,4 1022 E) Ninguno El olor característico de la piña se debe al butirato de etilo, un compuesto que contiene carbono, hidrógeno y oxigeno. La combustión de 2,78 mg de butirato de etilo produce 6,32 mg CO2 y 2,58 mg de H2O. ¿Cuál es la fórmula empírica de este compuesto? A) C2H4O6 B) C3H5O11 C) C7H12O6 D) C9H8O2 E) Ninguno Dada una muestra de dicromato de amonio (NH4)2Cr2O7 que contiene 23 8,03 10 átomos de nitrógeno, ¿cuántos gramos de hidrógeno contiene la muestra? A) 3,03 B) 0,337 C) 0,674 D) 5,39 E) Ninguno Una muestra dada de un compuesto contiene 0,667 moles de átomos de nitrógeno, 2,688 g de hidrógeno, 2,01 1023 átomos de cromo, y el número de átomos de oxígeno corresponde a la mitad del número de átomos de hidrógeno. ¿Cuál es la fórmula más simple o empírica del compuesto? A) (NH4)2Cr2O7 B) (NH4)2CrO4 C) (NH4)HCrO4 D) (NH4)3CrO E) Ninguno ¿Qué masa de KClO3 contiene 80,0 g de oxígeno? A) 204 B) 8,17 C) 306 D) 1,84 103 E) Ninguno El compuesto equilina, una hormona que se encuentra en la orina de yeguas preñadas tiene una masa molecular de 268,3 y contiene 80,6% de carbono en masa. ¿Cuántos átomos de carbono hay en cada molécula de equilina? A) 7 B) 9 C) 18 D) 22 E) Ninguno Átomos y moléculas, fundamentos de estequiometria. 18. 19. 20. El factor de conversión estequiométrico que sería al multiplicar para convertir los moles de Cu en moles de Cu2(OH)2CO3 es: A) 2/1 B) 2/2 C) 3/2 D) 1/2 E) Ninguno ¿Cuál es la masa de Cu2(OH)2CO3 que contiene 100 g de cobre? A) 358 B) 174 C) 57,5 D) 130 E) Ninguno El porcentaje de nitrógeno en masa de urea, (NH2)2CO es: A) 23,3% B) 31,3% C) 38,0% D) 46,7% E) Ninguno 51 Unidad 5 Igualación de Ecuaciones Químicas 5.1 Escritura y Clasificación de las Reacciones Químicas, Ecuación Iónica neta e Igualación de Reacciones Simples utilizando el Método del tanteo Oxidación.- Es la perdida de electrones o aumento en el numero de oxidación que sufre un átomo en una reacción química. Ej.: 0 +2 Fe Fe - + 2e pierde 2 electrones Reducción.- Es la ganancia de electrones o disminución en el numero de oxidación que sufre un átomo en una reacción química. Ej.: 2H+ + 2e- H20 gana 2 electrones Agente oxidante.- Es aquella sustancia que provoca la oxidación a otras sustancias y a la vez este agente oxidante se reduce. Agente reductor.- Es aquella sustancia que provoca la reducción a otras sustancias y a la vez este agente reductor se oxida. Problemas Resueltos 1. Escribir las ecuaciones iónicas netas para las siguientes reacciones, e identifique el o los iones espectadores que haya en cada una de ellas: a) Pb(NO3)2(ac) + Na2SO4(ac) PbSO4(ac) + 2NaNO3(ac) b) Zn(s) + 2HCl(ac) ZnCl2 (ac) + H2(g) c) FeO(s) + 2 HClO4(ac) H2O(l) + Fe(ClO4)2(ac) d) Na2CO3(ac) + 2 HCl(ac) H2O(l) + CO2(g) +2 NaCl(ac) e) CuBr2(ac) + 2 NaOH(ac) Cu(OH)2(ac) + 2 NaBr(ac) Solución: a) No tiene una ecuación iónica neta porque todas las especies están en solución acuosa 1+ 2+ b) Zn(s) + 2H Zn + H2(g) 1- El ión espectador es el Cl 1+ 2+ c) FeO(s) + 2H H2O(l) + Fe El ión espectador es el [ClO4] d) [CO3] 1- 1+ +2H 1- H2O(l) + CO2 1+ 1- Los iones espectadores son Na y Cl e) No tiene una ecuación iónica neta debido a que todas las especies se encuentra en solución acuosa. 2. Completar y balancear las siguientes ecuaciones: a) Fe(OH)2(s) + HClO3(ac) b) HI(ac) + Ca(OH)2(ac) c) Al(OH)3(s) + H2SO4(ac) Solución: a) Fe(OH)2(s) + HClO3(ac) Fe(ClO3)2(ac) + H2O(l) b) HI(ac) + Ca(OH)2(ac) CaI2(s) + H2O(l) 51 QUÍMICA tecnología c) Al(OH)3(s) + H2SO4(ac) Texto guía para el ingreso a la facultad de ciencias y Al2(SO4)3(ac) + H2O(l) Problemas Propuestos 1. 2. 3. 4. 5. 6. 7. Completar e igualar las siguientes reacciones: a) 2 AgNO3(ac) + Na2SO4(ac) b) BaCl2(ac) + ZnSO4(ac) c) (NH4)2CO3(ac) + CaCl2(ac) d) Na2S(ac) + ZnCl2(ac) e) K3PO4(ac) + Sr(NO3)2(ac) completar e igualar las siguientes reacciones: a) HBr(ac) + NH3(ac) b) CH3COOH(ac) + KOH c) Ba(OH)2(ac) + H3PO4(a) d) HClO4(ac) + Mg(OH)2(ac) De la ecuación química: 2 NO (g) + O2(g) 2NO2(g) ¿Cuáles de las siguientes características o cantidades se pueden deducir? a) La reacción se inicia por calentamiento. b) Dos moles de monóxido de nitrógeno reaccionan con un mol de oxígeno molecular para formar dos moles de dióxido de nitrógeno. c) La reacción se completa esencialmente en pocos minutos después de mezclar los reactivos. d) En esta reacción todas las sustancias son gases. e) Esta reacción ocurre al chocar dos moléculas de monóxido de nitrógeno con una molécula de oxígeno. f) Ochocientas moléculas de NO reaccionarán con cuatrocientas moléculas de O2. Escribir ecuaciones balanceadas que correspondan a cada una de las descripciones siguientes: a) Cuando el gas amoníaco se pasa sobre sodio metálico liquido caliente, se libera hidrógeno gaseoso y se forma amida de sodio, NaNH2 como producto sólido. b) El metal cinc sólido reacciona con ácido sulfúrico para formar hidrógeno gaseoso y una solución acuosa de sulfato de cinc. c) Cuando se calienta el nitrato de potasio sólido, se descompone para formar nitrito de potasio sólido y oxígeno gaseoso. Clasificar las siguientes ecuaciones: a) 2 KClO3(s) 2 KCl(s) + 3O2(g) b) 2 CO(g) + O2(g) 2 CO2(g) Balancear las siguientes ecuaciones utilizando el método del tanteo. a) C + O2 CO2 b) CO + O2 CO2 c) H2 + Br2 HBr d) K + H2O KOH + H2 e) Mg + O2 MgO f) O3 O2 Para las siguientes reacciones redox, identificar al agente oxidante y al agente reductor: a) 4 Fe + 3 O2 2 Fe2O3 b) Cl2 + 2NaBr 2NaCl + Br2 c) Si + 2 F2 SiF4 d) H2 + Cl2 2HCl 5.2 Igualación de Ecuaciones Químicas por el Método ion Electrón Si tenemos la siguiente reacción: + H + NO3 + H2S NO + S + H2O El agente oxidante es el nitrato NO3 , puesto que contiene al elemento N, que sufre una disminución de su numero de oxidación. NO3 NO El agente reductor es el H2S puesto que sufre un aumento en su número de oxidación. H2S S En la ecuación del agente oxidante se debe añadir 2 H2O al segundo miembro y 4H+ al primer miembro para igualar la ecuación. + 4H + NO3 NO + 2 H2O 52 Igualación de reacciones químicas la ecuación del agente reductor se iguala con 2H+ al segundo miembro H2S S + 2H+ Ahora igualamos las cargas de ambos miembros de las dos ecuaciones. 4H+ + NO3- + 3e- NO + 2 H2O * (2) + * (3) H2S S + 2H +2e Ahora igualamos las cargas de ambos miembros multiplicando po 2 a la primera y por 3 a la segunda. 8H+ +2 NO3- + 6e- 2NO + 4 H2O + 3H2S 3S + 6H +6e Ahora sumamos ambas ecuaciones para obtener la ecuación iónica neta. 8H+ +2 NO3- + 3H2S+ 6e- 2NO + 4 H2O + 3S + 6H+ +6eComo resultado nos queda 2H+ +2 NO3- + 3H2S 2NO + 4 H2O + 3S Problemas Resueltos 2+ 1- 1- 1. [MnO4] + SO2 Mn + [HSO4] Solución: 2+ 11[MnO4] + SO2 Mn + [HSO4] Las dos semireacciones son: 1- (solución ácida) 2+ Mn 1SO2 [HSO4] [MnO4] Igualando cada una de ellas: MnO4] Átomos de Mn; Átomos de O: Átomos de H: Eléctricamente: Atomos de S: Átomos de O: 1- 1- 2+ Mn 2+ Mn 12+ [MnO4] Mn + 4 H2O 1+ 12+ 8 H + [MnO4] Mn + 4 H2O 1+ 12+ 5e- + 8 H + [MnO4] Mn + 4 H2O 1SO2 [HSO4] 1SO2 [HSO4] 12H2O + SO2 [HSO4] 11+ 2H2O + SO2 [HSO4] + 3H 2e[MnO4] Átomos de H: Las dos semireacciones igualadas son: 1+ 12+ 5e- + 8 H + [MnO4] Mn + 4 H2O 1- 1+ 2H2O + SO2 [HSO4] + 3H 2eSe iguala el número de electrones multiplicando el primero por 2 y el segundo por 5: 1+ 12+ 10e- + 16 H + 2 [MnO4] 2 Mn + 8 H2O 11+ 10 H O + 5 SO 5 [HSO ] + 15 H 10e2 2 4 Sumando y simplificando términos iguales: 1+ 12+ 1H + 2 [MnO4] + 2 H2O + 5 SO2 2 Mn + 5 [HSO4] 2+ 2. Mn + H2O2 Solución: 2+ Mn + H2O2 MnO2 MnO2 Las semireacciones: H2O2 Igualación: (solución básica) 2+ Mn MnO2 H2O 53 QUÍMICA tecnología Texto guía para el ingreso a la facultad de ciencias y 2+ Átomos Mn: MnO2 2+ 2H2O + Mn MnO2 2+ 1+ 2H2O + Mn MnO2 + 4H 2+ 1+ 2H2O + Mn MnO2 + 4H H2O2 2 H2O 1+ 2H + H2O2 2 H2O 1+ 2e- + 2H + H2O2 2 H2O Mn Átomos O: Átomos de H: Eléctricamente: Átomos de O: Atomos de H: + 2e- Eléctricamente: Sumando y simplificando: 2+ 1+ Mn + H2O2 MnO2 + 2 H 1- Se añaden tanto [OH] como protones haya: 12+ 1+ 12 [OH] + Mn + H2O2 MnO2 + 2 H + 2 [OH] 1+ Como: 2 H 2 [OH] 1- + 2 [OH] 2+ + Mn 3. Br2 [BrO3] Solución: Átomo de Br: 1- 1- = 2 H2O + H2O2 MnO2 + 2 H2O 1- + Br (solución básica) 1- 2 [BrO3] 1Átomo de O: 6 H2O + Br2 2 [BrO3] 11+ Átomo de H: 6 H2O + Br2 2 [BrO3] + 12H 11+ Eléctricamente: 6 H2O + Br2 2 [BrO3] + 12H + 10e1Átomos de Br: Br2 2 Br 1Eléctricamente: 2e- + Br2 2 Br Br2 Igualando la carga, sumando y simplificando: 11+ 16 H2O + 6 Br2 2 [BrO3] + 12H + 10 Br 1- 1+ 1- 3 H2O + 2 Br2 [BrO3] + 6 H + 5 Br Pasando a medio básico: 111+ 113 H2O + Br2 + 6 [OH] [BrO3] + 6 H + Br + 6 [OH] Finalmente: 111Br2 + 6 [OH] [BrO3] + 3 H2O + Br 4. CrI3 + Cl2 + NaOH Na2CrO4 + NaIO4 + NaCl + H2O Solución: 1+ 21+ 11+ 1CrI3 + Cl2 + NaOH 2 Na + [CrO4] + Na + [IO4] + Na + Cl + H2O 211El esqueleto de la reacción es: CrI3 + Cl2 [CrO4] + [IO4] + Cl átomos de Cr: átomos de I: átomos de O: átomos de H: Eléctricamente : Atomos de Cl: Eléctricamente: Las dos semi-reacciones son: 16 H2O + CrI3 54 2- 1- [CrO4] + [IO4] 21CrI3 [CrO4] + 3 [IO4] 2116 H2O + CrI3 [CrO4] + 3 [IO4] 211+ 16 H2O + CrI3 [CrO4] + 3 [IO4] + 32 H 211+ 16H2O + CrI3 [CrO4] + 3 [IO4] + 32 H + 1Cl2 2 Cl 12 e- + Cl2 2 Cl CrI3 [CrO4] 2- 1- 1+ + 3 [IO4] + 32 H + 27 e- 27 e- Igualación de reacciones químicas 1- 2 e- + Cl2 2 Cl Multiplicando por 2 y 27 respectivamente, sumando y simplificando se tiene: 211+ 132 H2O + 2 CrI3 + 27 Cl2 2 [CrO4] + 6 [IO4] + 64 H + 54 Cl Como la ecuación está en medio básico se tiene: 21112 CrI3 + 27 Cl2 + 64 [OH] 2 [CrO4] + 6 [IO4] + +54 Cl + 32 H2O La ecuación igualada es: 2 CrI3 + 27 Cl2 + 64 NaOH 2 Na2CrO4 + 6 NaIO4 + 54 NaCl + 32 H2O El recuento de átomos Reactivos Productos Átomos de Cr: 2 2 Átomos de Na: 64 64 Átomos de I: 6 6 Átomos de Cl: 54 54 Átomos de O: 64 64 Átomos de H: 64 64 Problemas Propuestos 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 2- 2- 3+ [Cr2O7] + [C2O4] Cr + CO2 11[ClO3] + Cl Cl2 + ClO2 2- 1- (solución ácida) (solución ácida) 2- I + [S4O6] (solución ácida) 3+ (solución ácida) H2O2 + Fe Fe 2+ Cu + HNO3 Cu + NO (solución ácida) 22(solución básica) Bi(OH)3 + [SnO2] [SnO3] + Bi 111[CN] + [MnO4] [CNO] + MnO2 (solución básica) 2+ 3+ 2+ 1Fe + [MnO4] Fe + Mn (solución ácida) PbCrO4 + NaOH Na2PbO2 + Na2CrO4 + H2O PbS + HNO3 Pb(NO3)2 + NO + H2O + S Hg + HNO3 Hg2(NO3)2 + NO + H2O Ag2S + HNO3 AgNO3 + NO + S + H2O CuS + HNO3 Cu(NO3)2 + H2O + NO + S As4 + HNO3 + H2O NO + H3AsO4 As4 + NaClO + H2O H3AsO4 + NaCl Na3AsO3 + HCl + H2S As2S3 + NaCl + H2O Na3AsO3 + I2 + NaHCO3 Na3AsO4 + NaI + CO2 + H2O As4O6 + Zn + H2SO4 AsH3 + ZnSO4 + H2O Sb + HNO3 + HCl SbCl3 + NO + H2O Ag3Sb + AgNO3 + H2O Ag + Sb4O6 + HNO3 Sn + HNO3 Sn(NO3)2 + NH4NO3 + H2O Sn + HNO3 + HCl NO + SnCl4 + H2O K2Cr2O7 + FeSO4 + H2SO4 Fe2(SO4)3 + KHSO4 + Cr2(SO4)3 + H2O AlCl3 + (NH4)2S + H2O Al(OH)3 + H2S + NH4Cl NiS + HNO3 + HCl NiCl2 + NO + S + H2O [S2O3] + I2 2+ 5.3 Problemas Adicionales 1. 2. 3. H2S + K2Cr2O7 + H2SO4 S + Cr2(SO4)3 + K2SO4 + H2O HCl + KMnO4 MnCl2 + Cl2 + KCl + H2O KBr + KMnO4 + H2SO4 Br2 + MnSO4 + K2SO4 + H2O 55 QUÍMICA tecnología 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. Texto guía para el ingreso a la facultad de ciencias y FeSO4 + KMnO4 + H2SO4 Fe2(SO4)3 + MnSO4 + K2SO4 + H2O MnO2 + NaBiO3 + HNO3 HMnO4 + BiONO3 + NaNO3 + H2O CoCl2 + KOH + KClO3 Co2O3 + KCl + H2O H2S + KMnO4 + H2SO4 K2SO4 + S8 + MnSO4 + H2O KNO2 + KMnO4 + H2SO4 KNO3 + MnSO4 + K2SO4 + H2O KSCN + K2Cr2O7 + H2SO4 Cr2(SO4)3 + SO2 + CO2 + NO2 + K2SO4 + H2O KMnO4 + H2O2 + H2SO4 MnSO4 + K2SO4 + O2 + H2O As2S3 + HNO3 + H2O H2SO4 + H3AsO4 + NO P4 + KOH + H2O KH2PO2 + PH3 K2SO3 + KMnO4 + H2SO4 K2SO4 + MnSO4 + H2O K2SO3 + KMnO4 + H2O K2SO4 + MnO2 + KOH K2SO3 + KMnO4 + KOH K2SO4 + K2MnO4 + H2O HNO2 + KMnO4 + H2SO4 HNO3 + MnSO4 + K2SO4 + H2O NaNO2 + NaI + H2SO4 NO + I2 + NaNO3 + H2O + Na2SO4 HCl + MnO2 Cl2 + MnCl2 + H2O Definir los siguientes términos: a) Oxidación b) Reducción c) Agente oxidante d) Oxido-reducción Balancear y clasificar las siguientes reacciones: a) H2O2(ac) H2O(l) + O2(g) b) Fe(s) + Cl2(g) FeCl3(s) c) Na2CO3(ac) + Ca(OH)2(ac) CaCO3(ac) + NaOH(ac) d) Cu(NO3)2(ac) + Fe(s) Cu(s) + Fe(NO3)2(ac) Clasificar las siguientes reacciones: 111a) Cl2 + 2OH Cl + ClO + H2O 2+ b) Ca 20. 2- + CO3 1+ CaCO3 1+ c) NH3 + H NH4 En las siguientes reacciones redox, identificar al agente oxidante y el agente reductor. a) 2 Sr + O2 2 SrO b) 2 Na + S Na2S c) 2 Cs + Br2 2 CsBr d) 2 C + O2 2CO Igualar las siguientes ecuaciones por el método del ion electron 22. 23. 24. 25. Cr2(SO4)3 + Na2CO3 + KNO3 Na2CrO4 + KNO2 + Na2SO4 + CO2 NiS + HNO3 Ni(NO3)2 + NO + S + H2O P4 + KOH +H2O KH2PO2 + PH3 K2Cr2O7 + H2SO3 + H2SO4 K2SO4 + Cr2(SO4)3 + H2O 26. Completar y balancear las ecuaciones para las siguientes reacciones de doble desplazamiento: a) ZnCl2 + KOH b) CuSO4 + H2S c) Ca(OH)2 + H3PO4 d) (NH4)3PO4 + Ni(NO3)2 Completar y balancear las ecuaciones para las siguientes reacciones. ¿Todas ellas son posibles? a) H2 + I2 b) CaCO3 c) Mg + H2SO4 d) FeCl2 + NaOH e) SO2 + H2O f) SO3 + H2O g) Ca + H2O h) Bi(NO3)3 + H2S Escribir las ecuaciones balanceadas para la combustión de los siguientes hidrocarburos a) Etano, C2H6 c) Heptano C7H16 b) Benceno, C6H6 ¿Cuáles de las siguientes afirmaciones son correctas? a) Los coeficientes ubicados frentes a las fórmulas en una ecuación química balanceada, indican el número relativo de moles de los reactivos y los productos en esa reacción. 27. 28. 29. 56 Igualación de reacciones químicas b) Una ecuación química balanceada es aquella que tiene el mismo número de moles en cada lado. c) En una ecuación química, el símbolo indica que la reacción es exotérmica. d) Un cambio químico que absorbe energía térmica se dice que es endotérmico. 57 Unidad 6 Cálculos Químicos “Estequiometría” 6.1 Introducción Estequiometria de reacción.- Una ecuación balanceada suministra información cualitativa y cuantitativa muy importante para el cálculo de la relación de masas, moles y volúmenes de las sustancias que participan en una transformación química. Reacción química.- Es un proceso en el que se rompen y/o forman nuevos enlaces. Como resultado de ello, se generan un conjunto de nuevas sustancias químicas llamadas productos a partir de sustancias originales llamadas reaccionantes. Una reacción química se representa por medio de una ecuación química, que es una forma abreviada de describir un cambio químico. Este grafico explica como puedo resolver los ejercicios de estequiometria. Podemos realizar nuestros cálculos a partir de cualquiera de los extremos del grafico, llevamos a moles a través del peso molecular, realizamos la conversión de moles de reactivo a moles de producto o viceversa utilizando los coeficientes estequiometricos de la reacción, y calculamos los gramos finales con el dato de peso molecular de la sustancia resultante. 6.2 Pureza de las Sustancias La mayor parte de las sustancias que se utilizan en el laboratorio no tienen una pureza del 100%. Ej.: se tiene una muestra de 80% de CaCO3 Para 100g de muestra 20g de impureza 80 g CaCO3 puro %pureza. masa.pura 100 masa.muestra Problemas 1 2. 3. 4. El vinagre contiene 5,0 % en masa de ácido acético, cuya fórmula es C2H4O2. a) ¿Cuántos gramos de ácido acético contienen 24,0 g de vinagre? b) ¿Cuántas libras de ácido acético contienen 24,0 libras de vinagre? a) ¿Qué masa de alúmina contienen 775 libras de un mineral que tiene, en masa, 24,3 % de Al2O3? b) ¿Qué masa de impurezas contiene la muestra? c) ¿Qué masa de aluminio contiene la muestra? La galena, cierto mineral de plomo, contiene 10% de sulfuro de plomo(II), PbS, y 90% de impurezas, en masa. ¿Qué masa de plomo contiene 75 g de este mineral? ¿Qué masa de cromo está presente en 150 g de un mineral de cromo que contiene 67% de cromita, FeCr2O4, y 33,0% de impurezas en masa? Si se recupera el 87,5% del cromo a partir de 125 g de mineral. ¿Qué masa de cromo puro se obtiene? 57 QUÍMICA tecnología. Texto guía para el ingreso a la facultad de ciencias y 6.3 Estequiometria de las Reacciones Problemas Resueltos La combustión completa del butano, C4H10 se efectúa como sigue: 2 C4H10(l) + 13 O2(g) 8 CO2(g) + 10 H2O(l) a) ¿Cuántos moles de O2 son necesarias para quemar 10,0 moles de butano en esta forma? b) Cuando se queman 10,0 g de butano, ¿cuántos gramos de O2 se necesitan? Solución: 2 moles C4H10 = 13 moles O2 1. a) 10 moles C 4 H10 13 moles O 2 = 65 moles O 2 2 moles C 4H10 1 mol C H 13 moles O 32 g O 4 10 2 2 b) 10 g C 4 H10 58 g C H = 36 g O 2 4 10 2 moles C 4 H10 1 mol O 2 2. El alcohol del gasohol arde de acuerdo con la siguiente ecuación química: C2H5OH(l) + 3 O2(g) 2 CO2(g) + 3 H2O(l) a) ¿Cuántos moles de CO2 se producen cuando se queman 5,00 moles de C2H5OH? b) ¿Cuántos gramos de CO2 se producen cuando se queman 5,00 g de C2H5OH? Solución: 1 mol C2H5OH = 2 moles CO2 a) 5 moles C2 H 5OH 2 moles CO 2 = 10 moles CO 2 1 mol C2H5 OH 1 mol C H OH 2 moles CO 44 g CO 2 5 2 2 b) 5, 0 g C 2 H 5OH 46 g C H OH 1 mol C H OH 1 mol CO = 9,57 g CO2 2 5 2 5 2 3. El ácido fluorhídrico HF(ac) no se puede guardar en frascos de vidrio por que los silicatos del vidrio son atacados por el HF(ac). Por ejemplo, el silicato de sodio Na2SiO3, reacciona del siguiente modo: Na2SiO3(s) + 8 HF(ac) H2SiF6(ac) + 2NaF(ac) + 3 H2O(l) a) ¿Cuántos moles de HF se requieren para disolver 2,50 moles de Na2SiO3 en esta reacción? b) ¿Cuántos gramos de NaF se forman cuando 5,00 moles de HF reacciona de este modo? c) ¿Cuántos gramos de Na2SiO3 se pueden disolver por 5,00 g de HF? Solución: 1 mol Na2SiO3 = 8 moles HF 2 moles NaF = 8 moles HF a) 2, 5 moles Na 2SiO 3 8 moles HF = 20 moles HF 1 mol Na 2SiO 3 2 moles NaF 42 g NaF b) 5,00 moles HF 52,5 g NaF 8 moles HF 1 mol NaF 1 mol HF 1 mol Na 2SiO 3 122 g Na 2 SiO3 c) 5 g HF 20 g HF = 3, 8 g Na 2 SiO3 8 moles HF 1 mol Na 2 SiO3 4. El cohete secundario reutilizable del transbordador espacial de Estados Unidos utiliza una mezcla de aluminio y perclorato de amonio, NH4ClO4 como combustible. La reacción entre estas sustancias es la siguiente: 3 Al(s) + 3 NH4ClO4(s) Al2O3(s) + AlCl3(s) + 3 NO(g) + 6 H2O(g) ¿Qué masa de perclorato de amonio se debe utilizar en la mezcla de combustible por cada kilogramo de aluminio? Solución: 1 mol Al 3 moles NH 4 ClO 4 117, 45 g NH 4ClO 4 1 000 g Al = 4350 g NH 4 ClO 4 27 g Al 3 moles Al 1 mol NH 4 ClO 4 58 Cálculos químicos“estequiometria” 5. Las bolsas de aire de los automóviles se inflan cuando la azida de sodio, NaN3, se descompone rápidamente en sus elementos: a) Escribir una ecuación química balanceada para esta reacción b) ¿Cuántos gramos de NaN3 se requieren para formar 1,00 g de N2? 3 c) ¿Cuántos gramos de NaN3 se requieren para producir 12,0 pie de N2 si el gas tiene una densidad de 1,25g/L? Solución: a) 2 NaN3 2 Na + 3 N2 b) 1 g N2 1 mol N 2 2 moles NaN3 65 g NaN 3 =1, 55 g NaN 3 28 g N 2 3 moles N 2 1 mol NaN 3 1,25 g N 1 mol N 12 plg N 2 3 2, 54 cm N2 3 1 L N 2 2 2 12 pie 3 N 2 1 pie N 1 plg N 3 c) 2 1 000 cm N 2 1 L N 2 28 g N2 2 2 moles NaN3 65 g NaN3 3 moles N = 657, 4 g NaN3 2 1 mol NaN 3 Un carbón en particular contiene 2,8% de azufre en masa. Cuando este carbón se quema, el azufre se convierte en SO2(g). Este SO2 se hace reaccionar con CaO para formar CaSO3(s). Si el carbono se quema en una planta de energía que utiliza 2 000 toneladas de carbón por día, ¿cuál es la producción diaria de CaSO3? Solución: SO2(g) + CaO(s) CaSO3(s) 6. 2,0 10 9 g Carbón día 1 mol S 1 mol SO2 2,8 g S 100 g carbón 32 g S 1 mol S 1 mol CaSO 3 1 mol SO2 120 g CaSO 3 2,1 108 g CaSO 3 = = 210 toneladas CaSO 3 /día día 1 mol CaSO 3 Problemas Propuestos 1. 2. 3. 4. 5. 6. Una de las maneras de eliminar el NO en las emisiones de humos es hacerle reaccionar con amoniaco: NH3 + NO N2 + H2O a) ¿Cuántos moles de NH3 reaccionan con 16,5 moles de NO? b) ¿Cuántos moles de NO se necesitan para preparar 0,772 moles de N2? Cuando se quema gas acetileno, C2H2, en el aire, los productos son CO2 y H2O a) Escribir la ecuación ajustada para esta reacción. b) ¿Cuántos moles de CO2 se producen a partir de 0,524 moles de C2H2? c) ¿cuántos moles de O2 se necesitan para reaccionar con 2,46 moles de C2H2? La combustión del gas butano, C4H10 en el aire da CO2 y H2O. a) Escribir la ecuación ajustada para dicha reacción. b) ¿Cuántos moles de C4H10 se necesitan para obtener 11,6 moles de CO2? c) ¿Cuántos moles de H2O se forman con 2,69 moles de C4H10? Utilizando la siguiente ecuación química Na2CO3 + HNO3 NaNO3 + H2O + CO2 ¿Cuántos moles de NaNO3 pueden prepararse a partir de 10 g de Na2CO3? Al4C3 + H2O Al(OH)3 + CH4 ¿Cuántos moles de CH4 se producirán cuando se preparan 0,2 g de Al(OH)3? Calcular la cantidad de gramos de ácido fosfórico H3PO4 que puede obtenerse de 100,0 g de decaóxido tetrafósforo, P4O10: P4O10 + H2O H3PO4 59 QUÍMICA tecnología. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 60 Texto guía para el ingreso a la facultad de ciencias y Utilizando la ecuación: NaNH2 + N2O NaN3 + NaOH + NH3 Calcular: a) Calcular cuantos gramos de NaNH2 y de N2O se requieren para preparar 5,00 g de NaN3 b) ¿Cuántos gramos de NH3 se producen? ¿Qué masa de Na3PO4 se puede preparar mediante la reacción de 19,6 g de H3PO4 con exceso de NaOH? H3PO4 + NaOH Na3PO4 + H2O Un método de análisis del azufre emplea la reacción: H2S + KMnO4 + H2SO4 K2SO4 + S8 + MnSO4 + H2O Todo el H2S se convierte en S8 y todo el S8 proviene del H2S. En un experimento esta reacción produce 1,426 g de S8. a) ¿Cuántos gramos de H2S había en la muestra original? b) ¿Cuántos gramos de KMnO4 se consumieron en la reacción? ¿Cuánto de Na2SO4 al 68% se puede producir a partir de 375 g de NaCl al 88% de pureza? NaCl + H2SO4 Na2SO4 + HCl El carburo de calcio se obtiene en horno eléctrico según la reacción: CaO + C CaC2 + CO El producto crudo, por lo general, contiene 85% de CaC2 y 15% de CaO sin reaccionar. a) ¿Qué cantidad inicial de CaO se requiere para producir 250 kg de producto crudo? b) ¿Qué cantidad de CaC2 contiene este producto crudo? Un mineral contiene 79,5% de ZnS. a) ¿Cuántos gramos de oxígeno son necesarios para reaccionar con 445 g del mineral? b) ¿Cuántos gramos de SO2 se formarán? Los carbonatos de metales pesados se descomponen al calentarse produciendo CO2: BaCO3 BaO + CO2 MgCO3 MgO + CO2 ¿Qué cantidad de MgCO3 producirá la misma masa de CO2 que se obtiene con 88,5 g de BaCO3? Cuando una cerilla de madera que contiene P4S3 en la cabeza es encendida, humos blancos de P4O10 y de SO2 gaseoso se desprenden. Calcular el volumen de SO2 en condiciones normales que se desprenden en la combustión completa de 0,25 g de P4S3, según la ecuación: P4S3 + O2 P4O10 + SO2 Las lámparas de mineros funcionaban con carburo de calcio, antes de que se tuvieran las mucho más seguras lámparas de batería. Una gota de agua, cuya caída podía regularse, reaccionaba sobre el carburo de calcio liberando gas acetileno C2H2, el que podía encenderse, liberando una brillante luz blanca. La formación de acetileno se produce según la siguiente ecuación: CaC2 + H2O C2H2 + Ca(OH)2 ¿Cuántos gramos de agua deben agregarse a un exceso de carburo de calcio para generar 15 L de acetileno en condiciones normales? El gas hilarante, u óxido de nitrógeno (I), puede prepararse mediante cuidadoso calentamiento controlado del nitrato de amonio, según la ecuación: NH4NO3 N2O + 2 H2O ¿Cuántos litros de óxido de nitrógeno (I) en condiciones normales pueden obtenerse por descomposición de 24 g de nitrato de amonio? Un vino comercial tiene alrededor de 9,7% en masa de alcohol etílico. Suponiendo que la reacción de fermentación es: C6H12O6(ac) 2 C2H5OH (l) + 2 CO2 Se obtienen 1,21 kg de vino. a) ¿Cuántos gramos de glucosa se necesitan para producir el alcohol etílico que hay en el vino? Cálculos químicos“estequiometria” 18. 19. 20. 21. b) ¿Qué volumen de CO2 de densidad 1,8 g/L se obtienen al mismo tiempo? El crudo que se quema en las centrales termoeléctricas contiene alrededor de 1,20% en masa de azufre. En la combustión del crudo, el azufre se transforma en dióxido de azufre gaseoso: S + O2 SO2 ¿Cuántos litros de SO2 de densidad 2,60 g/L se producen cuando se quema un kilogramo de crudo? El gas amoníaco NH3 es oxidado por el oxígeno en presencia de un catalizador de la forma siguiente: NH3 + O2 NO + H2O a) ¿Cuántos litros de oxígeno serán necesarios para oxidar 500 L de NH3? b) ¿Cuántos litros de NO y H2O vapor se formaran? Todos los gases han sido medidos en las mismas condiciones de presión y temperatura. a) ¿Cuántos pies cúbicos de oxígeno se necesitarán para oxidar 6000 pies cúbicos de SO2 gaseoso por el método de contacto? b) ¿Cuántos pies cúbicos de SO3 se obtendrán? Todos los gases han sido medidos en las mismas condiciones de presión y temperatura. La densidad del benceno líquido, C6H6, es 0,88 g/mL a 20 °C y arde en el O2 como sigue: C6H6 + O2 CO2 + H2O ¿Cuántos mL de O2 gaseoso en c.n. se necesitan para quemar 3,5 mL de benceno líquido? 6.4 Reactivo Limitante y Rendimiento de una reacción. Reactivo limitante.En una reacción química donde se introducen cantidades exactas de reactivos, el reactivo limitante es el que se agota primero finalizando de esta forma la reacción y determinando la cantidad de producto que se forma. Rendimiento El rendimiento de un producto se expresa en porcentaje, que es igual a la razón de la masa real de un producto y la masa teórica de un producto. %ren dim iento. masa.real 100 masa.teorica La masa real se determina experimentalmente en el laboratorio. Mientras que la masa teórica, es la cantidad máxima y se determina de cálculos, basados en el reactivo limitante (RL). Problemas Resueltos 1. El carburo de silicio, SiC, se conoce comúnmente como carborundum. Esta sustancia dura, la cual se utiliza comercialmente como abrasivo, se fabrica calentando SiO2 y C a temperaturas elevadas: SiO2(s) + 3 C(s) SiC(s) + 2 CO(g) a) ¿Cuántos gramos de SiC se forman por la reacción completa de 5,00 g de SiO2? b) ¿Cuántos gramos de C se requieren para reaccionar con 5,00 g de SiO2? c) ¿Cuántos gramos de SiC se pueden formar cuando 2,50 g de SiO2 y 2,50 g de C se dejan reaccionar? 61 QUÍMICA tecnología. Texto guía para el ingreso a la facultad de ciencias y d) Identificar el reactivo limitante y el reactivo en exceso, de este último y calcular cuánto sobra. Solución: a) 5 g SiO2 1 mol SiO 2 1 mol SiC 40 g SiC = 3, 33 g SiC 60 g SiO 2 1 mol SiO 2 1 mol SiC 1 mol SiO 3 moles C 12 g C 2 = 3 g C 60 g SiO 2 1 mol SiO 2 1 mol C c) 2,50 g SiO 1 mol SiO 2 = 0,042 moles SiO 1 = 0,042 moles 2 2 60 g SiO 2 b) 5 g SiO2 1 mol C 2,50 g C = 0, 208 moles C 3 = 0,069 moles C 12 g C 1 mol SiO 1 mol SiC 40 g SiC 2 = 1,67 g SiC 2,50 g SiO 2 60 g SiO 2 1 mol SiO 2 1 mol SiC 1 mol SiO 3 mol C 12 g C 2 =1, 5 g C 60 g SiO 2 1 mol SiO2 1 mol C d) 2, 50 g SiO 2 g de C que sobran = 2,50 g - 1,5 g = 1,0 g Uno de los pasos del proceso comercial para convertir el amoníaco en ácido nítrico, comprende la oxidación catalítica del NH3 a NO: 4 NH3(g) + 5 O2(g) 4 NO(g) + 6H2O(g) a) ¿Cuántos gramos de NO se forman por la reacción completa de 2,5 g de NH3? b) ¿Cuántos gramos de O2 se requieren para reaccionar con 2,5 g de NH3? c) ¿Cuántos gramos de NO se forman cuando 1,5 g de NH3 reaccionan con 1,00 g de O2 Solución: 2. 30 g NO a) 2, 5 g de NH 3 1 mol NH3 4 moles NO = 4, 4 g NO 17 g NH3 4 mol NH3 1 mol NO b) 2, 5 g de NH 3 1 mol NH3 5 moles O2 32 g O 2 = 5,88 g O2 17 NH 4 moles NH 1 mol O 3 3 2 1 mol NH 3 c) 1,5 g de NH = 0, 088 moles NH3 4 = 0, 022 moles NH3 3 17 NH3 1 mol O 2 1,00 g O 2 32 g O 2 3. = 0,031 moles O 2 5 = 0,0062 moles O 2 1 mol O 2 4 moles NO 30 g NO 1,00 g O 2 = 0,75 g NO 32 g O 2 5 moles O 2 1 mol NO Considerar la siguiente reacción: H2S(g) + 2 NaOH(ac) Na2S(ac) + 2H2O(l) ¿Cuántos gramos de Na2S se forman si 3,05 g de H2S se hacen burbujear dentro de una solución que contiene 1,84 g NaOH, considerando que el reactivo limitante se consume por completo? Solución: 1 mol H S 2 3,05 g H2 S 34 g H S = 0,0897 moles H 2 S 1 = 0,0897 moles H 2S 2 1 mol NaOH 1,84 g NaOH = 0,046 moles NaOH 2 = 0,023 moles NaOH 40 g NaOH 1 mol NaOH 1 mol Na2 S 78 g Na2 S 1,84 g NaOH = 1,794 g Na 2 S 40 g NaOH 2 moles NaOH 1 mol Na 2 S 62 R.L. Cálculos químicos“estequiometria” 4. El etileno, C2H4, arde en el aire: C2H4(g) + 3 O2(g) 2 CO2(g) + 2H2O(l) ¿Cuántos gramos de CO2 se pueden formar cuando una mezcla de 2,93 g de C2H4 y 4,29 g de O2 se ponen en ignición, considerando que sólo se efectúa la anterior reacción? Solución: 1 mol C H 2 4 = 0,105 moles C H 1 = 0,105 moles C H 2, 93 g C 2 H4 2 4 2 4 28 g C H 2 4 1 mol O 2 4, 29 g O 2 32 g O = 0,134 moles O 2 3 = 0, 045 moles O 2 2 1 mol O 2 2 moles CO2 44 g CO2 4, 29 g O 2 32 g O = 4 g CO2 2 3 mol O 2 1 mol CO2 5. Un estudiante hace reaccionar benceno, C6H6, con bromo Br2, con el objeto de preparar bromobenceno, C6H5Br: C6H6 + Br2 C6H5Br + HBr a) ¿Cuál es el rendimiento teórico de bromobenceno en esta reacción cuando 30,0 g de benceno reaccionan con 65 g de Br2? b) Si el rendimiento real de bromobenceno fue de 56,7 g, ¿cuál es el porcentaje de rendimiento? Solución: a) 30 g C H 1 mol C6 H 6 = 0,38 moles C H 6 6 6 6 78 g C6 H 6 1 mol Br 2 65 g Br2 160 g Br = 0,40 moles Br2 2 1 mol C H 1 mol C H Br 157 g C H Br 6 6 6 5 6 5 30 g C6H6 78 g C H = 60,4 g C 6H5 Br 6 6 1 mol C 6 H 6 1 mol C 6 H 5 Br b) % de Rendimiento = masa real 100 = 56,7 g 100 = 94 % masa teórica 60.4 g 6. El azobenceno, C12H10N2, es un intermediario importante en la fabricación de colorantes. Se puede preparar por la reacción entre el nitrobenceno, C6H5NO2 y trietilénglicol, C6H14O6, en presencia de cinc e hidróxido de potasio: 2 C6H5NO2 + 4 C6H14O6 C12H10N2 + 4 C6H12O4 + 4 H2O a) ¿Cuál es el rendimiento teórico del azobenceno cuando reaccionan 115 g de nitrobenceno y 327 g de trietilénglicol? b) Si la reacción rinde 55 g de azobenceno, ¿cuál es el porcentaje de rendimiento del azobenceno? 1 mol C H NO 6 5 2 115 g C 6 H5 NO2 123 g C H NO 6 5 2 Solución: a) = 0,93 moles C6 H5 NO 2 2 = 0, 465 moles C6 H5 NO 2 1 mol C H O 6 14 6 327 g C 6 H14 O6 182 g C H O =1,8 moles C 6 H14 O6 4 = 0, 45 moles C 6 H14 O6 6 14 6 1 mol C6 H14O6 1 mol C12 H10 N 2 182 g C12H10 N2 327 g C 6 H14 O6 = 81, 75 g C12 H10N 2 182 g C 6 H14O6 4 moles C 6 H14 O6 1 mol C12H10 N2 63 QUÍMICA tecnología. Texto guía para el ingreso a la facultad de ciencias y b) %R = 55 g C12 H 10N 2 100 = 67,3 % 81,75 g C12 H 10N 2 Problemas Propuestos 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 64 ¿Cuántos gramos de tiocianato de amonio NH4SCN pueden prepararse con 5,0 g de CS2 y 4,00 g de NH3? La ecuación es: CS2 + NH3 NH4SCN + H2S ¿Cuántos gramos de OF2 pueden prepararse a partir de 1,60 g de flúor y 1,60 g de hidróxido de sodio? La ecuación es: F2 + NaOH OF2 + NaF + H2O Calcular el número de gramos de B2H6 que se obtiene de 3,204 g de NaBH4 y 5,424 g de BF3 mediante la siguiente reacción: 3 NaBH4 + 4 BF3 3 NaBF4 + 2 B2H6 Determinar los gramos de SF4 que se obtienen de 400 g de SCl2 y 2,00 g de NaF mediante la siguiente reacción: 3 SCl2 + 4 NaF SF4 + S2Cl2 + 4 NaCl El superfosfato, un fertilizante soluble en agua, es una mezcla de Ca(H2PO4) y CaSO4 en base molar 1: 2. Se forma por la reacción: Ca3(PO4)2 + H2SO4 Ca(H2PO4)2 + CaSO4 Al tratar 250 g de Ca3(PO4)2 con 150 g de H2SO4, ¿cuántos gramos de superfosfato se forman? Para la reacción: Cu + HNO3 Cu(NO3)2 + NO + H2O Si se agregan 24 g de Cu a 2 g de HNO3: a) ¿Qué sustancias estarán presentes cuando se complete la reacción? b) ¿Cuántos gramos habrá de cada una al finalizar la reacción? Si 3 000 g de TiCl3 se separan como producto de la reacción de 5 513 g de TiCl4, ¿cuál es el porcentaje de rendimiento? La ecuación para la reacción es: 3 TiCl4 + Ti 4 TiCl3 El ácido metanoato de etilo HCO2C2H5 es un agente saborizante artificial que tiene el olor característico de ron. Se prepara por reacción entre el ácido metanoico HCO2H y el etanol C2H5OH: HCO2H + C2H5OH HCO2C2H5 + H2O Si de la reacción entre 75 g de ácido metanoico, con un ligero exceso de etanol, se obtienen 81 g de metanoato de etilo, ¿cuál fue el porcentaje de rendimiento del proceso? Para las redes de acueducto que se extienden a largas distancias, el cloro sólo no suministra adecuada protección contra las bacterias por razón de que se produce una ligera pérdida del cloro del agua. Para ese caso las plantas de acueductos municipales agregan además pequeñas cantidades de amoníaco, el cual reacciona con el cloro para forma tricloramina, agente antibacterial que tiene un largo período de estabilidad en el agua. En una prueba de circulación de agua se mezclaron 10 mg de cloro y un ligero exceso de amoníaco con 1,00 L de agua. La tricloroamina formada según la ecuación: Cl2 + NH3 NCl3 + HCl fue medida, siendo de 2,2 mg. ¿Cuál fue el porcentaje de rendimiento? Aproximadamente la mitad de la producción mundial de pigmentos para pinturas se basan en el TiO2 blanco. En Estados Unidos, esto se realiza por el proceso de cloración, comenzando con minerales que contienen pequeñas cantidades de rutilo, TiO2. El mineral se trata con cloro y carbón (coque). Esto produce TiCl4 y productos gaseosos: TiO2 + C + Cl2 TiCl4 + CO2 + CO Cálculos químicos“estequiometria” A continuación, el TiCl4 se convierte en TiO2 de alta pureza: TiCl4 + O2 TiO2 + 2 Cl2 Suponer que en el primer proceso se lleva a cabo con rendimiento del 65,0% y el segundo con rendimiento del 92,0%. ¿Cuántos kilogramos de TiO2 se puede producir a partir de 1,00 tonelada métrica de mineral que contiene 0,25% de rutilo? 6.5 Problemas Adicionales 1. 2. 3. 4. En la siguiente reacción, si se descomponen 85,2 g de NaClO3, ¿cuántos litros de O2 se producen en c.n.? NaClO3 NaCl + O2 La reacción que sigue representa el Proceso Haber para la producción de amoníaco: N2 + H2 NH3 Cuántos litros de amoníaco pueden ser liberados por 3 litros de nitrógeno? d) 6 e) 7 a) 2 b) 3 c) 5 ¿Qué masa de agua debe transformarse electrolíticamente para obtener 20 L de oxígeno en condiciones normales? ¿Qué peso de clorato de potasio, KClO3 contiene 80 g de O2 ? 3 5. 6. 7. 8. 9. 10. 11. 12. a) 204 g b) 8,17 g c) 306 g d) 1,84 x 10 g e) 167 g Para la siguiente reacción de combustión: C4H10 + O2 CO2 + H2O a) Qué volumen de O2 se requiere para la combustión completa de 1 L de butano? b) Qué cantidad en L de CO2 y H2O(g) se formarán ? Todos los gases se midieron en las mismas condiciones de presión y temperatura. Un volumen de hidrógeno se combina con un volumen de flúor para producir 2 volúmenes de fluoruro de hidrógeno: a) Escribir la ecuación para esta reacción. b) Cuántos moles de flúor son necesarios para producir 4 moles de fluoruro de hidrógeno? c) Cuántas moléculas de hidrógeno se requieren para formar 4 moléculas de fluoruro de hidrógeno? Acido sulfúrico concentrado del 98 % de pureza reacciona con 600 g de Ca3(PO4)2 en base a la siguiente reacción: Ca3(PO4)2 + H2SO4 CaSO4 + H3PO4 a) ¿Con cuántos gramos de ácido sulfúrico del 98 % reacciona el fosfato? b) ¿Cuál es la masa del CaSO4 formado? c) ¿Cuál es la masa del H3PO4 formado? ¿Qué masa de aluminio se oxidará completamente por la acción de 44,8 L de oxígeno en condiciones normales? 20 g de Mg se quema en 20 g de O2. ¿Cuántos gramos de MgO se formarán? ¿Qué volumen de NH3 podrá oxidarse con el oxígeno formado en la descomposición catalítica de 50 g de KClO3? KClO3 KCl + O2 NH3 + O2 2 N2 + H2O ¿Cuántos kilogramos de H2SO4 puro pueden obtenerse a partir de 1,0 kg de pirita de hierro pura FeS2, de acuerdo con las siguientes reacciones? 4 FeS2 + 11 O2 2 Fe2O3 + 8 SO2 2 SO2 + O2 2 SO3 SO3 + H2O H2SO4 El KClO4 puede prepararse mediante la serie siguiente de reacciones: Cl2 + 2 KOH KCl + KClO + H2O 3 KClO 2 KCl + KClO3 4 KClO3 3 KClO4 + KCl 65 QUÍMICA tecnología. 13. Texto guía para el ingreso a la facultad de ciencias y ¿Cuánto Cl2 se necesita para preparar 100 g de KClO4, según el proceso anterior? Muchos antiácidos contienen hidróxido de aluminio, Al(OH)3, como su ingrediente activo. a) Escribir la ecuación química balanceada para la reacción del ácido del estomago, HCl, con el hidróxido de aluminio sólido para formar agua y AlCl3 acuoso. b) ¿Cuántos gramos de HCl reaccionan con 5,00 g de hidróxido de aluminio? 14. La aspirina, C9H8O4, se produce a partir del ácido salicílico, C7H6O3 y anhídrido acético, C4H6O3: C7H6O3 + C4H6O3 C9H8O4 + HC2H3O2 2 a) ¿Cuánto de ácido salicílico se requiere para producir 1,5 10 kg de aspirina, suponiendo que todo el ácido salicílico se convierta en aspirina? b) ¿Cuánto ácido salicílico se requerirán si sólo el 80% del ácido salicílico se convierte en aspirina? c) ¿Cuál es el rendimiento teórico de la aspirina si reaccionan 185 kg de ácido salicílico descrita en la parte (b) produce 182 kg de aspirina? ¿Cuál es el porcentaje de rendimiento? 15. ¿Cuántas agua se produce en la combustión de 1,00 g de glucosa, C6H12O6? C6H12O6(s) + O2(g) CO2(g) + H2O(l) Un método común de laboratorio para preparar cantidades pequeñas de O2 comprende la descomposición del KClO3: KClO3(s) KCl(s) + O2(g) ¿Cuántos gramos de O2 se pueden preparar a partir de 4,50 g de KClO3? Considere que la reacción: Al(s) + Cl2(g) AlCl3(s) Se deja reaccionar con una mezcla de 1,50 moles Al y 3,0 moles de Cl2. a) ¿Cuál es el reactivo limitante? b) ¿Cuántos moles de AlCl3 se forman? Considerar las siguientes reacciones: Na3PO4(ac) + Ba(NO3)2(ac) Ba3(PO4)2(s) + NaNO3(ac) Suponer que una solución que contiene 3,50 g de Na3PO4 se mezcla con una solución que contiene 6,40 g de Ba(NO3)2 ¿Cuántos gramos Ba3(PO4)2 se puede formar? Una cinta de cinc metálico que tiene una masa de 2,00 g, se colocan en una solución acuosa con 2,50 g de nitrato de plata(I), ocasionando la siguiente reacción: Zn(s) + AgNO3(ac) Ag(s) + Zn(NO3)2(ac) ¿Cuántos gramos de Ag se puede formar? El ácido adípico, H2C6H8O4, es una materia prima para la producción del nylon. Comercialmente se fabrica por oxidación del ciclohexano, C6H12: C6H12 + O2 H2C6H8O4 + H2O a) Suponer que se lleva a cabo esta reacción partiendo de 25,0 g de ciclohexano y que éste es el reactivo limitante. ¿Cuál es el rendimiento teórico del ácido adípico? b) Si se obtienen 33,5 g de ácido adípico en la reacción, ¿cuál es el rendimiento real del ácido adípico? Imaginar que está trabajando sobre la forma de mejorar el proceso mediante el cual el mineral de hierro, que contiene Fe2O3 se convierta en hierro. En sus ensayos, realizar la siguiente reacción a pequeña escala: Fe2O3(s) + CO(g) Fe(s) + CO2(g) a) Si parte de 150 g de Fe2O3 como el reactivo limitante, ¿cuál es el rendimiento teórico del Fe? b) Si el rendimiento real del Fe en su ensayo fue de 87,7 g, ¿cuál fue el porcentaje de rendimiento? 16. 17. 18. 19. 20. 21. 66 Cálculos químicos“estequiometria” 22. 23. 24. Una muestra de mineral es Fe2O3 impuro. Al calentar esta muestra con un exceso de carbono, resulta hierro metálico. Una muestra de 752 kg de mineral genera 453 kg de hierro puro. ¿Cuál es el porcentaje de Fe2O3 en el mineral? Fe2O3 (s) + C(s) Fe(l) + CO(g) El cloro puede obtenerse tratando con ácido sulfúrico la mezcla MnO2 y NaCl. La reacción se verifica de acuerdo con la ecuación: NaCl + MnO2 + H2SO4 NaHSO4 + MnSO4 + Cl2 + H2O ¿Qué volumen de cloro en c.n., se puede obtener a partir de 100 g de NaCl? Cierta gasolina para aviación de 100 octanos utiliza 1,00 mL de tetraetilo de plomo, Pb(C2H5)4, de densidad 1,66 g/mL, por litro de producto. Este compuesto se prepara de la siguiente forma: 4 C2H5Cl + 4 NaPb Pb(C2H5)4 + 4 NaCl + 3 Pb ¿Cuántos gramos de cloruro de etilo C2H5Cl se necesitan para preparar suficiente tetraetilo de plomo para un litro de gasolina? 6.6 Autoevaluación: Preguntas tipo Examen de Ingreso 1. 2. 3. 4. 5. 6. 7. 8. La siguiente reacción en equilibrio es importante para la recuperación de oro a partir de las menas: Au + KCN + O2 + H2O KAu(CN)2 + KOH La ecuación equilibrada muestra que por cada molécula de O2 que se utiliza, reaccionan ........ átomos de oro. El número requerido para llenar el espacio en blanco es: A) 1 B) 2 C) 2,5 D) 4 E) Ninguno Una solución de detergente contiene 10% de fósforo en la forma del compuesto Na6P6O18. El propio compuesto contiene 30% de fósforo. ¿Cuántas toneladas de Na6P6O18 deben ordenarse para preparar un lote de 38 toneladas de detergente? A) 3,8 B) 0,88 C) 13 D) 0,13 E) Ninguno Una solución de ácido sulfúrico tiene una densidad de 1,84 g/mL y contiene 98% de ácido sulfúrico, H2SO4 en masa. ¿Cuántos mL de esta solución hacen falta para suministrar 1000 g de ácido sulfúrico? 3 3 2 2 A) 1,8 10 B) 1,9 10 C) 7,5 10 D) 5,5 10 E) Ninguno El compuesto Na3PO4 contiene 42% de sodio. Cuántos gramos de una mezcla que contiene 75% de Na3PO4 y 25% de K3PO4 se necesitarán para suministrar 10 g de sodio? A) 24 B) 32 C) 95 D) 53 E) Ninguno Se prepara una solución disolviendo 26.0 g de una sustancia en 101 mL de agua pura y tiene una densidad de 1,14 g/mL. ¿Cuál es el volumen (ml) de esta solución? A) 98 B) 101 C) 111 D) 127 E) Ninguno ¿Cuántos gramos de KOH están contenidos en 50,00 mL de una solución de KOH que tiene 3 una densidad de 1,46 g/cm y que contiene 45% de KOH en masa? 2 A) 33 B) 15 C) 1,6 10 D) 1,6 E) Ninguno Una compañía minera suministra un mineral concentrado que contiene 11% de Cu2S en masa. El propio Cu2S contiene a su vez 79,86% de cobre en masa. ¿Cuantas toneladas del mineral deben comprarse para producir 600 toneladas de una aleación que contenga un 90% de Cu? 3 3 3 A) 6,1 10 B) 7,6 10 C) 3,9 10 D) 74 E) Ninguno El fósforo P4 se prepara industrialmente por calentamiento de una mezcla de roca fosfórica Ca3(PO4)2, arena SiO2 y coque C, en un horno eléctrico. Se producen también monoóxido de carbono y silicato de calcio 67 QUÍMICA tecnología. Texto guía para el ingreso a la facultad de ciencias y CaSiO3. ¿Qué masa de CaSiO3 se produce en un proceso en el que se obtienen 255 libras de fósforo? Dar su respuesta en libras. 2 Ca3(PO4)2 + 6 SiO2 + 10C P4 + 10 CO + 6 CaSiO3 A ) 3,84 102 B) 1,43 103 C) 2,10 102 D) 63,9 E) Ninguno 9. El compuesto NH4V3O8 se prepara a partir de la siguiente secuencia de pasos: Paso 1: N2 + 3H2 2 NH3 Paso 2: 2NH3 + V2O5 + H2O 2NH4VO3 Paso 3: 3NH4VO3 + 2HCl NH4V3O8 + 2NH4Cl + H2O Suponiendo que hay abundancia de los otros reactivos, ¿cuál es el máximo número de moles de NH4V3O8 que podrían prepararse a partir de un mol de N2 y un mol de H2? A) 0,22 B) 0,67 C) 1 D) 2 E) Ninguno 10. El etano, C2H6 se quema en presencia de oxígeno y forma CO2 y H2O. Si se consume 8,00 g de oxígeno, ¿cuántos moles de CO2 se producirán? A) 0,143 B) 0,286 C) 0,438 D) 1,00 E) Ninguno 11. Si la reacción de combustión del etano, C2H6 se realizó en un recipiente cerrado que contenía 10,0 g de etano y 10,0 g de oxígeno, ¿cuál es el número máximo de moles de agua que pueden formarse? A) 0,111 B) 0,268 C) 0,365 D) 0,534 E) Ninguno 12. Un estudiante preparó bromobenceno, C6H5Br, mediante la reacción del benceno, C6H6 con el bromo: C6H6 + Br2 C6H5Br + HBr El estudiante peso una masa de 20,0 g de benceno y 50,0 g de bromo y obtuvo 28,0 g de bromobenceno. ¿Cuál es el porcentaje de rendimiento de C6H5Br? A) 69,7% B) 57,0% C) 40,0% D) 75,6% E) Ninguno 13. La caparrosa sin refinar y comercial es una mezcla que contiene FeSO4 7H2O como fuente única de hierro. Una muestra de caparrosa de 1,000 gramos se disolvió en agua y se trató con una solución de NH3. El hierro se convirtió por completo en un precipitado de Fe(OH)3 que fue filtrado, incinerado y pesado como Fe2O3. El Fe2O3 así obtenido tuvo una masa de 0,2671 g. ¿Cuál es el porcentaje de contiene FeSO4. 7H2O en la muestra de caparrosa? A) 92,99% B) 83.01% C) 99,44% D) 77,77% E) Ninguno 14. ¿Qué masa de agua (g) se produce por la reacción del oxígeno con 25,0 g de aire que tiene 20,0 % de oxígeno en masa con C3H8? El otro único producto que se forma es el CO2. A) 3,62 B) 2,25 C) 11,2 D) 56,2 E) Ninguno 15. Dada la reacción: 2S2Cl2 + 2H2O SO2 + 4HCl + 3S ¿Cuántos gramos de SO2 podrían formarse a partir de la reacción de 67,5 g de S2Cl2 con 10,0 g de agua? A) 16,0 B) 32,0 C) 64,0 D) 128 E) Ninguno 16. Considerar la reacción: V2O5 + C + Cl2 VOCl3 + COCl2 Empezando con un mol de cada uno de los reactivos, el número máximo de moles de VOCl3 que puede prepararse es: 17. 68 A) 1 B) 1(1/2) C) 1/3 D) 1/6 E) Ninguno Si se balancea la siguiente expresión: NH3 + O2 NO2 + H2O la ecuación resultante muestra que 1,00 moles de NH3 requieren ...... moles de O2. A) 1,25 B) 1,33 C) 2,67 D) 1,75 E) Ninguno Unidad 7 Gases Ideales 7.1 Introducción Un gas es una sustancia en uno de los tres estados de agregación de la materia ordinaria, que son sólido, líquido y el gaseoso. Los sólidos tienen una forma y volumen bien definidos y son difíciles de comprimir. Los líquidos fluyen libremente y tienen volumen definido pero no forma. Los gases se expanden libremente hasta llenar el recipiente que los contiene, no tienen forma ni volumen definido. Su densidad es mucho menor que la de los líquidos y sólidos. 7.2 Propiedades de los gases Los gases se difunden en todas direcciones, por lo que dos o más gases se pueden mezclar fácilmente en cualquier proporción. Por su constante movimiento desordenado,(movimiento browniano) las moléculas chocan contra las paredes del recipiente, ejerciendo una presión P, cuya magnitud depende de la temperatura T, y el volumen del recipiente que los contiene V. Por lo tanto un gas esta en función a tres parámetros, presión, volumen y temperatura. Es decir: V = f(n,P,T) Un gas tiene un comportamiento ideal cuando no se toma en cuenta el volumen propio de las moléculas por ser muy pequeñas, solo se considera el volumen del recipiente, las fuerzas de atracción y repulsión son muy pequeñas por lo tanto no se consideran. Un gas ideal es hipotético, se lo considera así por fines de simplicidad y entonces cumple con las ecuaciones de los gases ideales. Problemas Resueltos 1. En los países que emplean el sistema métrico, la presión atmosférica en los informes del clima, se expresa en unidades de kPa. Convertir una presión de 735 torr a kPa. Solución: 101, 3 kPa 735 torr = 98 kPa 760 torr 69 QUÍMICA tecnología Texto guía para el ingreso a la facultad de ciencias y Problemas Propuestos 1. 2. 3. 7.3 Expresar una presión de 650 torr en la siguiente unidad: a) cm de Hg b) atm c) Pa Expresar la atmósfera en: a) bar b) libras fuerza por pulgada cuadrada La presión de vapor del agua a 25°C es 23,8 torr. Expresar en: a) atm b) kPa Leyes de los Gases: Ley de Boyle, Gay-Lussac, y Combinada Ley de Boyle-Mariotte Afirma que el volumen de un gas a temperatura constante es inversamente proporcional a la presión. Ósea que a mayor presión menos volumen Matemáticamente: V 1/P P1V1 = P2 V2 a temperatura constante Ley de Charles Afirma que el volumen de un gas a presión constante es directamente proporcional a la temperatura absoluta. Matemáticamente: V T V1 V2 = T1 T2 a Presión constante Ley de Gay- Lussac Esta ley relaciona la variación de la presión con la temperatura cuando de mantienen constantes el volumen y la cantidad de sustancia, matemáticamente se puede expresar: PT P1 P2 = T1 T2 a Volumen constante Ley Combinada de los Gases La combinación de estas dos leyes proporciona la ley combinada: PV/T = K Para una condición inicial y final tenemos: 70 Gases ideales. P1V1 P2 V2 = T1 T2 Problemas Resueltos 2 1. La presión de nitrógeno gaseoso en un tanque de 12,0 L a 27°C es de 2300 lb/plg . ¿Qué 2 volumen debe tener este gas a 1 atm de presión (14,7 lb/pie ), si la temperatura permanece constante? Solución: condiciones presión volumen temperatura 2 12,0 L 27°C iniciales 2300 lb/plg 2 V 27°C finales 14,7 lb/plg 2 2 Según la ley de Boyle V2 1/P2 y como P2 es menor que 2300 lb/plg entonces el volumen es mayor que 12,0 L. Aplicando la ecuación: P2V2 = P1V1 2300 lb / plg2 P 1 V 2 V1 = 12, 0 L P 14, 7 lb / plg2 = 1878 L 2 2. Un gran tanque de almacenamiento de gas natural está dispuesto de modo que la presión se mantenga constante a 2,20 atm. En un día frío, cuando la temperatura es - 15°C, el volumen 3 en el tanque es 28 500 pies . ¿Cuál es el volumen de la misma cantidad de gas en un día cálido, cuando la temperatura es de 31°C? Solución: condicione presió volumen temperatura 3 s n 2,2 atm 28 500 pies -15 + 273 = 258 iniciales K = 304K 2,2 atm V2 31 + 273 finales A presión constante, el V2 T2, es decir, si la temperatura aumenta, el volumen es mayor que 3 28 500 pies . De la ecuación: V 2 V1 T2 T1 Se despeja el V, se tiene: T 3 2 3 304 K V 2 V1 =33581 pies T = 28500 pie 258 K 1 3. La presión de un gas en un lata de aerosol es de 1,5 atm a 25°C. Considerando que el gas dentro de la lata obedece la ecuación de los gases ideales. ¿Cuál será la presión si la lata se calienta a 450°C? Solución: condiciones presión volumen temperatura 1,5 atm cte 25 + 273 = 298 K iniciales P2 cte 450 + 273 = 723 K finales Si la temperatura aumenta la P2 es mayor que 1,5 atm. T 723 K 2 P 2 P1 = 3,6 atm T = 1, 5 atm 298 K 1 Problemas Propuestos 1. 2. La presión del gas que ocupa el volumen de 2,5 L es igual a 121,6 kPa. ¿Cuál será la presión si el gas se comprime hasta el volumen de 1 L sin cambiar la temperatura? El volumen de una muestra de gas es 500 mL a una presión de 1,50 atm. Si la temperatura permanece constante, ¿cuál es el volumen de la muestra a una presión de 0,500 atm? 71 QUÍMICA tecnología 3. 4. 5. 6. 7. 8. Texto guía para el ingreso a la facultad de ciencias y Una muestra de helio ocupa 146 mL a 30°C y a 752 torr. ¿Qué volumen ocupará a la misma presión a -200 °C? Una muestra de etano, ocupa 316 mL a 45°C. ¿A que temperatura en °C sería preciso calentarla para que ocupe 485 mL a la misma presión? La temperatura del nitrógeno en un balón de acero, a la presión de 12,5 MPa, es igual a 17°C. La presión límite para este balón es de 20,3 MPa. ¿A qué temperatura la presión del nitrógeno llegará a su valor límite? En un balón de acero de 12 L de volumen se encuentra oxígeno a 0°C y la presión de 15,2 MPa. ¿Cuál es la presión del oxígeno en este recipiente cuando la temperatura es 25°C? Una muestra de 326 mL de gas ejercen presión de 1,67 atm a 12°C. ¿Qué volumen ocupará a 100°C y a una atm de presión? Se tiene 425 mL de nitrógeno en c.n. ¿A qué presión total ocupará 475 mL si la temperatura pasa a 293 K? 7.4 Ecuación de Estado de los Gases Ideales Ecuación de estado Se ha demostrado que: P nT/V Introduciendo una constante de proporcionalidad R, conocida como constante universal de los gases, la ecuación matemática es: PV = nRT R = 0,082 Atm L/mol ºK R = 62,4 torr L/mol ºK P: 1Atm = 760 mmHg = 760 Torr. n = m/M m = masa; n = numero de moles M = peso molecular Problemas Resueltos 1. El bulbo de un foco con volumen de 2,6 mL, contiene O2 gaseoso a presión de 2,3 atm y a una temperatura de 26°C. ¿Cuántos moles de O2 contiene el bulbo? Solución: PV = nRT n= PV 2,3 atm 2,6 x 10 -3 L mol K -4 = = 2,4 10 moles O2 RT 0,082 atm L (26 + 273) K Podemos fabricar un termómetro exótico pero muy exacto, midiendo el volumen de determinada cantidad de gas, a una presión conocida. Si 0,200 moles de Helio ocupan un volumen de 64,0 L a una presión de 0,150 atm, ¿cuál es la temperatura del gas? Solución: 2. T= 3. PV 0,150 atm 64,0 L mol K = 585 K ó 312,3°C nR 0, 200 moles 0, 082 atm L Calcular cada una de las siguientes cantidades para un gas ideal: -2 a) La presión, en atm, si 8,25 10 moles ocupan 174 mL a - 24°C. b) La cantidad de gas en moles si 1,50 L a -15°C tiene una presión de 2,08 atm. c) El volumen del gas, en litros, si 2,38 moles tienen una presión de 350 torr a una temperatura de 22°C. -2 d) La temperatura absoluta del gas que tiene 9,87 10 moles y ocupan un volumen de 164 mL a 722 torr. Solución: 72 Gases ideales. -2 a) P nRT 8,25 10 moles 0,082 atm L (-24 + 273) K = 9,68 atm V 0,174 L PV 2,08 atm 1,5 L mol K = 0,147 moles b) n = = RT 0,082 atm L (-15 + 273) K nRT 2, 38 moles 62, 4 torr L (22 + 273) K = 125,2 L c) V = P 350 torr mol K d) T = PV 722 torr 0,164 L mol K = 19 K nR 9,87 10 -2 moles 64,2 torr L 4. Una inspiración profunda de aire tiene un volumen de 1,05 L a una presión de 740 torr ya a la temperatura corporal de 37°C. Calcular el número de moléculas en cada respiración. Solución: n= 5. PV 740 torr 1, 05 L mol K = = 0,040 moles de aire RT 62, 4 torr L (37 + 273) K 6,02 10 23 moléculas aire = 2,42 1022 moléculas de aire 0,040 moles aires 1 mol de aire Un anunció de neón esta hecho con un tubo cuyo diámetro interno es 2,0 cm y cuya longitud es 4,0 cm. Si el anuncio contiene neón a presión de 1,50 torr a 35°C, ¿Cuántos gramos de neón hay en este anuncio? Solución: 2 2 3 VNe = πr h = π (2,0 cm/2) 4,0 cm = 12,56 cm = 0,01256 L n PV RT 1.5 torr 0.01256L 9.8.10 7 moles.de.neon torr.L 62.4 35 273K . mol K 20 g Ne -5 9, 8 10 7 moles Ne = 1.96 10 g Ne 1 mol Ne 6. a) Calcular la densidad del trióxido de azufre SO3 gaseoso a 2,5 atm y 25°C. b) Calcular la masa molecular de un gas si 0,835 g ocupan 800 mL a 400 torr y 34°C c) Calcular la masa molecular de un gas si tiene una densidad de 2,18 g/mL a 66°C y 720 torr. Solución: PM 2, 5 atm 80 g mol K = = 8,18 g/L RT 0, 082 atm L mol 298 K PV 400 torr 0,8 L mol K b) n = = = 0,0167 moles RT 62, 4 torr L (34 + 273) K 1 mol Gas 0, 0167 moles Gas = 0,835 g Gas X g Gas a) = 7. X = 50 c) M = ρ RT = 2,18 g 62,4 torr (66 + 273) K = 64 g/mol Masa molecular = 64 P L 720 torr mol K El ciclopropano, un gas que se utiliza con oxígeno como anestésico general, está compuesto de 85,7% C y 14,3% H en masa. Si 1,56 g de ciclopropano ocupa un volumen de 1,00 L a 0,984 atm y 50°C, ¿cuál es la fórmula molecular del ciclopropano. Solución: C: 85,7 ÷ 12 = 7,29 ÷ 7,29 = 1 H: 14,3 ÷ 1 = 14,3 ÷ 7,29 = 2 Fórmula empírica CH2 de masa molecular 14 Sea X la masa molecular verdadera del ciclopropano 73 QUÍMICA tecnología Texto guía para el ingreso a la facultad de ciencias y 1, 00 L 0, 984 atm = X = 42 1, 56 g ciclo 0,082 atm L (50 + 273) K 1 mol ciclo X g ciclo mol K 42 Número de fórmula empírica = 3 14 Fórmula molecular: C3H6 8. La densidad del gas respecto al aire es igual a 1,17. Determinar la masa molecular del gas. Solución: gas aire = Mgas Maire Si la masa molecular del aire es 29 Mgas = 1,17 x 29 = 34 Problemas Propuestos 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 74 ¿Qué presión ejerce una muestra de 9,67 g de helio en un recipiente de 3,00 L a 210°C? La masa de un matraz de 750 mL de capacidad lleno de oxígeno a 27°C, es igual a 83,3 g. La masa del matraz vacío constituye 82,1 g. Determinar la presión del oxígeno. ¿Cuál es la densidad del NH3 a 100°C y 1,15 atm? La densidad en condiciones normales de un gas es de 1,429 g/L. ¿Cuál será la densidad a 303 K y 735 torr? ¿Cuál es el volumen molar del amoníaco a 3 atm de presión y 20°C de temperatura? ¿Cual es la masa molecular de una sustancia, de la que 425 mL a 448 K y 800 torr tiene una masa de 3,67 g? ¿Cuál es la masa molecular de un gas ideal si 5,56 g del mismo ejercen presión de 1672 torr en un bulbo de 1425 mL a 86°C? Una muestra de 6,76 g de un gas ideal ocupan un volumen de 5,04 L a 22°C y 750 torr. ¿Cuál es su masa molecular? La densidad de un gas es de 2,083 g/L a 52°C y 741 torr. Calcular la masa molecular del gas. La densidad del etileno respecto al oxígeno es igual a 0,875. Determinar la masa molecular del gas. A cierta temperatura, la densidad del vapor de azufre respecto al nitrógeno es igual a 9,14. ¿De cuántos átomos consta la molécula de azufre a esta temperatura? ¿Cuál es la masa molecular de un gas si su densidad en c.n. es de 2,01 g/L? Se evaporó una muestra de líquido con punto de ebullición de 56,5°C en un aparato de Dumas colocando el bulbo de 300 mL en agua hirviendo. La presión barométrica fue de 733 torr. El punto de ebullición del agua a esta presión es de 99°C. El bulbo lleno únicamente de aire, tiene una masa de 156,872 g; lleno con la masa de vapor tiene una masa de 157,421 g. Determinar la masa molecular del líquido. En la combustión de 1,482 g de un hidrocarburo se forman 1,026 g de H2O y 11,400 g de carbonato de calcio, CaCO3. al absorber el dióxido de carbono en una solución de hidróxido de calcio. A 100 °C y presión de 748 torr en un matraz de 246,3 mL de capacidad contiene 0,620 g de sustancia en estado de vapor. Hallar la fórmula molecular de este hidrocarburo. A - 14 °C, ¿cuántos moles de CH4 ejercen una presión de 518 torr en un recipiente de 10,7L? a) ¿Cuántos moles de nitrógeno hay en 328 mL de gas a una presión de 3040 torr a 527°C? b) ¿Cuántos átomos de nitrógeno contiene la muestra? 3 Calcular la masa de 1 m de aire a 17°C y la presión de 83,2 kPa. Gases ideales. 7.5 Ley de las Presiones Parciales de Dalton y Recolección de Gases sobre agua Ley de Dálton Establece que la presión Total P, es la suma de las presiones parciales en una mezcla de gases que están confinados en un recipiente. Matemáticamente: Ptotal = P1 + P2 + P3 + ....... La presión ejercida por un gas es proporcional al número de moléculas presentes e independientes de su naturaleza. En general la presión parcial de cualquier componente en una mezcla se encuentra multiplicando la presión total por la fracción molar del componente. Pi = PT * Xi La fracción molar se define como el número de moles de un componente entre el número total de moles de todos los componentes: Xi = ni / nT nT = ni + nj + nk + ..... Recolección de gases sobre agua (gases húmedos) Con frecuencia es conveniente recolectar gases por desplazamiento de líquidos como el agua. Los gases que se recolectan no están puros, si no que consisten en una mezcla del gas, y el vapor del liquido empleado. Por tanto aplicando la ley de Dalton se tiene: PT = PV + Pgas Pgas = PT – PV Donde: PT = Presión Total; PV = Presión de vapor del agua; Pgas = Presión del gas seco Nota: PV (Presión de vapor del agua a una determinada temperatura) buscar en una tabla a una determinada Temperatura. Problemas Resueltos Una mezcla gaseosa que contiene 5,00 g de N2; 2,00 g de O2 y 1,20 g de Ar está confinada en un volumen de 500 mL a 27°C. a) Calcular la presión parcial del O2 en la mezcla. b) Calcular la presión total de la mezcla. Solución: 1. 75 QUÍMICA tecnología Texto guía para el ingreso a la facultad de ciencias y 1 mol N 2 = 0,179 moles N 5, 00 g N2 2 28 g N 2 1 mol O 2 2, 00 g O 2 32 g O = 0, 0625 moles O 2 2 1 mol Ar 1, 20 g Ar = 0, 03 moles Ar 40 g Ar moles totales = 0,179 moles + 0,0625 moles + 0,03 moles = 0,2715 moles nRT 0, 0625 moles 0, 082 atm L (27 + 273) K a) P O = 3, 075 atm 2 V 0, 500 L mol K 0,2715 moles 0,082 atm L 300 K b) P T = = 13, 4 atm mol K 0,5 L 2. Una mezcla de gases contiene 3,50 g de N2; 1,30 g de H2 y 5,27 g de NH3. Si la presión total de la mezcla es 2,50 atm, ¿cuál es la presión parcial de cada componente de la mezcla? Solución: 1 mol N 2 3, 50 g N 2 28 g N = 0,125 moles N 2 2 1 mol H 2 1, 30 g H2 2 g H = 0,65 moles H 2 2 1 mol NH 3 5, 27 g NH 3 17 g NH = 0,31 moles NH 3 3 moles totales = 0,125 moles + 0,65 moles + 0,31 moles = 1,085 moles 0,125 moles P N 2 2,50 atm 0,288 atm 1,085 moles 0,65 moles P H2 2,50 atm 1.498 atm 1,085 moles P del NH3 = 2,50 atm - 0,288 atm - 1,498 atm = 0,714 atm 3. Una mezcla de N2 gaseoso se mantenía originalmente a 4,60 atm en un recipiente de 1,00 L a 26°C. Se transfiere a un recipiente de 10,0 L a 20°C. Se transfiere al mismo recipiente una cantidad de O2 gaseoso que originalmente estaba a 3,50 atm y 26°C en un recipiente de 5,00 L. ¿Cuál es la presión total en el nuevo recipiente? Solución: 1, 00 L 293 K P N 2 = 4,60 atm = 0, 45 atm 10, 0 L 299 K 5,0 L 293 K P O 2 = 3,50 atm = 1,71 atm 10, 0 L 299 K 4. Presión total = 0,45 atm + 1,71 atm = 2,16 atm. Suponer que se recogen 0,200 L de oxígeno gaseoso sobre agua. La temperatura del agua y del gas es 26°C, y la presión atmosférica es 750 torr. a) ¿Cuántos moles de O2 se han recogido? b) ¿Qué volumen debe ocupar el O2 gaseoso recogido, cuando esté seco, a la misma temperatura y presión? Solución: a) P oxígeno = 750 torr - 25 torr = 725 torr n= 725 torr 0,200 L mol K 7,77 10 -3 moles 62,4 torr L 299 K 725 torr 0,193 L 750 torr b) V O 2 = 0, 200 L 76 Gases ideales. Problemas Propuestos 1. 2. 3. 4. 5. 6. 7. 8. Se mezclan 0,04 L de nitrógeno que se halla bajo la presión de 96 kPa y 0,02 L de oxígeno. El volumen total de la mezcla es de 0,06 L y la presión total constituye 97,6 kPa. ¿Cuál fue la presión del oxígeno tomado? Una mezcla de 0,770 g de N2O y 0,770 g N2 ejerce una presión de 0,5 atm. ¿Cuál es la presión parcial de cada gas? Una mezcla de 0,300 g de He y 0,505 g de Ne ejerce una presión de 0,250 atm. ¿Cuál es la presión parcial de cada gas? Se recoge gas hidrógeno sobre agua a 25 °C. El volumen del gas recogido es de 55 mL y la presión barométrica es de 758 torr. Si el gas estuviera seco y medido en condiciones normales, ¿cuál sería su volumen? Una muestra de 500 L de aire seco a 25 °C y 750 torr de presión se hace burbujear lentamente a través de agua a 25 °C y se recoge en un gasómetro cerrado con agua. La presión del gas recogido es de 750 torr. ¿Cuál es el volumen del gas húmedo? Una muestra de 100 mL de gas seco medido a 20 °C y a 750 torr de presión, ocupó un volumen de 105 mL cuando se le recogió sobre agua a 25 °C y a 750 torr. Calcular la presión de vapor del agua a 25 °C. Se quema en un tubo de combustión 0,580 g de un compuesto que contiene carbono, hidrógeno y oxígeno, y se obtiene 1,274 g de CO2 y 0,696 g de H2O. Al volatilizar 0,705 g del compuesto en un aparato de Victor Meyer se desplazan 295 mL de aire medidos sobre agua a 28 °C y 767 torr. A partir de estos datos averiguar la fórmula molecular de este compuesto. Se investiga la fórmula molecular de la urea. Al oxidar 1,515 g de sustancia se forman 1,110 g de CO2 y 0,909 g de H2O. Al liberar el nitrógeno contenido, 0,2536 g de urea dan lugar a 102,6 mL de nitrógeno medidos sobre agua a 17 °C y 758 torr. Para la determinación de la masa molecular, 0,169 g de sustancia desalojan en un aparato de Victor Meyer 68 mL de aire medidos en aquellas condiciones de temperatura y presión. A partir de estos datos calcular la fórmula molecular de la urea. 7.6 Ley de Difusión de Graham La efusión, es el proceso por el cual las moléculas de un gas escapan a través de un pequeño orificio. La difusión, es el movimiento cinético de traslación de un grupo de moléculas dentro de otro grupo. Se ha comprobado que las velocidades de ambos procesos son inversamente proporcionales a la raíz cuadrada de la densidad del gas. Así para dos gases A y B la ecuación de la ley de Graham VA VB es: B A v = velocidad de difusión de las moléculas o moles por unidad de tiempo. = densidad del gas como: M entonces: VA VB MB MA Problemas Resueltos 1. Calcular la relación de las velocidades de difusión del N2 y el O2. Solución: vN 2 vO 2 = MO 2 MN 2 = 32 1, 069 28 77 QUÍMICA tecnología Texto guía para el ingreso a la facultad de ciencias y 2. Si un gas desconocido de difunde a una velocidad que es 0,468 veces la del O2 a la misma temperatura, ¿cual es la masa molecular de este gas desconocido? Solución: v 2 1 2 O 2 M gas = M O 2 = 32 = 146 v gas 0, 468 Problemas Propuestos 1. 2. 3. Bajo las condiciones de temperatura y presión, la densidad de un gas es 1,25 g/L. Un volumen de 15,0 mL de gas X se difunde a través de un aparato en 1,00 segundo. La velocidad de difusión de un gas Y a través del mismo aparato es 20,4 mL/ segundo. Calcular la densidad del gas bajo las mismas condiciones experimentales. Una sala de conferencias contiene 12 hileras de asientos. Si un profesor suelta gas hilarante, N2O, en el extremo anterior de la sala y gas lacrimógeno, C6H11OBr, en el extremo posterior, al mismo tiempo, ¿en qué hilera empezarán los estudiante a reír y llorar simultáneamente? Calcular la masa molecular de un gas si un volumen dado del gas se difunde a través de un aparato en 300 segundos y el mismo volumen de metano, CH4 bajo las mismas condiciones de temperatura y presión, se difunde en el mismo aparato en 219 segundos. 7.7 Estequiometría Gaseosa Problemas Resueltos 1. El hidruro de calcio, CaH2, reacciona con el agua para formar hidrógeno gaseoso: CaH2(s) + 2 H2O(l) Ca(OH)2(ac) + 2 H2(g) Algunas veces se utiliza esta reacción para inflar balsas salvavidas, globos climatológicos y dispositivos semejantes, en donde se desea un medio sencillo para generar H2. ¿Cuántos gramos de CaH2 son necesarios para generar 10,0 L de H2 si la presión parcial del H2 es 740 torr a 23°C? Solución: n H2 = 2. PV 740 torr 10,0 L mol K = 0, 4 moles H 2 RT 62, 4 torr L 296 K 1 mol CaH 42 g CaH 2 2 0,4 moles H2 2 moles H = 8,4 g CaH 2 2 1 mol CaH 2 Se puede utilizar magnesio como iniciador en recintos evacuados, para reaccionar con las - últimas trazas de oxígeno. Si un recinto de 0,382 L tiene una presión parcial de O2 de 3,5 x 10 6 torr a 27°C, ¿qué masa de magnesio reaccionar de acuerdo a la siguientes reacción? 2 Mg(s) + O2(g) 2 MgO(s) Solución: 0,382 L 3,5 10 -6 torr mol K n O2 = = 7,14 10 -11 moles O 2 62,4 torr L 300 K 2 moles Mg 24,3 g Mg 7,14 10-11 moles O2 = 3,5 10 -9 g Mg 1 mol O 1 mol Mg 2 3. La degradación metabólica de la glucosa C6H12O6, en nuestro organismo produce CO2, el cual es expelido por nuestros pulmones como gas: C6H12O6(s) + 6 O2(g) 6 CO2(g) + 6 H2O(l) Calcular el volumen de CO2 seco, producido a la temperatura corporal (37°C) y a 1 atm, cuando se consumen 5,00 g de glucosa en esta reacción. Solución: 78 Gases ideales. 1 mol C H O 6 moles CO 6 12 6 2 5,00 g C 6 H12 O6 180 g C H O = 0,167 moles CO 2 6 12 6 1 mol C6 H12O6 0,167 moles 0, 082 atm L 310 K V CO 2 = = 4,25 L mol K 1 atm 4. El sulfato de amonio, (NH4)2SO4, un fertilizante importante, se puede preparar por la reacción del amoniaco con el ácido sulfúrico: 2 NH3(g) + H2SO4(ac) (NH4)2SO4(ac) ¿Calcular el volumen de NH3, necesarios a 20°C y 25 atm para que reaccione con 150 kg de H2SO4? Solución: 1 mol H SO 2 moles NH 2 4 3 150000 g H2 SO 4 98 g H SO = 3061,2 moles NH3 2 4 1 mol H 2 SO4 3061,2 moles 0, 082 atm L 293 K V NH3 = = 2942 L NH3 mol K 25, 0 atm 5. El hidrógeno gaseoso se produce cuando el cinc reacciona con el ácido sulfúrico: Zn(s) + H2SO4(ac) ZnSO4(ac) + H2(g) Si se recogieron 124 mL de H2 húmedos, sobre agua a 24°C y a la presión barométrica de 725 torr, ¿cuántos gramos de cinc se han consumido? Solución: P hidrógeno seco = 725 torr - 22,38 torr = 702,62 torr n H2 = 702,62 torr 0,124 L mol K = 4,7 10 -3 moles H 2 62,4 torr L 297 K 1 mol Zn 65,39 g Zn 4,7 10 -3 moles H 2 = 0,307 g Zn 1 mol H 2 1 mol Zn 6. Algunas veces se generan pequeñas cantidades de oxígeno gaseoso calentando en el laboratorio KClO3 en presencia de MnO2 como catalizador: 2 KClO3(s) 2 KCl(s) + 3 O2(g) ¿Qué volumen de O2 se recogen sobre a 23°C, si reaccionan 0,2890 g de KClO3 a la presión barométrica de 742 torr? Solución: 1 mol KClO 3 3 moles O2 0,2890 g KClO 3 122,45 g KClO 3 2 moles KClO3 VO2 = 3,54 10 -3 moles O 2 3,54 10 -3 moles 62,4 torr L 296 K = 0,090 L (742 torr - 21,07 torr) mol K Problemas Propuestos 1. 2. 3. Calcular la cantidad de giobertita, que contiene 93,8 % de MgCO3, que se necesita para obtener 5 L de dióxido de carbono medidos a 12 °C y 743 torr de presión, por su reacción con un exceso de ácido clorhídrico. La reacción es: MgCO3 (s) + 2 HCl(ac) MgCl2(ac) + CO2(g) + H2O(g) La síntesis industrial del ácido nítrico comprende la reacción del dióxido de nitrógeno gaseoso con agua: NO2(g) + H2O(l) HNO3(ac) + NO(g) ¿Cuántos moles de ácido nítrico se pueden preparar utilizando 450 L de NO2 a 5,00 atm de presión y a una temperatura de 298 K? En la primera etapa del proceso industrial para fabricar ácido nítrico, el amoníaco reacciona con el oxígeno a 850°C y 5,0 atm, en presencia de un catalizador apropiado. Se efectúa la siguiente reacción: NH3(g) + O2(g) NO(g) + H2O(g) ¿Cuántos litros de NH3 a 850°C y 5,00 atm de presión se requieren para reaccionar con 1,00 mol de O2 en esta reacción? 79 QUÍMICA tecnología Texto guía para el ingreso a la facultad de ciencias y 4. Una muestra de 2,55 g de nitrito de amonio, NH4NO2, se calienta en un tubo de ensayo. El nitrito de amonio se descompone de acuerdo a la reacción: NH4NO2(s) N2(g) + 2 H2O(g) ¿Qué volumen de N2 se recogerá cuando la temperatura del agua y del gas es 26°C y la presión barométrica es 745 torr? 5. Una muestra de 1,60 g de KClO3 se calienta para producir O2 de acuerdo con la ecuación: KClO3(s) KCl(s) + O2(g) Considerar una descomposición completa y un comportamiento de gas ideal, ¿qué volumen de O2 se recoge sobre agua a 26°C y 740 torr de presión? El carburo de lantanio(III), La2(C2)3(s), reacciona con agua para producir acetileno gaseoso, C2H2(g) y La(OH)3(s) a) Escribir la ecuación química igualada para esta reacción. b) ¿Qué volumen de acetileno medios a 35 °C y 0,30 atm se obtendrá por la reacción de 0,50 g de carburo de lantanio(III)? 6. 7.8 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 80 Problemas Adicionales Se recoge un volumen de 400 mL de oxigeno a una presión de 93,3 kPa. ¿Cuál será el volumen de la misma masa de gas si la presión cambia a 107 kPa? Si en un día en que la presión barométrica es de 102 kPa se recoge O2 gaseoso sobre agua y su presión parcial es 2,53 kPa, ¿cuál es la presión parcial del O2 gaseoso? Bajo determinadas condiciones de presión y temperatura, cierto gas ocupa un volumen de 115 mL. ¿Qué volumen ocupará si la presión se disminuye a la mitad y la temperatura absoluta se dobla? Si bajo determinada temperatura y presión, 25 g de CH4 ocupan un volumen de 30 L. ¿Qué volumen ocupan 50 g de CO2 a la misma presión y temperatura? 5 mg de un gas X ocupa un volumen de 3,17 mL a -10°C y a 0,85 atm. Hallar la masa molecular del gas X. En ciertas condiciones de presión y temperatura, la densidad del nitrógeno es de 1,23 g/L. Bajo las mismas condiciones, la densidad del gas Z es de 1,15 g/L. Hallar la masa molecular de Z. Para inflar completamente un globo, se requieren 3 g de un gas desconocido a una temperatura de 25°C. ¿Qué masa de este gas, a una temperatura de 5°C se requerirá para inflar el globo hasta la mitad de su volumen, suponiendo que la presión se mantiene constante? ¿Qué volumen en litros ocuparán 300 g de oxígeno, cuando se recogen sobre agua a la temperatura. de 20°C y a 735 torr? Una masa de H2, recogida sobre agua a 25°C y bajo una presión de 750 torr, ocupa un volumen de 245 mL. Calcular el volumen de dicha masa de H2, seca. Calcular la temperatura a la cual 8 g de aire se encuentran contenidos en un recipiente de 3 L, a la presión de 600 torr. Calcular la densidad del C3H8 a 23°C y 570 torr. Un gas ocupa 600 mL a 100°F y a 720 torr. ¿Cuál será su volumen en c.n.? 3 Un cilindro de acero en el cual se comprime gas helio, tiene un volumen interior de 1,20 dm . 3 Al abrirlo y trasvasar el gas a un tanque de almacenamiento cuyo volumen es de 120 dm , la presión del helio al interior del cilindro es de 800 torr. ¿A qué presión en torr. se hallaba comprimido el gas dentro del cilindro? 10 L de hidrógeno a 1 atm de presión están contenidos en un cilindro que tiene un pistón móvil. El pistón se mueve hasta que la masa de gas ocupa un volumen de 2 L, a la misma temperatura. Calcular la presión dentro del cilindro. Una masa de gas helio ocupa un volumen de 100 L a 20°C. Si el volumen ocupado por el gas se hace el triple, ¿Cómo debe variar la temperatura para que la presión permanezca constante? Gases ideales. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. Una botella cilíndrica de 25 L. contiene 14,2 moles de helio a 40°C. ¿Cuál es la presión en atmósferas a la que está sometido dicho gas? Una botella cilíndrica que contiene 85 g de vapor de agua a 200°C, se encuentra a una presión de 4 atm. ¿Cuál es el volumen en litros de la botella? Una muestra de 2 L de helio, a 27°C, se encuentra a una presión que es el doble de la que soporta una muestra de gas H2, a 227°C , conteniendo además el triple de moléculas de H2. Calcular el volumen en litros ocupado por la muestra del gas H2. 20 L de C2H6 y 20 L de O2, en recipientes separados, en las mismas condiciones de temperatura y presión. Indicar cuál de los dos es el más ligero y cuantas veces. 820 mL de un gas desconocido, a 35°C de temperatura y 800 torr de presión, tiene una masa de 2,46 g ¿Cuál es su masa molecular? La presión de la atmósfera, 100 millas más arriba de la superficie terrestre, es aproximada-6 mente 2x 10 torr y la temperatura cercana a -180°C. ¿Cuántas moléculas contendrá 1 mL de cierto gas en esas condiciones? Si a una cierta temperatura la densidad del He es de 0,026 g/L, ¿cuál será la densidad del Ne en las mismas condiciones? Se ha encontrado que un gas desconocido tiene una densidad que es de 2,5 veces mayor que la del oxígeno, en las mismas condiciones de temperatura y presión. ¿Cuál es su masa molecular? Calcular la cantidad de óxido de cobre(II), CuO, que podrá reducirse por el hidrógeno que se desprende al atacar 100 g de aluminio por un exceso de ácido sulfúrico. Al + H2SO4 Al2(SO4)3 + H2 CuO + H2 Cu + H2O Un frasco cuyo volumen es 0,85 L se llena con dióxido de carbono gaseoso a la presión de 1,44 atm y la temperatura de 312 K. Una solución de hidróxido de litio, LiOH de volumen despreciable se introduce en el frasco. Eventualmente la presión del CO2 se reduce a 0,56 atm porque alto del CO2 se consume en la reacción: CO2(g) + LiOH(ac) Li2CO3(ac) + H2O(l) ¿Cuántos gramos de carbonato de litio se forman mediante este proceso? Considere que la temperatura permanece constante. Una mezcla de gases contiene 4,46 moles de neón; 0,74 moles de argón y 2,15 moles de xenón. Calcular las presiones parciales de los gases si la presión total es 2,00 atm a cierta temperatura. 7.9 Autoevaluación: Preguntas Tipo Examen de Ingreso 1. 2. 3. 4. 5. 6. Las condiciones normales son: A) 0°C y 14,7 torr B) 32°F y 76 cm de Hg C) 273°C y 760 torr D) 4°C y 7,6 m de Hg E) Ninguno Si 0,0920 g de un metal M, sustituyen 2,00 10–3 moles de H2 de un ácido y produce iones M1+ en la reacción, ¿Cuál es la masa atómica del metal? A) 6,94 B) 39,1 C) 23,0 D) 108 E) Ninguno ¿Qué volumen (L) ocuparía la muestra del gas que ocupa 0,500 L a 170 torr y 25°C si la temperatura se mantuviera constante y la presión cambiará a 100 torr? A) 0,850 B) 0,670 C) 0,500 D) 0,330 E) Ninguno ¿Cuál sería la presión en torr, si la muestra de un gas que ocupa 0,500 L a 170 torr y 25°C se pusiera en un recipiente de 65,0 mL a 25°C? A)1300 B) 670 C) 495 D) 235 E) Ninguno Una muestra dada de un gas está a 270 K y 360 torr. Si tal muestra de gas se calienta, a volumen constante, a 480 K y 640 torr, la velocidad media de las moléculas aumentaría en un factor de: A) 1,78 B) 1,33 C) 1,44 D) 3,16 E) Ninguno ¿Qué volumen de hidrógeno, medido a la presión y temperatura, se requeriría para producir un volumen de amoníaco a partir de sus elementos? A) 3 B) 2 C) 3/2 D) 1 E) Ninguno 81 QUÍMICA tecnología 7. Texto guía para el ingreso a la facultad de ciencias y Considerar un dispositivo que se usa para recolectar hidrógeno en agua a 25°C. Si la presión atmosférica es 757 torr, y el mercurio es 13,6 veces más denso que el agua, la presión parcial en torr del hidrógeno es: A) 748 B) 732 C) 718 D) 713 E) Ninguno 8. ¿Cuál es la densidad (g/L) del N2 a 227°C y 5 atm de presión? A) 2,93 B) 0,293 C) 2,30 D) 3,41 E) Ninguno 9. Cuando los gases amoníaco y cloruro de hidrógeno entran en contacto, se deposita instantáneamente cloruro de amonio sólido. Suponer que estos gases se liberan al mismo tiempo en los extremos opuesto de un tubo de difusión de un metro. ¿En qué punto se debería observar, aproximadamente, el primer depósito de cloruro de amonio en cm? A) – 45 B) 50 C) 59 D) 68 E) Ninguno 10. El volumen (L) ocupado por 1,00 g de propano C3H8, en c.n. es: A) 0,508 B) 1,01 C) 0,988 D) 22,4 E) Ninguno 11. Un cierto gas tiene una densidad de 1,96 g/L en c.n. ¿Cuál de los gases siguientes podría ser? A) O2 B) SO C) CO2 D) AsH3 E) Ninguno 12. Una mezcla de N2 y O2 en un recipiente de 200 mL ejerce una presión total de 720 torr a 35°C. Si hay 0,0020 moles del gas N2, ¿cuál es la fracción molar del gas N2? A) 0,73 B) 0,50 C) 0,27 D) 0,10 E) Ninguno 13. En una mezcla gaseosa a 2,0 atm de presión, el 15% de las moléculas son de O2, 35% son de nitrógeno, 45% de monoóxido de carbono y el resto son dióxido de carbón. ¿Cuál es la presión (atm) parcial del nitrógeno? A) 0,35 B) 0,70 C) 2,0 D) 1,3 E) Ninguno 14. Una mezcla de hidrógeno y oxígeno se hace pasar sobre CuO caliente, en exceso, lo que ocasiona que todo el hidrógeno sea eliminado por la reacción: CuO(s) + H2(g) Cu(s) + H2 (g) Partes del oxígeno se elimina por la reacción con el cobre: Cu(s) + O2 (g) CuO(s) Si 100 mL de la mezcla original, medidos a 750 torr y 298 K, producen 85,0 mL de oxígeno seco, medidos en las mismas condiciones, ¿cuál fue la presión (torr) parcial del H2 en la mezcla original? A) 75 B) 113 C) 190 D) 637 E) Ninguno 15. Si el aire contiene 21 moles de oxígeno en porcentaje, ¿qué volumen (L) de aire, a 25°C y 1,00 atm, se requiere para quemar un galón de octano? A) 2,6 103 B) 7,2 103 C) 3,2 104 D) 3,4 104 E) Ninguno 16. ¿Cuál de las muestras siguientes está formada por el mayor número de moléculas? A) 1,00 L de hidrógeno en c.n. B) 1,00 L de neón en c.n. C) 1,00 L de hidrógeno a 20 °C y 760 torr D) 1,00 L de hidrógeno a 0°C y 800 torr E) Ninguno 17. ¿Cuántos moles de oxígeno se requieren para la combustión completa de un galón de octano C8H18 ( 1 galón tiene una masa de 2700 g) A) 592 B) 296 C) 201 D) 25 E) Ninguno 18. Se encuentra que la velocidad de difusión de un gas X es alrededor de 1,3 veces la del SF6(g). La masa molecular del gas X es aproximadamente de: A) 190 B) 110 C) 86 D) 55 E) Ninguno 19. ¿En qué condiciones el volumen molar del neón es mayor? A) c.n. B) 0°C y 2,0 atm C) 273°C y 2,0 atm D) 127°C y 2,0 atm E) Ninguno 20. Un cilindro rígido de 5,00 L contiene 0,100 moles de argón a 25°C y 372 torr. Si se calienta el cilindro a 34,0°C y se bombean 2,80 g de N2, ¿cuál es la presión parcial (torr) de Ar en la mezcla de gases final? A) 744 B) 383 C) 372 D) 316 E) Ninguno 21. Una muestra de 1,00 g de KMnO4 se descompuso completamente por calentamiento, produciendo 99,2 mL de oxígeno recolectado en agua a 22°C y a una presión total de 755 torr. ¿Cuál de las ecuaciones siguientes se ajusta mejor a estos datos de la reacción de descomposición? 82 Gases ideales. A) 2KMnO4 K2MnO4 + MnO2 + O2 B) 2KMnO4 K2MnO4 + MnO + 2O2 C) 6KMnO4 3K2MnO4 + Mn3O4 + 4O2 D) 8KMnO4 4K2MnO4 + 2MnO3 + 5O2 E) Ninguno 22. En el caso de una sustancia que permanece como gas bajo las condiciones enlistadas, la desviación a la ley de los gases ideales será más marcada a: A) 100°C y 2,0 atm B) 0°C y 2,0 atm C) –100°C y 2,0 atm D) – 100°C y 4,0 atm E) Ninguno 23. La arsina, AsH3 es un gas muy tóxico que se descompone al calentarlo y producir arsénico elemental e hidrógeno: 2 AsH3 2 As + 3 H2 Una muestra de 0,0128 moles de AsH3 ejerce una presión de 186 torr en un matraz de 1,00 litros a – 40°C. El matraz se calentó a 250°C durante un corto periodo y después volvió a – 40°C; en ese momento la presión medida era de 250 torr. ¿Qué porcentaje aproximado de AsH3 se descompuso? A) 17% B) 26% C) 34% D) 69% E) Ninguno 26. Una muestra de gas contiene n moles a la temperatura absoluta T, con un volumen V y a la presión P. Si se retiran 1/2 n moles del gas del recipiente, para conservar P y V constante, se debe: A) Aumentar la temperatura absoluta a 2T B) Reducir la temperatura absoluta a 1/2 T C) Mantener la temperatura absoluta a T D) Tener más datos E) Ninguno 83 Unidad 8 Soluciones 8.1 Introducción Las soluciones son mezclas homogéneas de dos o más sustancias. Una mezcla homogénea tiene las mismas propiedades en cualquier parte de la solución, no se diferencian sus componentes, ej.: agua y sal; agua y sacarosa. Definición Una solución se define como la mezcla homogénea de un soluto y un solvente (disolvente). Solución = soluto + solvente Soluto, es el que se disuelve en el solvente. Generalmente es el que entra en menor cantidad en una solución. Solvente, es el que disuelve al soluto y está en mayor cantidad. El agua es el mejor disolvente empleado para sustancias inorgánicas, mientras que para sustancias orgánicas, el tetracloruro de carbono, alcohol, etc. 8.2 Concentración de las soluciones: Soluto/Solvente y Soluto/Solución Unidades de concentración de las soluciones Concentración expresada en unidades físicas 1. Gramos de soluto por volumen de la solución en litros. Gramos soluto / volumen de solución [L] 2. Porcentaje en peso; % peso . masa . soluto masa . solucion 100 masa . soluto 100 masa . soluto masa _ disolvente Ej.: una solución tiene 20% de NaCl. Significa que tiene 20 g de soluto en 100 g de solución y/o 20 g % peso . de soluto disueltos en 80 g de solvente. 83 QUÍMICA tecnología Texto guía para el ingreso a la facultad de ciencias y Concentraciones expresadas en unidades químicas Molaridad [M].- se define como el numero de moles de soluto contenidos en un volumen de solución. M mol _ soluto litro _ solución m /L 1 M 1 mol (soluto) PM(g) 1 L (solución) 2M 2 mol (soluto) 2×PM(g) 1 L (solución) Ej.: 0,5 M de H2SO4 significa: 0,5 M 0.5 mol H2SO4 0.5×98g 1L Normalidad,(N). Se define como el número de equivalentes gramo de soluto, contenidos en un volumen de solución. N # equivalentes eq / L litro _ solución # eq masa peso _ equivalent e - ácidos: Peq = PM/# H+ - bases: Peq = PM / # OH- Compuestos - sales: Peq = PM / # + o Reacciones oxido-reducción: Peq = PM / # e- Ej:. 1N de Ca(OH)2 PM = 74 g Peq = 37 g 1 N 1Eq Ca(OH)2 37 g Ca(OH)2 1 L (solución) Molalidad La molalidad de una solución es el número de moles soluto por Kg de solvente, contenidos en una solución. m 1 molal 1 mol 1 Kg (solvente) 2 molal 2 mol 1 Kg (solvente) 84 mol soluto Kg disolvente Soluciones. Fracción molar, X. Definida como el número de moles de un componente entre el número total de moles de todos los componentes en una solución. Xs mol soluto moles _ totales % molar = Xs × 100 Xs + Xd = 1 Problemas Resueltos 1. a) Calcular el porcentaje en masa de soluto en una solución que contiene 3,25 g Ba(NO3)2 en 85 g de agua. b) ¿Cuál es el porcentaje en masa de benceno, C6H6, en una solución que contiene 8,75 g de benceno y 25,0 g de tetracloruro de carbono, CCl4? Solución: 3,25 g a) % Ba(NO ) = 100 = 3,68% 3 2 85 g 3,25 g 8,75 g b) % C 6 H 6 = 100 = 26% 25g 8,75 g 2. Calcular la fracción molar del metanol, CH3OH en las siguientes soluciones: a) 6,00 g de CH3OH en 400 g de agua b) 4,13 g de CH3OH en 48,6 g de CCl4 Solución: a) b) 1 mol CH OH 3 6,0 g CH3 OH 32 g CH OH = 0,1875 moles CH 3OH 3 1 mol H O 2 400 g H 2O 18 g H O = 22,22 moles H 2O 2 0,1817 moles XCH 3 OH = = 0, 0081 0,1875 moles + 22,22 moles 1 mol CH OH 3 4,13 g CH 3OH 32 g CH OH = 0,129 moles CH 3OH 3 1 mol CCl 4 48,6 g CCl 4 153, 8 g CCl = 0,316 moles CCl 4 4 0,129 moles X CCl 4 = = 0, 3 0,129 moles + 0, 316 moles 3. Calcular la molaridad de cada una de las siguientes soluciones: a) 3,50 g NaOH en 0,650 L de solución b) 2,50 g de Co(NO3)2 en 750 mL de solución Solución: a) M = 3, 50 g NaOH 0,650 L solución 1 mol NaOH 40 g NaOH = 0,135 molar 1 mol Co(NO ) 1000 mL de solución 3 2 = 0, 0182 molar 183 g Co( NO ) 3 2 1 L de solución 4. Calcular la molalidad de cada una de las siguientes soluciones: a) 2,1 g de S8, disueltos en 95,0 g de naftaleno, C10H8 b) 1,50 moles de NaCl disueltos en 15,0 moles de agua Solución: 1 mol S 1000 g C H 2,1 g S8 8 10 8 a) m = = 0, 086 molal 95, 0 C10 H8 256 g S8 1 kg C10 H8 b) M = 2,50 g Co(NO3 )2 750 mL solución 85 QUÍMICA tecnología b) m = 5. Texto guía para el ingreso a la facultad de ciencias y 1, 5 moles NaCl 15, 00 moles H 2 O 1 mol H O 2 18 g H O 2 1000 g H O 2 1 kg H O = 5, 56 molal 2 Una solución de ácido sulfúrico que contiene 571,6 g H2SO4 por litro de solución tiene una densidad de 1,329 g/mL. Calcular: a) El porcentaje en masa b) La fracción molar c) La molalidad d) La molaridad Solución: a) % H SO = 571,6 g H 2 SO 4 2 4 1 L solución b) 571,6 g H SO 1 mol H 2SO4 2 4 98 g H 2SO4 1 L solución 1 mL solución 100 = 43% 1000 mL solución 1,329 g solución = 5,83 moles H 2 SO4 1 mol H 2 O = 42,08 moles H 2 O 757,4 g H 2 O 18 g H 2 O X H2SO4 = 5,83 moles = 0,122 5,83 moles + 42,08 moles c) m = 571, 6 g H 2 SO 4 1 mol H 2 SO 4 1000 g H 2 O = 7, 7 molal 757, 4 g H 2 O 98 g H 2 SO4 1 kg H 2 O 571,6 g H 2 SO4 1 mol H 2 SO4 d) M = = 5,8 molar 1 L solución 98 g H 2 SO4 6. El amoníaco acuoso concentrado comercial tiene 29% de NH3 en masa y tiene una densidad de 0,90 g/mL. ¿Cuál es la molaridad de esta solución? Solución: 29 g NH 3 1 mol NH 3 0,90 g solución 1000 mL solución M 15,35 molar 100 g solución 17 g NH 3 1 mL solución 1 L solución 7. Calcular la cantidad de moles de soluto de cada una de las siguientes soluciones: a) 60,0 g de una solución acuosa que tiene 1,25% de KI en masa. b) 250 g de una solución acuosa que tiene 0,460 % de NaCl en masa. c) 600 mL de una solución de ácido sulfúrico 1,24 M. Solución: a) 60,0 g solución 1,25 g KI 1 mol KI = 4,52 10 - 3 moles KI 100 g solución 166 g KI 0, 460 g NaCl 1 mol NaCl b) 250 g solución = 0, 0197 moles NaCl c) 8. 100 g solución 58, 45 g NaCl 1, 24 moles H 2SO 4 600 mL solución = 0, 744 moles H 2SO 4 1000 mL solución Calcular el equivalente químico del: a) Ca3(PO4)2 b) H2SO4 a disociación total 2+ c) Al(OH)3 a disociación total d) KMnO4 que se reduce a Mn Solución: 2+ 3– a) Ca3(PO4)2 3 Ca + 2 [PO4] 1 mol Ca3(PO4)2 = 6 moles de carga (±) = 6 [ 1 mol carga(±)] = 6 [1 Eq Ca3(PO4)2] 1 mol Ca3(PO4)2= 6 Eq de Ca3(PO4)2 1 mol Ca ( PO ) 310 g Ca (PO ) 3 4 2 3 4 2 1 Eq Ca 3 ( PO4 ) 2 6 Eq Ca (PO ) = 52 g Ca 3 ( PO4 ) 2 3 4 2 1 mol Ca 3 (PO4 ) 2 1+ 2– b) H2SO4 2 H + [SO4] 1 mol H2SO4 = 2 eq H2SO4 86 Soluciones. 1 mol H SO 98 g H SO 2 4 2 4 1 Eq H2 SO4 2 Eq H SO = 49 g H2 SO 4 2 4 1 mol H 2 SO4 3+ 1– c) Al(OH)3 Al + 3 [OH] 1 mol Al(OH)3 = eq Al(OH)3 1 mol Al(OH) 78 g Al(OH) 3 3 1 Eq Al(OH) 3 3 Eq Al(OH) 1 mol Al(OH) = 26 g Al(OH )3 3 3 1+ 1– d) 5e– + 8 H + [MnO4] 2+ Mn + 4 H2O 1 mol KMnO4 = 5 moles e– = 5 eq KMnO4 1 mol KMnO 158 g KMnO 4 4 1 Eq KMnO 4 5 Eq KMnO = 31, 6 g KMnO 4 4 1 mol KMnO 4 9. 600 mL de una solución contiene 11,76 g de H3PO4. Calcular: a) La molaridad b) La normalidad Solución: a) M = 11, 76 g H 3PO 4 1 mol H 3 PO4 = 0, 2 molar 0, 600 L solución 98 g H 3PO 4 b) N = 11, 76 g H 3 PO4 0,600 L solución 1 mol H PO 3 Eq H PO 3 4 3 4 98 g H PO 3 4 1 mol H 3 PO 4 = 0, 6 normal 10. Una muestra pesada de carbonato de sodio Na2CO3 de 10,600 g se disuelve y se enrasa en un matraz aforado de 500 mL. Calcular la molaridad y normalidad de la solución para una disociación total. Solución: M= 10, 600 g Na 2 CO3 0, 500 L solución 1 mol Na 2CO 3 106 g Na CO = 0, 2 M Na 2 CO3 2 3 N= 10, 600 g Na 2 CO3 0, 500 L solución 1 mol Na CO 2 Eq Na CO 2 3 2 3 = 0, 6 N de Na CO 2 3 106 g Na CO 2 3 1 mol Na2 CO3 11. a) ¿Cuántos gramos de HCl contiene 200 mL de una solución 0,005 N de HCl? b) ¿Cuántos gramos de CuSO4 contiene 5 mL de una solución 0,200 N de CuSO4? Solución: a) 200 mL solución 0,005 Eq HCl 1 mol HCl 36,45 g HCl = 0.03645 g HCl 1000 mL solución 1 Eq HCl 1 mol HCl b) 5 10 - 3 L solución 0,200 Eq CuSO 4 1 mol CuSO 4 159 g CuSO 4 = 0,0795 g CuSO 4 1L solución 2 Eq CuSO 4 1 mol CuSO 4 Problemas Propuestos 1. Calcular el equivalente químico del dicromato de potasio, K2Cr2O7 en las reacciones: 3+ 2. 3. 4. 5. a) disociación o de intercambio b) reducción hasta Cr –5 Un mol de propanol, C3H7OH, de densidad 0,7854 g/mL a 20 °C disuelve 4,6 10 moles de NaCl a 20 °C. ¿Cuál es la solubilidad del NaCl? Expresar la solubilidad en g/L. ¿Cuál es la molalidad de una solución que contiene 211 g de sacarosa C12H22O11 en 325 g de agua? Un estudiante desea preparar una solución acuosa de sacarosa C12H22O11 que sea 0,250 m. ¿Qué masa de sacarosa debe disolver en 200 g de agua? El DDT, C14H9Cl5, ha sido empleado como insecticida de contacto. Aparentemente no es tóxico para los seres humanos, pero sí para los animales salvajes. Es no polar y tiende a acumularse 87 QUÍMICA tecnología 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. Texto guía para el ingreso a la facultad de ciencias y en el tejido graso. ¿Cuál es la molalidad de una solución saturada de DDT en CCl4, que contiene 45 g de DDT por 100 mL de CCl4? La densidad del CCl4 es de 1,60 g/mL. Hallar el tanto por ciento en masa de glucosa en una solución que contiene 280 g de agua y 40 g de glucosa. Se prepara una solución disolviendo 1,25 g de K2CrO4 en 11,6 g de agua. Calcular: a) el tanto por ciento en masa del K2CrO4. b) el tanto por ciento en masa del agua. A la temperatura de 25 °C la solubilidad del NaCl es igual a 36,0 g en 100 g de agua. Hallar el tanto por ciento en masa de NaCl en una solución saturada. ¿Cuántos gramos de cloruro de sodio son necesarios para preparar 400 g de una solución al 15%? La densidad de una solución al 18% de cloruro de amonio, NH4Cl es 1,05 g/mL. ¿Qué masa de NH4Cl contienen 350 mL de esta solución? Calcular la fracción molar del tetracloruro de carbono, CCl4, en una solución preparada mezclando 64,0 g de CCl4 con 36,0 g de benceno, C6H6. En una determinada solución de etanol y metanol, la fracción molar del primero es 0,42. ¿Cuál es la fracción molar del metanol? ¿Qué masa de glucosa, C6H12O6 debe disolverse en 150,0 mL de agua para que la fracción molar de C6H12O6 sea 0,125? La densidad del agua es de 1,00 g/mL. Calcular las fracciones molares de etanol y agua en una solución al 96% en masa de etanol, C2H5OH. ¿Cuál es la molaridad de una solución que contiene 490 g de ácido fosfórico, H3PO4, en 200 L de solución? 8.3 Preparación, Dilución y Mezcla de Soluciones Si una solución es diluida el volumen aumenta y la concentración disminuye, pero la cantidad de soluto es la misma. Por lo tanto dos soluciones concentradas diferentes pero que contienen las mismas cantidades de soluto están relacionadas entre si de la siguiente manera: C1 * V1 = C2 * V2 Donde: C se puede expresar en M o N. Problemas Resueltos 1. Describir cómo puede preparar cada una de las siguientes soluciones acuosas: a) 500 mL de una solución 0,200 M de Na2CO3 a partir de Na2CO3 sólido. b) 150 g de una solución que es 1,00 m de (NH4)2SO4, a partir del soluto sólido. c) 1,50 L de una solución que tenga 20% de Pb(NO3)2 en masa, la densidad de la solución es 1,20 g/mL, a partir del soluto sólido. Solución: 0, 200 moles Na2 CO3 106 g Na2 CO 3 a) 500 mL solución =10, 6 g Na 2 CO3 1000 mL solución 1 mol Na2 CO3 Se pesa 10,6 g de carbonato de sodio y se añade a un matraz aforado de 500 mL, se agita y finalmente se enrasa al volumen indicado. 132 g (NH 4 )2 SO4 = 17, 49 g (NH4 ) 2 SO 4 1132 g solución b) 150 g solución Se pesa 17,49 g de sulfato de amonio y se pesa 132,51 g de solvente y se disuelve el soluto en esta cantidad. 1, 20 g solución 20 g Pb(NO3 ) 2 c) 1500 mL solución = 360 g Pb(NO3 )2 1 mL solución 100 g solución 88 Soluciones. Se mide 360 g de nitrato de plomo (II) y se lo añade a un matraz aforado de 1,5 L que contiene al solvente. 2. ¿Cuántos gramos de solución al 36% HCl y de agua deben ser utilizados para preparar 1000 g de una solución al 20% de HCl. Solución: 20 g HCl 100 g solución 2 1000 g solución1 = 556 g solución2 100 g solución 36 g HCl 1 3. 1000 g solución1 – 556 g solución2 = 444 g de agua ¿Cuántos gramos de agua se deben añadir a 200 g de una solución al 20% de HCl para preparar una solución al 5% Solución: Sea X la cantidad de agua añadida 20 g HCl 5 g HCl 200 g solución 1 = (200 + X ) solución 2 100 g solución 100 g solución 1 2 X = 600 g de agua 4. ¿Cuántos mililitros de una soluciones de hidróxido de potasio 2 N y 0,2 N se necesitan para preparar 1,8 L de una solución 0,6 N? Solución: Sea X, mL de solución 2 N de KOH Sea Y, mL de solución 0,2 N de KOH X mL + Y mL = 1800 mL 2 Eq KOH 0, 2 Eq KOH 0, 6 Eq KOH X mL + Y mL = 1800 mL 1000 mL 1000 mL 1000 mL 2X + 0,2 Y = 1080 Resolviendo este sistema de dos ecuaciones, con dos incógnitas se tiene: X + Y = 1800 2X + 0,2Y = 1080 y X = 1800 – Y 2( 1800 – Y) + 0,2 Y = 1080 3600 – 1,8 Y = 1080 Y = 3600 - 1080 1400 mL 1,8 X = 400 mL Problemas Propuestos 1. 2. 3. 4. 5. 6. 7. ¿Como podría preparar 25 L de ácido sulfúrico 0,30 M a partir de un ácido comercial del 95%? Indicar los cálculos y describir el procedimiento que debe emplearse. La densidad para el ácido comercial del 95% es 1,84 g/mL Calcular la molaridad resultante cuando 50,0 mL de solución NaCl 2,30 M se mezclan con 80,0 mL de NaCl 1,40 M. ¿Cuántos gramos de una solución al 30% en masa de NaCl deben añadirse a 300 g de agua para obtener una solución al 10% de la sal? ¿En qué proporción en masa se deben mezclar la solución de amoníaco al 24% y al 5%, para obtener una solución al 10%? ¿Cuántos gramos de una solución de ácido sulfúrico al 96% y al 20% se deben tomar para preparar 1000 g de una solución al 40%? ¿Cuántos mL de solución de hidróxido de potasio 2N y 0,2 N se necesitan para preparar 1,8 L de una solución 0,6 N? ¿Calcular la concentración en porcentaje en masa que tendrá una solución que se diluye de la siguiente forma? a) 12 g de solución al 20% con 25 g de agua. 89 QUÍMICA tecnología 8. Texto guía para el ingreso a la facultad de ciencias y b) 230 g de solución al 7% con 500 g de agua ¿Cuánta agua hay que añadir a una solución para diluirla de: a) 20 g de solución al 2,5% hasta 0,235%? b) 110 g de solución al 75% hasta 5%? 8.4 Estequiometria de las Soluciones. Valoraciones o Titulaciones Titulación: Cuando se desea conocer la concentración de una solución ya sea un acido u una base, se neutraliza con su correspondiente, con el equipo mostrado en la figura, en el matraz se coloca la base mas un indicador, y en la bureta se coloca una solución acida de concentración conocida, dejando caer gota a gota el acido hasta que el indicador cambie de color, ahora sabemos cuanto acido necesitamos para neutralizar x ml de una base, con estos datosy conociendo la reacción de neutralización, podemos conocer la concentración de la solución de la base. Problemas Resueltos 1. a) ¿Cuántos mililitros de solución 0,210 M de HCl se necesitan para neutralizar 35,0 mL de una solución 0,101 M de Ba(OH)2? b) ¿Cuántos mililitros de la solución 3,50 M de H2SO4 se necesitan para neutralizar y 75,0 g de NaOH? c) Si se necesitan 45,2 mL de una solución de BaCl2 para precipitar todo el sulfato de una muestra de 544 mg de Na2SO4 para formar BaSO4. ¿Cuál es la molaridad de la solución? d) Si se necesitan 42,7 mL de solución 0,250 M de HCl para neutralizar una solución de Ca(OH)2, ¿cuántos gramos de Ca(OH)2 debe haber en la solución? Solución: a) 2 HCl + Ba(OH)2 BaCl2 + 2 H2O 0,101 moles Ba(OH) 2 moles HCl 2 35 mL solución 1 1000 mL solución 1 1 mol Ba(OH) 2 1000 mL solución 2 = 34 mL solución 2 0, 210 moles HCl b) H2SO4 + 2 NaOH Na2SO4 + 2 H2O 1 mol NaO 1 mol H 2 SO 4 1000 mL 75 g NaOH 2 mol NaOH 3.50molH SO 40 g NaO 2 4 = 268mLH 2 SO 4 c) BaCl2 + Na2SO4 BaSO4 + 2 NaCl 1 mol Na 2SO 4 1 mol BaSO 4 = 3,83 10 -3 moles BaSO 4 0,544 g Na 2 SO4 142 g Na SO 1 mol Na SO 2 4 2 4 90 Soluciones. M = 3,83 10 -3 moles BaSO 4 0, 0912 molar 0,0452 L de solución d) Ca(OH)2 + 2 HCl CaCl2 + H2O 0, 250 moles HCl 1 mol Ca(OH) 2 0,0427 L solución 1 L de solución 2 moles HCl 74 g Ca(OH) 2 1 mol Ca(OH) = 0,395 g Ca(OH) 2 2 2. Se salpica un poco de ácido sulfúrico sobre una gaveta de laboratorio. Se puede neutralizar rociando carbonato ácido de sodio sobre ella y después limpiando la solución resultante. El carbonato ácido de sodio reacciona con el ácido sulfúrico en la forma siguiente: 2 NaHCO3(s) + H2SO4(ac) Na2SO4(ac) + 2 CO2(g) + 2 H2O(l) Se añade carbonato ácido de sodio NaHCO3 hasta que cesa el desprendimiento de burbujas debidas a la formación de CO2. Si se salpicaron 25 mL de solución 6,0 M de H2SO4, ¿cuál es la cantidad mínima de NaHCO3 que se debe agregar para neutralizar el ácido? 2 moles NaHCO3 Solución: 25 mL solución 6, 0 moles H2 SO 4 1000 mL solución 1 mol H 2SO 4 84 g NaHCO 3 = 25, 2 g NaHCO3 1 mol NaHCO3 3. El olor característico del vinagre se debe al ácido acético, CH3COOH. El ácido acético reaccionar con el hidróxido de sodio en la forma siguiente: CH3COOH (ac) + NaOH(ac) CH3COOHNa(ac) + H2O(l) Si 25 mL de vinagre requieren 34,9 mL de solución 0,0960 M de NaOH para alcanzar el punto de equivalencia en una titulación, ¿cuántos gramos de ácido acético hay en una muestra de 1,136 L de este vinagre? Solución: 0.096 mol NaOH 1 mol HAc 60gHAc 34.9 mL NaOH 0.2gHAc 1000 mL 1 mol NaOH 1molHac 1000 mL 0.2g HAc 1.136L vinagre 9.09gHAc 1L 25 mL 2. Una muestra de Ca(OH)2 sólido se deja en reposo en contacto con agua a 30°C durante largo tiempo, hasta que la solución contiene tanto Ca(OH)2 como puede disolver. Se saca una muestra de 100 mL de esta solución y se titula con una solución 0,05 M de HBr. Se requieren 48,8 mL de la solución ácida para neutralizarla. ¿Cuál es la molaridad de la solución Ca(OH)2 en agua a 30°C?¿Cuál es la solubilidad del Ca(OH)2 en agua a 30°C, en gramos de Ca(OH)2 por 100 mL de solución? Solución: Ca(OH)2 + 2 HBr CaBr2 + H2O 0,05 moles HBr 1 mol Ca(OH) 2 -3 48,8 mL solución 1 = 1,22 10 moles Ca(OH) 2 1000 mL solución 2 moles HBr M= 1,22 10 -3 moles Ca(OH)2 = 0,0122 molar 0,100 L solución Solubilidad = 1,22 10 -3 moles Ca(OH)2 100 mL solución 74 g Ca(OH)2 0,09028 g Ca(OH)2 = 100 mL solución 1 mol Ca(OH)2 Problemas Propuestos 91 QUÍMICA tecnología 1. 2. 3. 4. 5. 6. Texto guía para el ingreso a la facultad de ciencias y ¿Qué volumen de ácido nítrico, 0,185 molar, HNO3 se necesita para reaccionar con 12,61 g de hidróxido de calcio, Ca(OH)2, según la siguiente ecuación? HNO3 + Ca(OH)2 Ca(NO3)2 + H2O ¿Qué volumen de solución 0,200 M de FeSO4 se necesita para reaccionar con 20,0 mL de KMnO4 0,250 M en solución de ácido sulfúrico, según la ecuación siguiente? FeSO4 + KMnO4 + H2SO4 Fe2(SO4)3 + MnSO4 + K2SO4 + H2O Cuando se añade agua una mezcla de aluminio e hidróxido de sodio, se desprende hidrógeno. Esta reacción se utiliza comercialmente en algunos productos de limpieza: 1– 1– 2 Al(s) + 6 H2O(l) + 2 OH (ac) 2 Al(OH)4 (ac) + 3 H2(g) Se mezcla una cantidad suficiente de agua con 49,92 g de NaOH para hacer reaccionar 0,600 L de solución; se añaden 41,28 g de Al. a) Calcular la molaridad inicial de la solución de NaOH. b) ¿Cuántos moles de H2 se formarán? c) El hidrógeno se recoge a 25 °C y 758,6 torr. La presión de vapor del agua a esta temperatura es de 23,8 torr. ¿Cuál es el volumen de gas generado? ¿Qué volumen de solución de ácido sulfúrico 0,05193 M se necesitan para alcanzar el punto final cuando se titula contra 25,00 mL de NaOH 0,1034 M? La reacción es: H2SO4 + 2 NaOH Na2SO4 + 2 H2O Una solución de sulfato de hierro(II), FeSO4 en H2SO4 se puede titular con K2Cr2O7 usando un indicador apropiado para detectar el punto final, de acuerdo a la ecuación. FeSO4 + H2SO4 + K2Cr2O7 Fe2(SO4)3 + Cr2(SO4)3 + K2SO4 + H2O ¿Qué volumen se necesita de una solución 0,1271 M de K2Cr2O7 para titular 25,0 mL de FeSO4 0,4777 M? Se titularon 0,3118 g de una muestra impura de carbonato de sodio, Na2CO3, con una solución de HCl 0,09873 M; para alcanzar el punto final se gastaron 30,42 mL según la ecuación Na2CO3 + HCl NaCl + H2O + CO2 Calcular el porcentaje de pureza de la muestra de Na2CO3. 8.5 Propiedades Coligativas De Las Disoluciones Son propiedades que dependen exclusivamente de la concentración de la disolución, y no de la naturaleza de sus componentes. Las cuales son: Descenso en la presión de vapor del solvente, Aumento del punto de ebullición, Disminución del punto de congelación, Presión osmótica Descenso de la presión de vapor. Ley de raoult. La presión de vapor de una disolución desciende con respecto a la del disolvente puro según la expresión: P X disolvente • P 0 que puede transformarse : P 1 X soluto • P 0 donde : P es la presión de vapor de la disolución P0 es la presión de vapor del disolvente puro XD es la fracción molar del disolvente XS es la fracción molar del soluto 92 Soluciones. Aumento del punto de ebullición. En una disolución, con respecto al disolvente puro, el punto de ebullición aumenta, proporcionalmente con la concentración. Según la siguiente fórmula: T K Eb •m con T T Tº donde : T es el ascenso ebulloscópico experimentado KEb es la constante ebulloscópica del disolvente m es la molalidad de la disolución Descenso del punto de congelación. En una disolución, con respecto al disolvente puro, el punto de ebullición aumenta, proporcionalmente con la concentración. Según la siguiente fórmula: T K C •m con T T º T donde : T es el descenso crioscopico experimentado KC es la constante crioscopica del disolvente m es la molalidad de la disolución Presion Osmotica Se define como la presión que ejerce un fluido a su paso a través de una membrana semipermeable (deja pasar el disolvente, pero no el soluto a través de ella).La presión osmótica de una disolución es directamente proporcional a su molaridad : M • R •T donde : es la presión osmótica M es la molaridad de la disolución R es la constante universal de los gases T es la temperatura absoluta Problemas resueltos. 1.Calcular presión de vapor de la solución, causada por la adición de 100 g de sacarosa (masa molar = 342) a 1000 g de agua. La presión de vapor de agua pura a 25°C es 23,69 mmHg. 1 mol sacarosa 100 g de sacarosa 0.292mol _ sacarosa 342 g sacarosa 1 mol agua 1000 g de agua 55,556mol _ agua 18 g de agua Por lo tanto, la fracción molar es: 55,556 Xagua 0,9948 0,292 55,556 93 QUÍMICA tecnología Texto guía para el ingreso a la facultad de ciencias y P X agua • P 0 P 0.9948•23.69mmHg P 23.567mmHg 2.La presión de vapor del agua pura a una temperatura de 25°C es de 23,69 mmHg. Una solución preparada con 5,5 g de glucosa en 50 g de agua tiene una presión de vapor de 23,42 mmHg., determine la masa molar de glucosa. Aplicamos la Ley de Raoult P 1 X soluto • P 0 X soluto 1 X soluto 1 P Pº 23,42 0.0114 23,69 50g n agua 2,778mol 18g / mol n 0,011 n 2,778 n = 0,031 moles masa n 0,031mol PM Peso molecular =177,42 g/mol 3.Calcular el punto de ebullición de una solución de 100 g de anticongelante etilenglicol (C2H6O2) en 900 g de agua (Keb = 0,52 °C/m). Teb = Tºeb + Keb m 1 mol anticongelante 100 g de anticongelante 1,613mol _ anticongelante 62g de anticongelante m Teb Teb Teb mol 1.613mol 1,792molal Kg 0.9Kg = = = Teb Keb m (0,52 °C/molal) (1,792 molal) 0,9319 °C = 100+0,9319 = 100,93ºC 4.Qué masa de anilina habría que disolver en agua para tener 200 mL de una solución cuya presión osmótica, a 18 °C, es de 750 mmHg; sabiendo que la masa molar de la anilina es 93,12 g/mol. 94 Soluciones. 750mmHg n(62,4mmHgL / mol º K )(291,15º K ) 0,2L n = 0,0083 moles de anilina 93,12 g de anilina 0,0083mol de anilina 0.77gde _ anilina 1 mol de anilina 8.6 Problemas Adicionales 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. Definir los siguientes conceptos: a) Soluto b) Solvente c) Solución saturada d) Solución sobresaturada e) Solución diluida f) Solución concentrada g) Solubilidad Cierta solución salina contiene un 23% de NaCl. ¿Cuántos gramos de sodio pueden obtenerse a partir de 500 g de esta solución? Se prepara una solución mezclando 2 g de alcohol etílico, C2H5OH, con 90 g de agua. El volumen obtenido es de 92 mL. Calcular: a) el porcentaje en masa de la solución b) las fracciones molares c) la molaridad de la solución d) la molalidad 10 g de NH4Cl se disuelven en 100 g de una disolución al 10% de NH4Cl en agua. Calcular la concentración en porcentaje de la solución resultante. ¿Cuántos mililitros de H2SO4 18 M se necesitan para preparar 1 litro de una solución 6 M? a) 55 b) 125 c) 333 d) 666 e) 1000 ¿Qué concentración molar tiene una solución que contiene 20 g de NaOH en 500 mL de solución? a) 0,23 b) 0,5 c) 1,0 d) 20 e) 40 Calcular la molalidad de cada una de las siguientes soluciones: a) 13,0 g de benceno, C6H6, disueltos en 17,0 g de tetracloruro de carbono CCl4. b) 5,85 g de NaCl disueltos en 0,250 L de agua. Una solución que contiene 66,0 g de acetona C3H6O y 46,0 g de agua tiene una densidad de 0,926 g/mL. Calcular: a) El porcentaje en masa b) La fracción molar c) La molalidad d) La molaridad del agua en esta solución El ácido nítrico comercial concentrado tiene 69% HNO3 en masa y tiene una densidad de 1,42 g/mL. ¿Cuál es la molaridad de esta solución? Calcular el número de moles de soluto que hay en cada una de las siguientes soluciones: a) 356 mL de una solución 0,358 M de Ca(NO3)2 b) 460 L de una solución 0,582 M de HBr c) 132 mL de una solución 0,0288 M de Al(NO3)3 Describir cómo puede prepararse cada una de las siguientes soluciones acuosa, partiendo de KBr sólido: a) 1,40 L de solución 0,015 M de KBr b) 250 g de solución 0,400 molar de KBr c) 1,50 L de una solución que tiene el 12,0% de KBr en masa, la densidad de la solución es 1,10 g/mL Calcular la molaridad de una solución preparada disolviendo 23,4 g de sulfato de sodio, Na2SO4, en suficiente agua para formar 125 mL de solución. 95 QUÍMICA tecnología 13. 14. 15. 16. 17. Texto guía para el ingreso a la facultad de ciencias y Calcular la molaridad de una solución preparada disolviendo 5,00 g de C6H12O6 en agua suficiente para formar 100 mL de solución. ¿Cuántos gramos de Na2SO4 se requieren para preparar 0,350 L de solución 0,500 M de Na2SO4? a) ¿Cuántos gramos de Na2SO4 hay en 15 mL de una solución 0,50 M de Na2SO4? b) ¿Cuántos mililitros de una solución 0,5 M de Na2SO4 se requieren para suministrar 0,035 moles de esta sal? ¿Cuántos moles de moles de agua se forman cuando 25,0 mL de una solución 0,100 M de HNO3 se neutralizan por completo con NaOH? Un método utilizado comercialmente para pelar papas es sumergirlo en una solución de NaOH durante corto tiempo, sacarlas de una solución y quitarles la cáscara. La concentración de NaOH debe estar entre 3 a 6 M. El NaOH se analiza periódicamente. En uno de esos análisis, se requirieron 45,7 mL de una solución 0,500 M de H2SO4 para reaccionar completamente con una muestra de 20,0 mL de solución de NaOH: H2SO4 (ac) + NaOH(ac) H2O(l) + Na2SO4 (ac) ¿Cuál es la concentración de la solución de NaOH? 18. Se puede producir clorato de sodio con la siguiente serie de reacciones: KMnO4 + HCl KCl + MnCl2 + Cl2 + H2O Cl2 + Ca(OH)2 Ca(ClO3)2 + CaCl2 + H2O Ca(ClO3)2 + Na2SO4 CaSO4 + NaClO3 Suponiendo que todos los demás reactivos están presentes en exceso, ¿cuántos gramos de NaClO3 se pueden preparar con 100 mL de ácido clorhídrico concentrado (densidad 1,18 g/mL y 36% de HCl en masa)? 19. ¿Que masa de solución al 5,5% se puede preparar con 25,0 g de KCl? 20. Las soluciones salinas fisiológicas que se usan en inyecciones intravenosas tienen una concentración en masa de 0.9% de NaCl. a) ¿Cuántos gramos de NaCl se necesitan para preparar 500 g de esta solución? b) ¿Cuanta agua se debe evaporar de la solución para llegar a una concentración de 9.0% de NaCl en masa? 21. ¿Cuál es la molaridad de una solución de ácido nítrico, si la solución tiene 35% en masa de HNO3 y tiene una densidad de 1,21 g/mL? 22. La presión de vapor del metanol puro es 159,76 mmHg. Determinar la fracción molar de glicerol necesario para disminuir la presión de vapor a 129,76 mmHg. 23. Una solución contiene 8,3 g de una sustancia no electrolito y no volátil, disuelta en un mol de cloroformo (CHCl3), esta solución tiene una presión de vapor de 510,79 mmHg. La presión de Vapor del cloroformo a esta temperatura es 525,79 mmHg. En base a esta información determine: a- La fracción molar de soluto. b- El número de moles de soluto disueltos. cLa masa molar de soluto. 24. La presión de vapor del agua a 60°C es 149,4 mmHg. Si Ud. desea preparar una solución donde la presión de vapor disminuya a 140 mmHg. Determine la masa de glucosa (C6H12O6) que debe disolverse en 150 g de agua para lograr dicho efecto. 25. Determine la constante ebulloscópica de un solvente, si al disolver 100 g de urea (masa molar 60 g/mol) en 250 g de este solvente, éste incrementa su temperatura de ebullición en 2,1 °C. 26. Si 40 g de un compuesto C6H10O5 se disuelven en 500 g de agua, determine el punto de ebullición de esta solución. (Agua: temperatura de ebullición 100 °C y Keb = 0,52 °C/molal ) 27. Si al disolver 20 g de urea (masa molar 60 g/mol) en 200 g de solvente se observa que el punto de ebullición de la solución es de 90 °C, determine el punto de ebullición de un solvente puro cuya constante ebulloscópica es 0,61 °C/molal, 96 Soluciones. 28. 29. 30. 31. 32. 33. 34. 35. 8.7 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. Calcular el punto de congelación de una solución acuosa al 1,26 % p/p de un compuesto no electrolito.(agua: Kc = 1,86 °C/molal y T°c =0 °C; masa molar de soluto 51g/mol ) Calcule el peso molecular de un no electrolito si el agua se congela a -0,50 °C cuando en 20 g de ella se disuelven 12 g de soluto. (Agua: temperatura de congelación 0 °C y constante crioscópica 1,86 °C/molal ) ¿Cual será el punto de congelación de una solución que contiene 17,25 g de ácido cítrico (C6H8O7) disueltos en 250 g de agua. (Agua: temperatura de congelación 0 °C y constante crioscópica 1,86 °C/molal ) A 100 mL de agua se agregan 50 mL de alcohol (masa molar 46 y densidad 0,7 g/mL) ¿Cual será el punto de congelación de esta mezcla. (Agua: temperatura de congelación 0 °C y constante crioscópica 1,86 °C/molal ) Disolviendo 6,73 g de sacarosa (masa molar 342 g/mol) hasta formar 1500 mL de solución a 20 °C. ¿Cual es la presión osmótica que teóricamente corresponderá? ¿Que presión osmótica ejercerá una solución de urea en agua al 1% a 20 °C(masa molar de urea 60 g/mol)? Calcular la masa molar aproximada del pineno sabiendo que al disolver 2,8 g en alcohol hasta un volumen de 500 mL se midió una presión osmótica de 1,2 atm a 20 °C. Calcular la masa molar aproximada del tiofeno sabiendo que una solución de 100 mL que contiene 0,32 g de ese compuesto en alcohol dio una presión osmótica de 510 mmHg a 20 °C. Autoevaluación: Preguntas Tipo Examen de Ingreso Se disolvió una muestra de 1,00 g de Na2CO3 10H2O en 20,0 mL de agua destilada. Se agregó agua adicional para producir 250 mL de solución. ¿Cuál es la concentración molar de Na2CO3? A) 0,0377 B) 1,39 10–8 C) 8,74 10–4 D) 0,0140 E) Ninguno ¿Cuántos gramos de NaC2H3O2, sólido se necesitan para preparar 300 mL de una solución cuya molaridad sea de 0,060? A) 1,5 B) 0,016 C) 4,1 102 D) 8,2 E) Ninguno Si 25 mL de CuSO4 con 2,50 M se diluyen con agua hasta un volumen final de 450 mL. ¿Cuál es la molaridad del soluto en la solución resultante? A) 0,139 B) 0,132 C) 0,0222 D) 0,0211 E) Ninguno Una solución de ácido nítrico tiene una densidad de 1,249 g/mL y 40 % de HNO3 en masa. ¿Cuántos mililitros de esta solución hacen falta para obtener 10 g de HNO3? A) 5,0 B) 20 C) 31 D) 28 E) Ninguno Suponiendo una reacción cuantitativa, ¿cuál es el volumen (mL) mínimo de AgNO3 con 0,150 M que sería necesario para precipitar todo el cromato como Ag2CrO3 a partir de 25,0 mL de K2CrO4 con 0,100 M? A) 8,33 B) 16,7 C) 33,3 D) 75,0 E) Ninguno Dadas las soluciones siguientes: 1,00 L de HCl con 6,0 M; 2,00 L de HCl con 3,0 M y 3,00 L de HCl con M, ¿cuántos moles en total de HCl contienen? A) 2,3 B) 11 C) 8,2 D) 15 E) Ninguno ¿Cuál contiene la mayor cantidad de KMnO4? A) 158 mg de KMnO4 B) 100 mL de KMnO4 con 0,100 M C) 0,100 L de KMnO4 con 0,01 M D) 1,00 mL de KMnO4 con 1,00 M E) Ninguno ¿Cuántos gramos de AgNO3 se requieren para obtener 0,200 L de una solución con 0,100 M? A) 3400 B) 85,0 C) 17,0 D) 3,40 E) Ninguno ¿Cuántos mililitros de agua deben agregarse a 35,0 mL de HCl con 12,0 M para hacer HCl con 5,0 M. A) 60,0 B) 49 C) 10,4 D) 300 E) Ninguno ¿Qué peso (mg) de HNO3 está presente en 13,00 mL de HNO3 con 0,0872 M? A) 71,4 B) 9,39 C) 422 D) 0,422 E) Ninguno El volumen (mL) de una solución de K2CO3, cuya molaridad es de 0,200 y que contiene 69,0 g de K2CO3, es: A) 0,400 B) 200 C) 1600 D) 2500 E) Ninguno 97 QUÍMICA tecnología 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 98 Texto guía para el ingreso a la facultad de ciencias y Una solución con 25% de amoníaco en masa tiene una densidad de 0,910 g/mL. ¿Cuál es la molaridad de la solución? A) 13,4 B) 6,50 C) 14,7 D 7,14 E) Ninguno ¿Cuántos gramos de SO3 se deben disolver en 400 g de agua para obtener una solución al 15% en masa de H2SO4? A) 48,57 B) 96 C) 1,60 D) 57,62 E) Ninguno Se desea convertir 0,10 moles de GeO2 en GeCl2 por reacción con HCl concentrado 12 M, para obtener H2O como subproducto. ¿Qué volumen (mL) mínimo se requiere del ácido concentrado? A) 7,5 B) 4,8 C) 1,2 D) 33 E) Ninguno Cuándo una solución de AgNO3 se agrega a una solución de KCl, el AgCl se precipita cuantitativamente, dejando una solución de KNO3. ¿Cuántos mililitros de AgNO3 0,50 M se requerirían para precipitar todo el cloruro de 10,0 mL de KCl con 0,40 M? A) 2,0 B) 4,0 C) 5,0 D), 8,0 E) Ninguno Se prepara una solución de cloruro de sodio mediante la mezcla de 3,65 L de NaCl con 0,105 M, con 5,11 L de NaCl con 0,162 M, para producir 8,76 L de la nueva solución. ¿Cuántos gramos de NaCl contiene 1,00 L de la nueva solución? A) 22,4 B) 8,08 C) 1,21 D) 0,138 E) Ninguno Se desea precipitar Ag2CrO4 mediante la mezcla de soluciones de AgNO3 y K2CrO4. ¿Cuántos mililitros de AgNO3 con 0,30 M, se necesita para reaccionar con 25 mL de K2CrO4 con 0,20 M? A) 33 B) 25 C) 17 D) 19 E) Ninguno Si 100 mL de una solución contiene 24,5 g de H2SO4, ¿cuál es la concentración molar del H2SO4? A) 2,50 B) 0,245 C) 0,400 D) 0,00250 E) Ninguno ¿Cuántos gramos de NaOH estarían presentes en 200 mL de NaOH con 2,000M? A) 0,100 B) 0,400 C) 1,00 D) 16,0 E) Ninguno La combustión completa de acetileno C2H2 en presencia de oxígeno O2 produce dióxido de carbono CO2 y agua H2O. ¿Cuántos moles de oxígeno se necesitan para reaccionar con 4,0 moles de acetileno? A) 5,0 B) 4,0 C) 10 D) 2,0 E) Ninguno ¿Cuál sería la concentración molar de una solución preparada al disolver 15,8 g de KMnO4 y al diluir ésta a 250 mL? A) 0,000400 B) 0,0632 C) 0,100 D) 0,400 E) Ninguno Si se dejan 100 mL de una solución de NaCl molaridad de 0,10 en un cilindro graduado hasta que la evaporación del solvente reduzca su volumen a 80,0 mL, ¿cuál es la molaridad del NaCl en la solución resultante? A) 0,080 B) 0,80 C) 0,18 D) 0,13 E) Ninguno Si 15,0 mL de HCl con 2,50 M se diluyen a 50,0 mL, la concentración molar del HCl en la solución final será: A) 0,750 B) 1,50 C) 1,00 D) 0,690 E) Ninguno ¿Qué masa (g) de NaOH al 75% en peso deben disolverse en agua para preparar 250 mL de NaOH con 1,50 M? A) 53,0 B) 15,0 C) 20,0 D) 5,33 E) Ninguno 20,0 g de cloruro de un metal desconocido, MCl, se disuelven en 100 mL de agua. Si se requieren 357 mL de AgNO3, con 0,750 M, para precipitar como AgCl todo el cloruro de la solución, ¿cuál es la identidad del elemento M? A) Ag B) K C) Cr D) Tl E) Ninguno En un litro de una solución hay 200 g de soluto X. Si la solución contiene 18% en masa de X, ¿cuál es la densidad (g/mL) de la solución? A) 1,2 B) 1,1 C) 0,036 D) 1,1 E) Ninguno Un estudiante mezcla 1,50 L de NaCl, con 0,300 M, con 2,50 L de NaCl con 0,700 M, de lo que se obtienen 4,00 L de solución nueva de NaCl. ¿Cuál es la molaridad de esta nueva solución? A) 1,0 B) 0,550 C) 0,500 D) 0,197 E) Ninguno Una solución cuya densidad es de 2,00 g/mL contiene un soluto X de masa molecular 80,00. Al analizar la solución se descubre que contiene 60,0% de X en masa. ¿Cuál es su molaridad? A) 24,0 B) 12,5 C) 15,0 D) 12,0 E) Ninguno Soluciones. 29. 30. 31. 32. 33. El vinagre comercial es una solución acuosa de ácido acético, C2H4O2. El análisis volumétrico de una muestra indico que la solución es de 0,640 M de ácido acético. ¿Cuántos gramos de C2H4O2 estarían presentes en 1 pinta de vinagre? A) 81.2 B) 44,3 C) 18,2 D) 93,8 E) Ninguno ¿Cuál es la concentración molar de una solución hecha al disolver 4,76 g de MgCl2 en agua y llevar la solución a un volumen de 1500 mL? A) 0,025 B) 0,033 C) 0,011 D) 0,050 E) Ninguno El HCl concentrado tiene 37% en peso de HCl y una densidad de 1,19 g/mL. ¿Cuál es la molaridad de HCl concentrado? A) 31 B) 12 C) 10 D) 8,5 E) Ninguno Considerar la reacción entre ScCl3 acuoso y AgNO3 acuoso, en la que se precipita AgCl, dejando Sc(NO3)3 en solución. Si se agregan 2,5 L de AgNO3 con 0,30 M, a 500,0 mL de ScCl3 con 0,500 M, y la reacción se completa, ¿cuál será la molaridad del restante Sc(NO3)3. A) 0,100 B) 0,300 C) 0,0833 D) 0,0167 E) Ninguno Dadas dos soluciones: NaOH con 0,125 M y NaOH con 0,275 M, ¿en qué proporción en volumen deben mezclarse ambas para preparar una solución de NaOH con 0,250M. A) 1,5/1 B) 5/1 C) 2,75/1 D) 6/1 E) Ninguno 99 Unidad 9 Termoquímica 9.1 Introducción La termoquímica es el estudio de la relación en los procesos químicos de la energía calorífica, en donde una energía química se transforma en energía calorífica o la calorífica en química. Esta transformación se observa en una reacción de combustión la cual genera calor utilizado como combustible de motores o generalmente para la cocción de alimentos. Las funciones termodinámicas E y H son funciones de estado, es decir, la diferencia en E o H entre cierto estado inicial y uno final es una constante y es totalmente independiente de la vía por la cual se efectúa el proceso estado 1 estado 2, Aún más, solo es posible determinar experimentalmente las diferencias (E y H y no los valores absolutos de E y H). En los sólidos y líquidos, el estado normal significa ‘la sustancia pura a una presión externa de 1,0 atm’, en el caso de los gases quiere decir ‘a una presión parcial de 1,0 atm’, y para un soluto en un disolvente liquido, “a una concentración de 1,0 M” Además en cuanto a los elementos (Br2, O2 ,S 8 , etc) el estado normal se refiere a la forma más estable de ese elemento a 1 atm. Se dice que los datos termodinámicos de tales sustancias son ‘normales’ y tienen un superíndice (°), por ejemplo H°. La temperatura no es parte de la definición de estado normal, pero con frecuencia los datos tabulados están a 25ºC. 9.2 Energía: Unidades El sistema internacional de unidades (S.I.) utiliza la caloría como unidad básica del calor. Estableciéndose caloría la cantidad de calor necesaria para elevar la temperatura de un gramo de agua en un grado centígrado, o sea de 7,0 a 8,0º C respectivamente. Las relaciones entre otras unidades que miden la energía calórica son: 1 caloría → 4,184 Joule -7 1 Joule → 1 x 10 erg 1 Kcal → 1000 cal Problemas Resueltos 1. Solución: a) ¿Cuántas kilocalorías hay en 5225 J? b) ¿Cuántos joules hay en 458 kcal? Los factores de conversión son: a) 1 cal = 4,184 J 1 kcal 5225 J 1 cal = 1,25 kcal 4,184 J 1000 cal b) 1 kcal = 1000 cal 1000 cal4,184 J =1,910 6 J 458 kcal 1 kcal 1 cal 2. La unidad térmica británica, BTU, es una unidad de energía mucho más usado para medir el desprendimiento de calor por la combustión de petróleo que la kilocaloría o el joule. Un BTU es la energía necesaria para elevar la temperatura de una libra de agua en un grado Fahrenheit. ¿Una caloría a cuantos BTU son iguales? Solución: Los factores de conversión son: 1 cal 4,184 J 9,48 10 –4 BTU = 3,9710-3 BTU 1 cal 1J 99 QUÍMICA Texto guía para el ingreso a la facultad de ciencias y tecnología 9.3 Ecuaciones Termoquímicas Calor de formación H°f Es el calor liberado o absorbido cuando se forma 1 mol de un compuesto, a partir de sus elementos constituyentes, estando tanto los reactivos como los productos en sus estados normales a 298°K. Una sustancia elemental a 25°C tiene por definición H°f 0. Calor de combustión H°C Se refiere al cambio de entalpía que tiene lugar cuando un compuesto o elemento determinado reacciona con la cantidad estequiometria de oxigeno para formar óxidos específicos. Es decir es el calor desprendido cuando se quema 1mol de un compuesto. Variación de entalpía (H) es una cantidad de calor que se libera y/o se absorbe en un proceso químico (ej. Reacciones químicas) o físico (ej. cambios de estado). A + B C + calor Reacción exotérmica (liberación de calor) A + calor C Reacción endotérmica (absorbe calor) Ej.: proceso químico: 2H2S(g) + SO 2(g) 3S(s) + 2H2O(l) H = - 233 Kj Reacción Exotérmica 2H2O(l) + O2(g) 2H2O2(l) H = + 96 Kj Reacción Endotérmica Ej.: proceso físico: 2H2O(l) 2H2O2(g) Hvap = + 9700 cal/mol Reacción Endotérmica (Absorbe calor) Problemas Resueltos 1. Calcular el calor de reacción, o entalpía estándar de reacción, a 25 °C para cada una de las siguientes reacciones: a) SiO2(s) + Na2CO3(s) Na2SiO3(s) + CO2(g) b) H 2SiF6(ac) 2 HF(ac) + SiF4(g) c) 2 Al(s) + Fe 2O3(s) 2 Fe(s) + Al2O3(s) Solución: En el Apendice páginas 243-245, se encuentran los valores de las entalpías de formación: El calor de reacción es: ∆H° = ∑nP∆Hf° productos– ∑nR∆Hf°reactivos - 1079 kJ - 393,5 kJ + 1 mol CO 2 H 1 mol Na 2 SiO 3 1 mol Na SiO 2 3 1 mol CO 2 - 1131 kJ 910,9 kJ 569,9 kJ 1 mol Na 2 CO 3 1 mol SiO 2 1 mol SiO 2 1 mol Na 2 CO 3 -1131 kJ 910,9 kJ 1 mol Na 2CO3 569,4 kJ 1 mol SiO2 1 mol SiO2 1 mol Na2CO3 - 2331kJ - 1615 kJ - 320,8 kJ 1 mol H2 SiF6 H 2 molesHF 1 mol SiF4 1 mol H SiF 74,4 kJ 1 mol HF 1 mol SiF 4 2 6 - 1676 kJ 0 kJ c ) H 2 moles Fe 1 mol Al 2 O 3 1 mol Fe 1 mol Al 2 O 3 - 824,2 kJ 0 kJ 2 moles Al 1 mol Fe 2 O 3 1 mol Al 1 mol Fe 2 O 3 100 852 kJ Termoquímica. 2. El fosgeno, COCl2, es muy importante en la fabricación de polímeros como poliuretano y policarbonatos. Por ser un veneno respiratorio muy peligroso se empleó como gas venenoso en la Primera Guerra Mundial. Demostrar que la preparación del fosgeno a 25 °C es exotérmica. CO(g) + Cl2(g) COCl2(g) Solución: En el apéndice se encuentran los valores de las entalpías de formación: ∆H° = ∑nP∆Hf° productos– ∑n R∆Hf°reactivos -233, 0 kJ 0 kJ -110, 5 kJ 1 mol Cl2 1 mol CO H 1 mol COCl2 122, 5 kJ 1 mol COCl 1 mol Cl 1 mol CO 2 2 9.4 Leyes Termoquímicas Ley de Hess : adquiere dos formas: 1. cuando solo se utilizan los calores de formación, el cambio de entalpía de cualquier reacción puede calcularse: Hº Re accion n Hº f prod n Hº f react Donde n es el número de moles de la ecuación equilibrada. 2. Cuando se emplean valores de H distintos de los calores de formación, el calor de reacción se calcula, recordando: i) si una ecuación se invierte, el signo cambia; ii)si una ecuación se multiplica por un factor x, entonces el valor asociado de H debe multiplicarse por ese factor. iii) todas las especies que no son deseadas en la ecuación final deben cancelarse si es que se ha aplicado correctamente el ciclo de la ley de Hess. Problemas Resueltos 1. El fósforo sólido existe en dos formas alotrópicas, rojo y blanco. Ambas reaccionan con cloro para producir tricloruros de fósforo, un líquido incoloro que desprenden vapores a la atmósfera. P4(blanco) + 6 Cl2(g) 4 PCl3(l) ∆H1° = – 1,15 10 3 kJ (1) 3 P4(rojo) + 6 Cl2(g) 4 PCl3 (l) ∆H2° = –1,23 10 kJ (2) Calcular la entalpía estándar de reacción a 25 °C para el proceso de conversión del fósforo rojo en fósforo blanco: P4(rojo) P4(blanco) (3) Solución: Aplicando la ley de Hess a la ecuación (1): 4 PCl3(l) P4(blanco) + 6 Cl2(g) ∆H˚ = +1,15 10 3 kJ (1a) Sumando (1a) + (2), se tiene: 3 ∆H˚ = –1,23 10 kJ (2) P4(rojo) + 6 Cl2(g) 4 PCl3 (l) 3 4 PCl3(l) P4(blanco) + 6 Cl2(g) ∆H˚ = +1,15 x 10 kJ (1a) P4(rojo) + 6 Cl2(g) + 4 PCl3(l) 4 PCl3(l) + P4(blanco) + 6 Cl2(g) Simplificando: P4(rojo) P4(blanco) (3) La entalpía para esta reacción es, 3 3 ∆H°3 = ∆H°1a + ∆H°2 = +1,15 10 kJ + (–1,23 10 kJ) = – 80 kJ 2. A partir de las ecuaciones siguientes y los valores de ∆H˚, H2(g) + Br2(l) 2 HBr(g) ∆H° = –72,8 kJ (1) 2 H2(g) + O2(g) 2 H 2O(g) ∆H˚ = – 483,7 kJ (2) Calcular el ∆H° para la siguiente reacción: 4 HBr(g) + O2(g) 2 Br2(l) + 2 H2O(g) 101 QUÍMICA Solución: 9.5 1. Solución: Texto guía para el ingreso a la facultad de ciencias y tecnología Multiplicando por 2 la ecuación (1) ∆H˚ = –145,6 kJ (1a) 2H2(g) + 2Br2(l) 4HBr(g) Restando de la ecuación (2), la ecuación (1a) 2 H2(g) + O2(g) – [2H2(g) + 2Br2(l)] 2H2O (g) – [ 4 HBr(g)] Simplificando y realizando el cambio de las sustancias con signo negativo al otro lado de la ecuación para que tengan signo positivo. 4 HBr(g) + O2(g) 2H2O (g) + 2Br2(l) Su entalpía de reacción es: ∆H°3 = ∆H°2 – ∆H°1a = – 483,7 kJ – (–145,6 kJ) = –338,1 kJ Estequiometría de las Reacciones Termoquímicas Problemas Resueltos Calcular en kilojoule la cantidad de calor que se libera en la oxidación total de 24,2 g de aluminio a 25 °C y una atm de presión para formar óxido de aluminio, el recubrimiento protector de las puertas y ventanas de aluminio. 4 Al(s) + 3 O2(g) 2 Al2O3(s) 4 Al(s) + 3 O2(g) 2 Al2O3(s) ∆H˚ = – 3352 kJ/mol 4 moles de Al = –3352 kJ 1 mol Al -3352 kJ 24,2 g Al 751 kJ 27 g Al 4 moles Al 2.Calcular la cantidad de calor que se libera en la tostación (calentamiento en presencia de oxígeno) de 4,65 g de pirita de hierro, FeS2. 4 FeS2(s) + 11 O2(g) 2 Fe2O3(s) + 8 SO3(g) o Solución: siendo H f de FeS2(s): –177,5 kJ/mol. ∆H° = ∑nP∆Hf° productos– ∑nR∆Hf°reactivos -824, 2 kJ -296,8 kJ H 2 moles Fe 2O3 8 moles SO 2 1 mol SO 1 mol Fe 2 O 3 2 0 kJ -177, 5 kJ 4 moles FeS 11 mol O 2 2 1 mol O 1 mol FeS -3312 ,8 kJ 2 2 1 mol FeS2 - 3312,8 kJ 32,1 kJ 4,65 g FeS2 119,8 g FeS2 4 moles FeS 2 102 Temperatura ANEXO A RESPUESTAS A LOS PROBLEMAS PROPUESTOS, ADICIONALES Y AUTOEVALUACION 1. 2. Resp. a) 303 K, b) 86°F Resp. a) 77°F; b) 298 K Problemas Adicionales UNIDAD 1 2. Propiedades de la Materia 2 4 Resp. a) 15,2 cm , b) 9,31 10 –8 pulgadas, c) 1,10 10 cm, 0,110 nm 1. Resp. Propiedades extensivas: c, y f; 2. 3. propiedades intensivas, a, b, d, y e Resp. Propiedades físicas: a, b, c y d; propiedad química, e Resp. Intensiva Cifras Significativas y Notación Científica 1. Resp. a) 137,0; b) 10,00; c) 0,900; d) 5,0 2. 3. 4. : e) 112; f) 0,00210 Solución: En las dos mediciones el número de cifras significativas es diferente. El valor 4,0 tiene dos cifras significativas, mientras que 4,00 tiene tres. Esto significa que la segunda medición es más precisa. Resp. 5 Resp. a) Cuatro, b) Dos, c) Tres. Sistema Internacional de Unidades, Análisis dimensional y factores de conversión 7 1. 2. Resp. 8,88 10 átomos Resp. 34,4 cm 3. Resp. a) 1 10 cm; b) 1 10 kg; c) 1,0 4. 10 ns; d) 1,00 10 µm Resp. 0,099 nm, 99 pm 5. 6. Resp. 6,4 10 g Au. Resp. 171,4 cm 7. 8. Resp. a) 8,39 10 g, b) 804,7 km Resp. 12 km/L 5 –6 7 –16 12 4 –4 –2 3. Resp. 2,34 10 g, 2,34 10 cg 4. 5. 6. 7. 8. Resp. 2,15 dm Resp. 0,789 g/mL Resp. 2,16 _ – 2 7 9. Resp. 8,88 10 átomos 10. Resp. a) 4, b) 3, c) 4 11. Resp. a) 2, b) 3 –3 12. Resp. 8,2 10 g 13. Resp: Propiedades intensivas: a, b, c, e, g, h, i, Propiedades extensivas: d, f 14. – 4 15. Resp. a) 41°C, b) 11,3°F, c) 1,1 10 °F 5 2 16. Resp. 4 10 m 17. Resp. 1,74 g/mL Mg; 2,79 g/mL Al; 10,5 g/mL Ag 18. Resp. 76000 gotas 19. Resp. 76 g Autoevaluación: Preguntas tipo Examen de Ingreso 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. B) 1 mL A) Galón C) 19,3 B) 699 B) 2,7 C) 29 D) 0,06 B) 85 A) 1,907x1016 C)4,9x106 Densidad y Gravedad Específica Unidad 2 1. 2. 3. Resp. a) 2,70 g/mL, b) 2,69 g/mL Resp. 11 g/mL Resp. 0,792 g/mL; 6,61 libras/galón; 49,4 4. 5. 6. 7. 8. libras/pie Resp. 0,0013 g/mL Resp. a) 13,6 g/mL b) 884 g Resp. 19,0 mL Resp. 155 g Resp. a) 2350 mL b) pulgadas. Estructura de los Átomos 3 Partículas Subatómicas, Radiactividad, Rayos X y Modelos Atómicos Estructura Nuclear 5,23 1. .Resp. a) 9 y 10; b) 18 y 18; c) 18 y 18; d) 10 y 10 103 Espectros Atómicos y Ondas 1. –6 8 Resp. a) 6,25 10 m; b) 2,54 10 m; –5 c) 5,51 10 m 2. 13 Resp. a) 3,07 10 14 Hz; b) 6,1 10 Hz; 18 c) 6,1 10 Hz 3. 18 14 Resp. a) 3,0 10 13 Hz, c) 6,8 10 Hz; b) 5,996 10 Hz; d) 3,4 MHz; e) 5,33 14 6. 10 Hz La Mecánica Cuántica: Cuantos, Fotones, Efecto Fotoeléctrico y Niveles de Energía del Átomo. 1. 14 Resp. a) 4,29 10 –12 Hz; 2,84 10 –14 –12 2. ergios; b) 7,5 10 Hz; 5 10 Resp. 252 FOTONES 3. Resp. 9,74 10 m 4. 5. 6. Resp. 1,88 10 m Resp. 121,95 nm Resp. 611,6 nm 7. Resp. 2,42 10 ergios –8 –6 –11 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. m 17. –36 8. Resp. 3,50 10 m 9. Resp. 97,3 nm 10. Resp. 0,122 nm 11. Resp. e < d < b < c < a –7 18. 15 12. Resp. a) 6,49 10 m; b) 1,67 10 Hz 13. Resp. 4,87 1014 Hz 14. Resp. a) Absorbida, b) emitida –34 15. Resp. a) 2,0 10 –37 m, b) 4,7 10 m Números Cuánticos, Orbitales Atómicos, Configuraciones Electrónicas y electrones de valencia 1. 2. Resp. a) 5p, b) 3, c) 1, 0, –1 _ 3. 4. 5. Resp. a) ns np , b) 2 _ _ 2 5 Problemas Adicionales 1. 2. 3. 4. 5. 104 Resp. Neutrones. Resp. Electrón Resp. Falso. El número atómico representa el número de protones en el núcleo. Resp. Masa. Resp. La mayoría de la masa del átomo se concentra en el núcleo: los protones y neutrones que constituyen el núcleo tienen masas similares y estas partículas 19. 20. 21. 22. 23. 24. 25. 26. 27. son casi 200 veces más pesadas que los electrones. Las propiedades químicas de un átomo dependen del número y localización de los electrones que contiene. Los electrones se encuentran en las regiones mas externas del átomo y son las partículas que tienen mayor probabilidad de participar en interacciones entre átomos. Resp. La molécula se mueve o gira en el espacio a velocidad más alta y los átomos de la molécula vibran con mayor fuerza. Resp. Fotón Resp. La velocidad de la luz. Resp. Cuantizados. Resp. Orbital. Resp. Espines Resp. 2,3 10–14 –19 Resp. 4,02 10 J/fotón; 25 fotones 26 Resp. 7,9 10 fotones Resp. 2,53 1018 fotones Resp. Frecuencia = 6,0 1014/s; energía por fotón = 4,0 10–19 J; energía por mol de fotones = 2,4 105 J. Resp. Longitud de onda = 102,6 nm y frecuencia = 2,923 1015/s. La luz con estas propiedades se encuentra en la región ultravioleta. Resp. Los orbitales 2p tienen dos lóbulos y en ocasiones se dice que tienen forma de "pesa". Los orbitales 2p individuales (2px 2py, y 2pz) son similares en forma y energía; solo difieren en la dirección en la cual están orientados los lóbulos del orbital. Resp. a, c. Resp. Los tres orbitales 2p tienen energía similar; la ocupación de orbitales distintos reduce al mínimo la repulsión entre los electrones. Resp.. (a) 5 (b) 7 (c) 1 (d) 3 Resp. (a) 3d (b) 4d (c) 5f (d) 4p 2 2 5 2 4 1 Resp. (a) ns (b) ns np (c) ns np (d) ns 2 4 (e) ns np Resp. 3,35 m Resp. (a) n = 4, l = 0, 1, 2, 3 (b) Cuando l = 2, m = –2, –1, 0, 1, 2 (c) Para un orbital 4s, n = 4, l = 0 y m = 0 (d) Para un orbital 4f, n = 4, l = 3 y m = –3, –2, –1, 0,1,2,3 Resp. Conjunto 1: n = 4, l = 1 y m = – 1 Conjunto 2: n = 4, l = 1 y m = 0 Conjunto 3: n = 4, l = 1 y m = + 1 Resp. (a) l debe tener un valor no mayor de n – 1. (b) m solo puede ser igual a 0 en este caso (c) m solo puede ser igual a cero en este caso Autoevaluación: Preguntas Tipo Examen de Ingreso 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. D) 114Ag D) 27 protones, 29 neutrones C) 18 E) Ninguno D) 24 protones, 28 neutrones y 21 electrones B) El mismo número de p. C) 142 neutrones y 92 protones B) Que todas las formas de la materia contienen electrones. C) 5 D) 4 A) 15 B) 7 D) La diferencia de energía entre dos niveles de energía A) Cargas negativas y sería isoelectrónica con el argón D) 14 D) 3d B) Electrón 4d C) l = 2 D) Cu C) 13 Unidad 3 Enlace Químico Símbolos de Lewis y la Regla del Octeto 1. 2. 3. _ _ Resp. C Tipos de Enlace: Iónico y Covalente 1. 2. 3. 4. _ _ _ _ Estructuras de Lewis y Números de Oxidación 2. 3. 4. Formas Moleculares Intermoleculares 1. 2. 3. _ Resp. a) 5+, b) –1, c) 6+, d) 4+, e) 1– _ _ _ _ 1. 2. 3. 4. 5. 6. 1. Resp. B–Cl Fuerzas Resp. a) angular; b) trigonal plana Resp. a) polar; b) polar; c) no polar Resp. a) no polar; b) no polar _ Resp. a) covalente polar; b) es iónico; c) covalente no polar _ _ _ _ Unidad 4 Átomos y Moléculas, Estequiometría Fundamentos de Masas Atómicas, Composición, Abundancia Isotópica y Masas Moleculares 1. 2. 3. 4. 5. 6. 7. Resp. Resp. Resp. Resp. Resp. Resp. Resp. 28,085 10,01 75,8% y 24,2% 64,25 49,2% Br–78,92; 50,8% Br–80,92 24,307 90,7% y 9,0% El mol, Número de Avogadro y Volumen molar 1. 2. 3. Resp. a) 0,102 moles, b) 0,0509 moles, c) 0,062 moles, d) 0,0325 moles Resp. a) 0,664 moles; b) 0,021 moles; c) 0,030 moles; d) 0,242 moles; e) 0,104 moles; f) 0,066 moles Resp. a) 2,44 g H; b) 4,88 g; c) 43,6 g; d) 82,3 g Resp. a) 46,068; b) 4,3 moles; c) 74,63 g –22 18 5. Resp. a) 1,59 10 átomos 6. 7. Resp. a) 0,016 g; b) 9,5 10 átomos Resp. a) 1.06 moles, b) 0,062 moles, c) 0,24 moles 8. Polaridad del Enlace Covalente, Resonancia y Problemas Adicionales 4. 1. 2. 3. 4. 5. 6. Resp. Se – Cl _ _ g; b) 6,28 10 21 24 Resp. a) 1,44 10 átomos, c) 2,0 moles 9. Resp. a) 2,44 moles; b) 10,8 moles 10. Resp. 142 g 105 –4 11. Resp. 4,44 10 moles 12. Resp. 246 g 13. Resp. 58,94 14. Resp. 93,2 15. Resp. 64 16. Resp. 0,0014 moles 23 Resp. a) 1,807 x 10 átomos; b) 4,517 x 23 10 moléculas –27 –26 2. Resp. a) 1,67 10 3. kg; c) 3,95 10 kg Resp. b) 8,33 moles Fe, 16,7 moles S; c) 0,535 kg kg; b) 2,66 10 4. 5. Resp. 2,5 10 moléculas _ 6. Resp. a) 0,344 moles; b) 2,83 10 mol; –25 10 –2 –2 c) 7,5 10 mol; d) 6,49 mol; e) 4,6 –4 7. 10 mol; f) 28 mol Resp. 10,8 8. Resp. 1.2 10 dolares/persona 9. Resp. a) 8,3 10 14 16 6 gotas; b) 7,3 10 3 millas 10. Resp, a) 76,98%; b) 46,4%; c) 17,3%; d) 2,79% 11. Resp. C6H12O6 12. 13. 14. 15. 16. 17. Resp. Resp. Resp. Resp. Resp. Resp. Resp. 20,9 % Resp. BrC3H7 8. Resp. a) C9H13O3N, b) C10H14N2 9. Resp. CH2 10. Resp. MgSO4. 7 H2O Composición Porcentual, Formulas Empíricas y Moleculares 1. 6. 7. GaAs 42,10% C, 6,44% H; 51,46% O 82,76% C; 17,24% H 83,8% C, 11,9% H, 4,3% O 1,54% a) As2O5; b) K2CrO4; c) K2Cr2O7 18. Resp. a) 171,1 mg, 19,01 mg y 38,29 mg; b) C6H8O 19. Resp. CoCl2 . 6H2O 20. Resp. VCl3 Autoevaluación: Preguntas Tipo Examen de Ingreso 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. B) 28% D) 28,09 C) 1,0 g de He E) Ninguno A) 0,049 A) 233 D) 3,4 1024 C) 83,8 g A) 1,00 C) 2,39 10–22 26 D) 8,19 10 23 A) 7,0 10 A) C3H6O (formula empirica) D) 5,35 B) (NH4)2CrO4 A) 204 C) 18 D) ½ B) 174 D) 46,7% Unidad 6 Cálculos Químicos Estequiometría Pureza de las Sustancias y Contenido de Sustancias en los Minerales 1. 2. 3. 4. Resp. Resp. Resp. Resp. a) 1,2 g; b) 1,2 lb a) 188,3 lb; b) 589 lb; c) 99,7 lb 6,50 g 46,7 g; 32,5 g 21. Resp. a) 288,5; b) C19H28O2 22. Resp. C4H9 23. Resp. C6H12O3 24. Resp. C10H14N2 25. Resp. FeS2 Problemas Adicionales 1. Resp. a) CaSO4, b) K2Cr2O7 2. Resp. As2O5 3. Resp. C6H6 4. Resp. a) 40% Ca, 12% C y 48% O; b) 32,4% Na, 22,5% S, 45,19% O Resp. C3H4O3 5. 106 Estequiométricas de las Reacciones 1. 2. 3. 4. Resp. Resp. Resp. Resp. a) 11 moles; b) 0,926 moles b) 1,048 moles; c) 6,15 moles b) 2,9 moles; c) 13,45 moles 0,189 moles 5. 6. 7. 8. 9. 10. 11. 12. Resp. Resp. Resp. Resp. Resp. Resp. Resp. Resp. 1,92 x 10 moles 138 g a) 6 g y 3,4 g; b) 1,3 g 32,8 g a) 1,515 g; b) 2,82 g 589,5 g a) 186 kg; b) 212,5 kg a) 174,4 g; b) 232,5 g -3 13. 14. 15. 16. 17. 18. 19. 20. Resp. 37,8 g Resp. 0,076 L Resp. 24,1 g Resp. 6,72 L Resp. a) 229,64g; b) 62,37 L Resp. 9,23 L Resp. a) 625 L; b) 500L y 750 L Resp. a) 3000 pies cúbicos; b) 6000 pies cúbicos 21. Resp. 6634 mL. Reactivo Limitante y Rendimientos 1. 2. 3. 4. 5. 6. Resp. Resp. Resp. Resp. Resp. Resp. 5,0 g 1,08 g 1,104 g 1,3 g 387 g b) 2,238 g Cu(NO3)2; 0,238 g NO; 1. 2. D) 4 C) 13 3. 4. 5. 6. D) 5,5 10 B) 32 C) 111 A) 33 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. A) 6,1 10 3 B) 1,43 10 A)0,22 A) 0,143 B) 0,268 A) 69,7% A) 92,99% B) 2,25 A) 16,0 C) 1/3 D) 1,75 2 3 Unidad 7 0,286 g H2O; 23,24 g Cu 7. 8. 9. 10. Resp. 50,2% Resp. 67,1% Resp. 39% Resp. 1,5 kg Gases Ideales Propiedades de los gases Problemas Adicionales 1. 1. 2. 3. 4. 5. Resp. Resp. Resp. Resp. Resp. 26,9 L d) 32,1 g a) a) 6,5 L O2; b) 4 L CO2 6. 7. 8. 9. 10. 11. 12. 13. Resp. Resp. Resp. Resp. Resp. Resp. Resp. Resp. b) 2 moles; c) 2 moléculas a) 581 g; b) 790 g; c) 379 g 72 g 33,3 g 18,3 L 1,5 kg 205 g b) 7,01 g HCl 2 2. 3. Resp. a) 65 cm Hg; b) 0,86 atm; c) 86638 Pa 2 Resp. a) 1,013 bar, b) 14,70 lb/plg Resp. a) 0,0313 atm; b) 3,17 kPa Leyes de los Gases: Ley de Boyle, GayLussac, y Combinada 2 14. Resp. a) 1,15 10 kg; b) 1,5 1,44x10 1. 2. 3. 4. 5. 6. 7. 8. Resp. Resp. Resp. Resp. Resp. Resp. Resp. 304 kPa 1500 mL 35,2 mL 215°C 198°C 16,6 MPa 713 mL Resp. 0,96 atm 5 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. kg; c) 2,41 10 g; 75,42% Resp. 0,600 g Resp. 1,77 g Resp. a) Al; b) 1,5 moles Resp. 4,92 g Resp. 1,59 g Resp. a) 43,5 g; b) 77% Resp. a) 105 g; b) 83,7% Resp. 86,3% Resp. 19,15 L Resp. 1,33 g Autoevaluación: Preguntas tipo Examen de Ingreso Ecuación de Estado de los Gases Ideales 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. Resp. 31,95 atm Resp. 1,23 atm Resp. 0,638 g/L Resp. 1,245 g/L Resp. 8 L/mol Resp. 301,75 Resp. 52,3 Resp. 32,92 Resp. 57 Resp. 28 Resp. 8 átomos Resp. 45,02 Resp. 58 107 14. Resp. C6H6 15. Resp. 0,343 moles 22 16. Resp. a) 0,02 moles; b) 2,4 10 átomos 17. Resp. 1000,5 g Ley de las Presiones Parciales de Dalton y Recolección de Gases sobre agua 1. 2. Resp. 100,8 kPa Resp. 0,305 atm de N2; 0,195 atm de N2O 3. 4. 5. 6. 7. Resp. 0,1875 atm del Ne Resp. 48,8 mL Resp. 516 mL Resp. 23,5 torr Resp. C3H8O 8. Resp. CO(NH2)2 del He; 0,0625 atm Ley de Difusión de Graham 1. 2. 3. Resp. 0,676 g/L Resp. 8 hileras recorre el gas hilarante y 4 hileras el gas lacrimógeno. Resp. 30 Estequiometría Gaseosa 1. 2. 3. 4. 5. 6. Resp. Resp. Resp. Resp. Resp. Resp. 18.8 g giobertita 61,9 moles 14,8 L 1,03 L 511 mL a) La2(C2)3(s) + 6 H2O(l) C2H2(g) + 2 La(OH)3(s); b) 0,120 L Problemas Adicionales 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 108 Resp. Resp. Resp. Resp. Resp. Resp. Resp. Resp. Resp. Resp. Resp. Resp. Resp. Resp. Resp. Resp. Resp. 348,78 mL 99,97 kPa 460 mL 21,82 L 40 26,18 1,6 g 238,86 L 237 mL 104 K 1,358 g/L 500 mL 80000 torr 5 atm 606°C 15 atm 46 L 3 18. Resp. 2.2 L 19. Resp. O2 y 1.07 veces. 20. Resp. 72 21. 22. 23. 24. 25. 26. Resp. Resp. Resp. Resp. Resp. Resp. 11 2,0 x 10 moléculas/mL 0,13 g/L 80 442,4 g 2,2 g 1,20 atm Ne, 0,20 atm Ar Autoevaluación: Preguntas Tipo Examen de Ingreso 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. B) 32°F y 76 cm de Hg C) 23,0 A) 0,850 A)1300 B) 1,33 C) 3/2 C) 718 D) 3,41 C) 59 A) 0,508 C) CO2 C) 0,27 B) 0,70 A) 75 D) 3,4 104 D) 1,00 L de hidrógeno a 0°C y 800 torr B) 296 C) 86 E) Ninguno B) 383 D) 8KMnO4 4K2MnO4 + 2MnO3 + 5O2 D) – 100°C y 4,0 atm D) 69% A) Aumentar la temperatura absoluta a 2T Unidad 8 Soluciones 1. .Resp. a) 147,10 g; b) 49,03 g 2. Resp. 4,48 10 g NaCl/100 g propanol, 0,035 g/L Resp. 1,898 molal Resp. 17,1 g Resp. 0,794 molal Resp. 12,5% Resp. a) 9,73%; b) 90,27% Resp. 26,47% Resp. 60 g Resp. 66,15 g Resp. 0,477 Resp. 0,58 Resp. 214,2 g 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. –5 14. Resp. 0,904 y 0,096 del agua 15. Resp. 0,025 M Preparación, Dilución y Mezcla de Soluciones 1. 2. 3. 4. 5. 6. 7. 8. Resp. 420 mL del ácido sulfúrico del 95% se añaden a un matraz aforado de 25 L de capacidad que contiene una cierta cantidad de agua, se enrasa con agua hasta 25 L Resp. 1,75 M Resp. 150 g Resp. 5/14 Resp. 737 g y 263 g Resp. 1,4 Lde 0,2N y 0,4 L de 2N Resp. a) 6,486%; b) 2,2055% Resp. a) 192,8 g; b) 1540 g Estequiometría de las Valoraciones o Titulaciones 1. 2. 3. 4. 5. 6. Resp. Resp. Resp. L Resp. Resp. Resp. Soluciones. 0,025 L 0,01566 L 51% 3. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. _ Resp. 45,21 g –3 Resp. a) 2,17%, b) 8,62 x 10 alcohol; c) 0,472 M; d) 0,483 m 4. Resp.18,18% 5. Resp. c) 6. Resp. c) 7. Resp. a) 9,79 m; b) 0,402 m 8. Resp. a) 41,1%; b) 0,692; c) 38,7 m; d) 21,1 M 9. Resp. 16 M Resp. a) 0,127 moles; b) 268 moles; c) 3800 moles Resp. a) Pesar 2,5 kg de KBr, disolverlos en agua para preparar 1,40 L de solución; b) Pesar 11,4 g de KBr, disolverlos en 238,6 g de agua; c) Pesar 198 g de KBr y disolverlos en 1452 g de agua. Resp. 1,32M Resp. 0,278 M Resp. 24,8 g Resp. a) 1,1g; b) 70 mL Resp. 0,00250 moles Resp. 2,28 M Resp. 13 g Resp. 455 g Resp. a) 4,5 g; b) 449 g Resp. 6,72 molar 0,188 a = 0,0285 b = 0,0294 moles c= 272,42 g/mol 95,76 g 0,315 °C/molal 100,26 °C 88,98 °C -0,465°C 2232 g/mol -0,668 °C 14,13 °C 0,315 atm 4 atm 112 g/mol 114,7 g/mol Autoevaluación: Preguntas Tipo Examen de Ingreso 1,84 L 0,124 L a) 2,08 M; b) 1,872 moles; c) 47,4 Problemas Adicionales 1. 2. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 1. D) 0,0140 2. A) 1,5 3. A) 0,139 4. B) 20 5. C) 33,3 6. D) 15 7. B) 100 mL de KMnO4 con 1,00 M 8. D) 3,40 9. B) 49 A) 71,4 D) 2500 A) 13,4 A) 48,97 D) 33 B) 4,0 B) 8,08 A) 33 A) 2,50 D) 16,0 C) 10 D) 0,400 D) 0,13 A) 0,750 C) 20,0 B) K D) 1,1 B) 0,550 C) 15,0 C) 18,2 B) 0,033 B) 12 C) 0,0833 B) 5/1 109 110 ANEXO B TABLAS TABLAS 1. FACTORES DE CONVERSION Factores de Longitud 1 Aº = 1*108 cm 1 m = 100 cm 1 milla (mi) = 1,609 Km 1 pie (ft) = 30,48 cm 1 pulgada (in) = 2,54 cm 1 Yarda (yd) = 91,44 cm Factores de Superficie o Área 1 Acre = 4046,86 m2 1 Ha = 10000 m2 1 m2 = 10000 cm2 1 pulg2 = 6,4516 cm2 Factores de Volumen 1 galón = 3,7853 L 1 L = 1000 cm3 1 m3 = 1000 L 1 cm3 = 1 mL 1 pie3 = 28,317 L Factores de Masa 1 tonelada = 1000 Kg. 1 Kg. = 1000 g 1 lb = 453,592 g 1 Onza = 28,35 g 111 Factores de Densidad 1 g/cm3 = 1 g/mL 1 Kg./m3 = 0,001 g/cm3 1 lb./pie3 = 0,01602 g/cm3 1 lb/pulg3 = 27,685 g/cm3 Factores de tiempo 1 día = 24 hr 1 Mes = 30,417 día 1 semana = 7 día 1 h = 60 min. 1 min. = 60 s Factores de Presión 1 atm = 760 torr 1 atm = 1,01325 Bar 1 atm = 101325 Pa 1 atm = 1,0332 Kgf/cm2 1 atm = 14,696 Lbf/pulg2 (psi) 1 torr = 1 mm Hg Factores de Trabajo y Calor 1 Cal = 4,186 J 1 J = 1*107 ergios 1 BTU = 252,16 cal 1 lb-pie = 0,32404 cal 112 TABLA 2. CONSTANTES FISICAS Numero de Avogadro (NA) = 6.022*1023 mol-1 Constante de Faraday (F) =96,485 C /mol Carga del Protón o electrón = 1.60219 *10-19 C Masa del electrón = 9,10953 x 10-28 g Constante de Planck (h) = 6,6262*10-34 J s Velocidad de la luz (c)= 2,997925 x 108 m/s Constante de Boltzmann (k) = 1,38062 x 10-23 J/K Aceleración de la gravedad (g) = 9,80665 m/s2 =32,174 pie/s 2 Velocidad del sonido en aire seco ( 0 º C) = 331,45 m/s Calor de vaporización del agua (1atm) = 540 cal/g Calor de fusión del agua (1atm) = 80 cal/g Capacidad calorífica del agua a (1atm) = 1,00 cal / g º C Densidad del aire seco (0 º C,1atm) = 0,001293 g/cm3 TABLA 3. CONSTANTE UNIVERSAL (R) DE LOS GASES IDEALES 0,08206 atm L / (g mol) K 1,987 cal / (g mol) K = Btu / (lb mol) ºR 10,73 psi ft3 / (lb mol) ºR 8,31434 kPa m3 / (kg mol) K = 8,31434 J / (g mol) K 82,06 cm3 atm / (g mol) K 21,9 inHg ft3 / (lb mol) ºR 0,7302 atm ft3 / (lb mol) ºR 113 TABLA 4. DENSIDAD DEL AGUA LIQUIDA (DE 0 º C A 100 º C) ρ (g/cm3) T ºC ρ (g/cm3) T ºC ρ (g/cm3) T ºC ρ (g/cm3) 0 0,999839 25 0,997045 50 0,988037 75 0,974850 1 0,999898 26 0,996783 51 0,987581 76 0,974250 2 0,999940 27 0,996513 52 0,987120 77 0,973645 3 0,999964 28 0,996233 53 0,986652 78 0,973025 4 0,999972 29 0,995945 54 0,986177 79 0,972419 5 0,999964 30 0,995647 55 0,985696 80 0,971799 6 0,999940 31 0,995341 56 0,985219 81 0,971173 7 0,999901 32 0,995026 57 0,984716 82 0,970543 8 0,999848 33 0,994703 58 0,984217 83 0,969907 9 0,999781 34 0,994371 59 0,983712 84 0,969267 10 0,999699 35 0,994032 60 0,983200 85 0,968621 11 0,999605 36 0,993684 61 0,982683 86 0,967971 12 0,999497 37 0,993328 62 0,982160 87 0,967316 13 0,999377 38 0,992965 63 0,981631 88 0,966656 14 0,999244 39 0,992594 64 0,981097 89 0,965991 15 0,999099 40 0,992215 65 0,980557 90 0,965321 16 0,998943 41 0,991830 66 0,980011 91 0,964647 17 0,998775 42 0,991436 67 0,979459 92 0,963967 18 0,998595 43 0,991036 68 0,978902 93 0,963284 19 0,998405 44 0,990628 69 0,978339 94 0,962595 20 0,998204 45 0,990213 70 0,977771 95 0,961902 21 0,997992 46 0,989792 71 0,977198 96 0,961204 22 0,997770 47 0,989363 72 0,976619 97 0,960501 23 0,997538 48 0,988928 73 0,976035 98 0,959794 24 0,997296 49 0,988485 74 0,975445 99 0,959082 100 0,958365 T ºC 114 TABLAS 5. PRESION DE VAPOR (torr) DEL AGUA LIQUIDA (DE 0 º C A 100 º C) T ºC P(torr) T ºC P(torr) T ºC P(torr) T ºC P (torr) 0 4,579 25 23,756 50 92,51 75 289.1 1 4,926 26 25,209 51 97,20 76 301.4 2 5,294 27 26,739 52 102,09 77 314.1 3 5,685 28 28,349 53 107,20 78 327.3 4 6,101 29 30,043 54 112,51 79 341.0 5 6,543 30 31,824 55 118,04 80 355.1 6 7,013 31 33,695 56 123,80 81 369.7 7 7,513 32 35,663 57 129,82 82 384.9 8 8,045 33 37,729 58 136,08 83 400.6 9 8,609 34 39,898 59 142,60 84 416.8 10 9,209 35 42,175 60 149,38 85 433.6 11 9,844 36 44,563 61 156,43 86 450.9 12 10,518 37 47,067 62 163,77 87 468.7 13 11,231 38 49,692 63 171,38 88 487.1 14 11,987 39 52,442 64 179,31 89 506.1 15 12,788 40 55,324 65 187,54 90 525,76 16 13,634 41 58,34 66 196,09 91 546,05 17 14,530 42 61,50 67 204,96 92 566,99 18 15,477 43 64,80 68 214,17 93 588,60 19 16,477 44 68,26 69 223,73 94 610,90 20 17,535 45 71,88 70 233.7 95 633,90 21 18,650 46 75,65 71 243.9 96 657,62 22 19,827 47 79,60 72 254.6 97 682,07 23 21,068 48 83,71 73 265.7 98 707,27 24 22,377 49 88,02 74 277.2 99 733,24 100 760,00 115 TABLA 6. PUNTOS DE EBULLICION CONGELACION DE ALGUNAS SUSTANCIAS 116 Sustancia Fórmula Acetona Acido de Acético Agua Amoniaco Argón Benceno Bromo Bromuro de Hidrogeno Bisulfuro de carbono Cianuro de Hidrogeno Cloro Cloroformo Cloruro de Hidrogeno Dióxido de Azufre Dióxido de Nitrógeno Dióxido de Carbón Etano Etanol Etileno Flúor Helio Hidrogeno Metano Metanol Monóxido de Carbono Nitrógeno Oxido Nítrico Oxigeno Ozono Sulfuro de Hidrogeno Tetracloruro de Carbón Trióxido de Azufre Yodo Yoduro de Hidrogeno CH 3 OCH 3 CH 3 COOH H2O NH 3 Ar C6H6 Br 2 HBr CS 2 HCN Cl 2 CHCl 3 HCl SO 2 NO 2 CO 2 C2H6 C 2 H 5 OH C2H2 F He H2 CH 4 CH 3 OH CO N2 NO O2 O3 H2S CCl 4 SO 3 I2 HI M (g / mol) 58,08 60,052 18,015 17,031 39,948 78,114 159,808 80,912 76,131 27,026 70,906 119,378 36,461 64,063 46,006 44,01 30,07 46,069 28,054 37,997 4,003 2,016 16,043 32,042 28,018 28,013 30,006 31,999 47,998 34,08 153,823 80,058 253,808 127,912 Teb. (K) 329 391 373 240 87 353 332 206 319 299 239 334 188 263 294 195 185 352 169 85 4,2 20 112 338 82 77 121 90 161 213 350 318 458 238 T cong. (K) 178,2 289,8 273,2 195,4 83,8 278,7 266 187,1 161,3 259,9 172,2 209,6 159 197,7 261,9 216,6 89,9 159,1 104 53,5 0 14 90,7 175,5 68,1 63,3 109,5 54,4 80,5 187,6 250 290 386,8 222,4 ANEXO C Referencias Documentales 1. Alvarez Rolando,Hamel Jaime, Hosse Ronald, 2001, “Curso Preuniversitario de Química ” , Facultad de Ciencias y Tecnología “Universidad Mayor de San Simón”. 2. Dillard C., Goldberg D., 1977, Química General, Fondo Educativo Interamericano, Madrid. 3. Frederick Longo 1979, “Química General”, Ed. Mc Graw Hill Interamericana, Imprenta “México “DF. 4. Raymond Chang 1992, “Química General”, 7a Edición, Ed. Mc Graw Hill Interamericana, Imprenta “México “DF. 5. Sienko M., Plane r., 1990, Química Teórica y Descriptiva, Ed. Aguilar S. A., Madrid. 6. Whitten k., Gailey k. and Davis R., 1994, “Química General”, Ed. Mc. Graw Hill, 3ª Edición. 7. López C,2000,”Problemas de Química”, Ed. Pearson Educación S. A., Madrid 8. Glinca N.L., “Problemas y Ejercicios de Química General”, Ed. MIR, Moscú. 117