La masa del neutrino y sus implicaciones cosmológicas El neutrino es una partícula emitida en la desintegración beta donde un protón reacciona con un antineutrino convirtiéndose en un neutrón y un positrón (reaction#1) ó un protón interacciona con un electrón para producir un neutrón y un neutrino. En el Modelo Estándar de la física de partículas, el neutrino es una partícula que no tiene masa. Sin embargo se pueden hacer modificaciones en la teoría que permita la existencia de neutrinos masivos de forma que tienen que ser las observaciones o los experimentos los que decidan cuál es el caso. Al ser el neutrino una partícula sin masa o tremendamente ligera se mueve a la velocidad de la luz o a velocidades muy cercanas, lo que los convierte en lo que se denominan partículas relativistas. Actualmente se denomina a cualquier tipo de partículas relativistas en cosmología materia oscura caliente (del inglés Hot Dark Matter ó abreviado HDM) La nucleosíntesis primigénea establece que el número de tipos de neutrinos sólo puede ser tres (hecho que confirman los experimentos del CERN. Ver Hansen et al. 2001 y kneller et al. 2001) y que su número actual tiene que ser del orden de unos 115 neutrinos de cada especie por centímetro cúbico. Teniendo en cuenta que la densidad crítica es del orden de 2 ó 3 átomos de hidrógeno por metro cúbico, si los neutrinos tienen que contribuir con algo así como del orden de la densidad detectada (1/3 de la densidad crítica aprox.) tendríamos que unos 100 millones de neutrinos tendrían que pesar algo así como un átomo de hidrógeno. Un átomo de hidrógeno pesa (en unidades de energía) unos 1000 MeV. Por tanto la masa del neutrino tendría que ser del orden de unos 10 eV para que pudiera constituir el resto de la masa oscura. Pero si los neutrinos constituyen la masa dominante de estructuras como galaxias podemos hacer una nueva estimación de la masa del neutrino de la siguiente manera: Las galaxias tienen unas masas dinámicas que podemos deducir aproximadamente del simple hecho de que las estrellas estén unidas gravitatoriamente al cuerpo de la galaxia. Se debe cumplir entonces que la energía de ligadura gravitatoria (G m M/r) sea como muy poco del orden de la energía cinética de las estrellas (1/2 m v2), con objeto de que éstas no escapen de sus órbitas. Por ejemplo, para nuestra galaxia, con el Sol situado a unos 10 kpc gira con una velocidad de unos 220 km/s implica una masa mínima de algo más de 5 ×109 masas solares. Los neutrinos son fermiones (partículas de spin semientero) y el principio de exclusión de Pauli establece un máximo de densidad de neutrinos del orden de un millón por centímetro cúbico. Esto establece una masa mínima para el neutrino de unos 30 eV, lo que es incompatible con el cálculo anterior que establecía un límite superior de unos 10 eV. Las medidas del experimento Super-Kamiokande de 1999 indican que la masa del neutrino es probablemente mucho menor que esta cantidad. La medidas del CERN ponen un límite superior a la masa del neutrino más pesado de unos 9 eV. Medidas más recientes estiman la suma de los tres tipos de neutrinos en algún lugar entre 0.05 y 8.4 eV . Las observaciones de la supernova 1987A también son compatibles con la existencia de tres tipos de neutrinos y con un límite superior de la masa del neutrino electrónico de unos 25 eV. Un análisis bayesiano de esos datos (Loredo & Lamb 2001) ponen un límite superior a la masa del antineutrino electrónico en unos 5.7 eV. Pero hay un problema más grave que todo esto. Cuando ponemos tanta masa de neutrinos en el universo, las grandes estructuras galácticas como los supercúmulos tienden a formarse primero que las pequeñas estructuras como los cúmulos de galaxias (que se suele denominar formación de arriba a abajo), lo que contradice las observaciones que indican una formación relativamente reciente de las grandes estructuras (más compatible con una formación de estructuras jerarquizada de abajo a arriba). Además las concentraciones de materia en los grandes supercúmulos sería considerablemente mayor de lo observado. Comparación entre la distribución de galaxias observada (c), y una simulación numérica de las estructuras galácticas resultantes en un modelo de universo con neutrinos (b) y un modelo de universo con partículas más masivas y lentas (a)