Colección de problemas - Universidad de Huelva

Anuncio
DEPARTAMENTO DE INGENIERÍA MINERA, MECÁNICA Y ENERGÉTICA
Asignatura: Ingeniería de Máquinas.
Colección de problemas
Curso:2008/2009
1. Determinar el número de grados de libertad de los dispositivos
mostrados en las siguientes figuras:
2. Hallar mediante métodos gráficos el polígono de velocidades y el de
aceleraciones del mecanismo de “retorno rápido” mostrado en la
siguiente figura.
Universidad de Huelva (Campus de La Rábida): Escuela Politécnica Superior
Página 1 de 4
DEPARTAMENTO DE INGENIERÍA MINERA, MECÁNICA Y ENERGÉTICA
Asignatura: Ingeniería de Máquinas.
Colección de problemas
Curso:2008/2009
3. Para el mecanismo mostrado en la siguiente figura, encuentre las
posiciones de los eslabones nº 2 y nº 3 cuando el eslabón nº 4 está en
la posición mostrada en la misma. (Utilice el método de NewtonRapshon).
En el mecanismo anterior, el eslabón 4 gira a una velocidad angular
constante y VB = 24,4 m/s. Determinar α2 (aceleración angular del
eslabón 2), mediante métodos algebraicos.
4. Sintetice, determinando las longitudes de sus eslabones mediante el
método Freudeinstein, un mecanismo de cuatro barras articuladas.
Sabiendo que debe generar la función y = tang x , cuando x varía
entre 0º y 45º y que la longitud del eslabón 1 (eslabón fijo) es de 1
m.
Utilice el esparcimiento de Chebychev para determinar los puntos de
precisión. Considere así mismo que: φs =45º, Δφ = 90º, Ψs = 90º
y ΔΨ = 90º
(Los resultados deben aproximarse hasta la tercera cifra decimal).
Universidad de Huelva (Campus de La Rábida): Escuela Politécnica Superior
Página 2 de 4
DEPARTAMENTO DE INGENIERÍA MINERA, MECÁNICA Y ENERGÉTICA
Asignatura: Ingeniería de Máquinas.
Colección de problemas
Curso:2008/2009
5. Sintetice un mecanismo de cuatro barras articuladas para que genere
de manera aproximada la trayectoria y = x½, sabiendo que x varia
entre 0 y 2, y que los puntos de precisión están para x1 = 0,134 ; x2 =
1,000 ; x3 = 1,866. Además los eslabones 2 de entrada y 4 de salida
parten de 45º y 0º respectivamente y deben tener rotaciones iguales
de 60º entre posiciones, y que el eslabón fijo mide 10 cm.
6. La siguiente figura muestra tres posiciones de una puerta del fuselaje
de un avión, en la cual se ha sustituido la bisagra convencional, por
un mecanismo de cuatro barras que guía a la puerta hacia adentro y
hacia fuera, con poca rotación mientras ésta se libera del marco (en
el fuselaje), y una vez ocurrido este hecho girar rápidamente para
convertirse en la escalera de acceso. Emplea las técnicas analíticas
que hemos visto durante el desarrollo teórico, para encontrar los
puntos O2 y O4 (pivotes o articulaciones fijas) de un mecanismo de
cuatro barras articuladas, que tenga sus pivotes móviles o
articulaciones en los puntos A y B, y que guié a la puerta pasando
por estas tres posiciones, y dibújalo.
A1 (3,00 ; 3,00) B1 (4,25 ; 1,50)
A2 (1,25 ; 5,25) B2 (1,50 ; 7,00)
A3 (0,25 ; 5,25) B3 (0,50 ; 7,00)
Universidad de Huelva (Campus de La Rábida): Escuela Politécnica Superior
Página 3 de 4
DEPARTAMENTO DE INGENIERÍA MINERA, MECÁNICA Y ENERGÉTICA
Asignatura: Ingeniería de Máquinas.
Colección de problemas
Curso:2008/2009
7. La biela de la figura, gira alrededor del centro fijo O2 y tiene un
movimiento tal que el centro de gravedad g2 acelera en la dirección
mostrada, y su componente normal Agn2 = 600 m/s2. Mediante
polígonos vectoriales, determinar la fuerza FA y la reacción en 02 que
produce el movimiento de esta biela.
Universidad de Huelva (Campus de La Rábida): Escuela Politécnica Superior
Página 4 de 4
Descargar