Fisicoquímica Molecular Básica Tercer Semestre Carrera de Químico Tema 10 Clase en Titulares La aproximación de Born-Oppenheimer simplifica la ES para las moléculas. El caso mas simple posible, la molécula ión de hidrógeno. La estabilidad de un enlace químico es un efecto cuántico. Orbitales de enlace y antienlace. La molécula de hidrógeno es estable. Pero la molécula diatómica de He no existe. El principio de exclusión de Pauli. La molécula de oxígeno es paramagnética. Espectroscopía fotoelectrónica. Método SCF-LCAO-MO. Estados electrónicos. Estados excitados. Curvas de energía potencial. La molécula He22+ FQMB-2002 Tema 10 2 Aproximación de BornOppenheimer Para extender lo que aprendimos en el estudio de átomos a las moléculas (el verdadero centro de nuestro interés) debemos resolver la ecuación de Schrödinger La diferencia de un átomo multielectrónico con una molécula es que ahora tenemos no sólo muchos electrones, sino también muchos núcleos. El Hamiltoniano correspondiente se escribe ahora como 1 ____ A2 - S A 2MA i2 - SZAi|RA-ri|-1 S½ - SZAZB|RA- RB|-1+ S|ri-rj|-1 i A,i A,B i,j Energía Potencial Energía Potencial Repulsión Electrónica Atracción electrón-núcleo Energía Potencial Energía Cinética Repulsión núcleo-núcleo Energía Cinética Electrónica FQMB-2002 Tema 10 3 Nuclear Aproximación de BornOppenheimer El problema principal para resolver el átomo multielectrónico era la energía de repulsión electrónica, que nos impedía separar variables El mismo problema tendríamos ahora con los términos de repulsión núcleo-núcleo (véase la simetría entre los términos K y V para núcleos y electrones) Además, tendríamos un problema similar con la atracción electrónnúcleo (antes el único núcleo coincidía con el origen de coordenadas, ahora no) 1 ____ A2 - S A 2MA i2 - SZAi|RA-ri|-1 S½ - SZAZB|RA- RB|-1+ S|ri-rj|-1 i A,i A,B i,j Energía Potencial Energía Potencial Repulsión Electrónica Atracción electrón-núcleo Energía Potencial Energía Cinética Repulsión núcleo-núcleo Energía Cinética Electrónica FQMB-2002 Tema 10 4 Nuclear Aproximación de BornOppenheimer La aproximación desarrollada por Max Born y Robert Oppenheimer dice que, por la diferencia de masas existente entre núcleos y electrones, la densidad electrónica puede alcanzar una distribución de equilibrio en un tiempo mucho menor que el que le lleva moverse a los núcleos En este curso asumiremos que la aproximación se expresa en la forma de que “fijamos” los núcleos, i.e. Los núcleos se quedan quietos mientras resolvemos el problema electrónico. Entonces tenemos 1 ____ A2 - S A 2MA i2 - SZAi|RA-ri|-1 S½ - SZAZB|RA- RB|-1+ S|ri-rj|-1 i Helectrónico(R) = - A,i A,B i,j i2- SZAi|RA-ri|+-1 S|ri-rj|-1+ constante S½ i FQMB-2002 Tema 10 5 Aproximación de BornOppenheimer Tenemos que notar aquí varias cosas – (1) El término de repulsión nuclear se transformó ahora en una constante aditiva – (2) Los RA son coordenadas cartesianas de los núcleos; como estos están fijos, entonces son simplemente constantes (números reales) – (3) El Hamiltoniano electrónico no es único, sino que depende de las coordenadas nucleares; variar las coordenadas nucleares nos da Hamiltonianos distintos, con funciones electrónicas distintas – (4) Tanto las funciones de onda como la energía de la ecuación de Schrödinger, dentro de la aproximación BO, dependen de Hel(R)yel (r; R) = Eel(R) yel (r; FQMB-2002 Tema 10 R R) 6 Aproximación de BornOppenheimer La aproximación de Born-Oppenheimer es lo que nos permite hablar de moléculas Recordando lo que dijimos acerca de la representación de enlaces con curvas armónicas o de Morse, la aproximación que hemos empleado (núcleos fijos) equivale a decir que los núcleos ocupan sus posiciones de equilibrio en el fondo del pozo y están estáticos, no se mueven, mientras resolvemos la ecuación de Schrödinger electrónica Habrá otra ecuación que nos permita resolver el movimiento nuclear (lo veremos mas adelante) Hel(R)yel (r; R) = Eel(R) yel (r; FQMB-2002 Tema 10 R) 7 Aproximación de BornOppenheimer Un ejemplo de resolución de molécula lo podemos ver en la representación del producto de una reacción de descomposición (CH2SO2 CH2 + SO2). Al costado se muestra las coordenadas cartesianas de cada uno de los átomos que se representan en la figura C S O O H H 0.981379 -0.090974 -1.456271 0.560414 0.691396 2.042771 FQMB-2002 Tema 10 0.674326 -0.660776 -0.642304 1.586399 -1.556828 0.530533 0.218544 -0.526078 0.029138 0.845609 0.182542 -0.074536 8 Orbitales moleculares Habiendo usado la aproximación de BO y teniendo unas ciertas coordenadas que representan las posiciones de los núcleos (y, por supuesto, sabiendo de que núcleos se trata) podemos intentar resolver la ES electrónica que mostramos antes Hel(R)yel (r; R) = Eel(R) yel (r; R) Nuestro problema es que no podemos resolver exactamente este problema (de la misma forma que no podíamos resolver el problema del átomo de He) y tenemos entonces que recurrir a métodos aproximados. De la misma forma que para los átomos recurrimos al átomo de H, para moléculas vamos a recurrir a la molécula ión de Hidrógeno, H2+ FQMB-2002 Tema 10 9 Orbitales moleculares En el caso del H2+, tenemos dos núcleos, separados por una distancia R, y tenemos un único electrón, cuya distancia a los núcleos A y B representaremos por rA y rB respectivamente El hamiltoniano electrónico tiene pues la forma simple Hel(R) = -½2 - 1/rA - 1/rB +1/R Nótese que la dependencia de R está no sólo en el R-1 sino en rA y rB La ecuación de Schrödinger podremos escribirla ahora como H(R) yj (rA,rB; R) = Ej(R) yi (rA,rB; R) donde los yj son orbitales moleculares que se extienden sobre ambos núcleos FQMB-2002 Tema 10 10 Orbitales moleculares Nótese que hemos escrito la dependencia de los orbitales moleculares de rA y rB, pero como hay sólo un electrón, estas variables y R no son las tres independientes, sino que están relacionadas como se ve en la figura erB rA HA R FQMB-2002 HB Tema 10 11 Orbitales moleculares Para resolver este problema vamos a emplear una función de prueba que construiremos como un par de combinaciones lineales y = c11sA ± c21sB Nótese que la diferencia entre las funciones 1sA y 1sB no es la forma funcional, sino su posición en el espacio. Así, si HA está en el punto (0,0,0) y HB está en (0,0,R) las dos funciones atómicas serán 1sA = N exp (-|r|) = N exp (-r) 1sB = N exp (-| r - R|) FQMB-2002 Tema 10 12 Orbitales moleculares Sabemos que para resolver el problema (i.e. encontrar los coeficientes desconocidos c1 y c2) podemos aplicar el teorema variacional Antes de hacerlo, reconozcamos que como ambos núcleos de hidrógeno son idénticos, entonces c1=c2=c, donde c es simplemente la constante de normalización Lo que estamos construyendo entonces es una función que depende de las coords de un único electrón, pero de las coordenadas de dos núcleos. La forma será como lo que se muestra en la figura adjunta, arriba para el signo + y abajo para el signo FQMB-2002 Tema 10 13 Orbitales moleculares Vamos a intentar resolver la ecuación de Schrödinger anterior, que reescribiremos en la forma Hy+(r;R) = E+(R) y+(,R) y donde, como siempre, la energía está dada por E+(R) = dr y+*(r;R) Hy+(r;R) / dry+*(r;R)y+(r;R) Vamos a asumir, por el momento y por comodidad, que la constante de normalización c es igual a 1 y usaremos entonces simplemente la suma de dos orbitales 1s centrados en la posición de los átomos A y B como función de onda. Calculemos el denominador FQMB-2002 Tema 10 14 La integral de sobreposición La función de onda será y+(r;R) = 1sA + 1sB Tendremos entonces dry+*(r;R)y+(r;R) = dr (1sA + 1sB)(1sA + 1sB) = 2(1 + dr1sA 1sB) = = 2[1 + S(R)] La integral S(R) es la integral del producto de ambos orbitales. Sólo será no nula en las regiones en que ambas funciones sen apreciablemente diferentes de cero, o sea, donde la superposición sea apreciable. Se llaman integrales de superposición FQMB-2002 Tema 10 15 La integral de sobreposición Las integrales de superposición son un ejemplo de las integrales bicéntricas dado que involucran dos átomos y monoelectrónicas dado que involucran las coordenadas de sólo un electrón. Para calcular el valor de esta integral hay que recurrir a las coordenadas elípticas, que se definen en función de rA y rB como l = (rA + rB) / R m = (rA - rB) / R y el ángulo f que es el mismo que en el caso de las coords esféricas. En la figura se muestran las c. elípticas FQMB-2002 Tema 10 16 La integral de sobreposición Es importante notar que en el caso de las coordenadas elípticas, el elemento de volumen es dr=(R3/8)(l2 - m2)dldmdf y que los límites de integración son 1l< -1 m 1 0 f 2p FQMB-2002 Tema 10 17 La integral de sobreposición Quiere decir entonces que ahora es fácil escribir la integral de sobreposición, en la forma S(R) = dr1sA 1sB = = p-1 dr exp(-rA) exp(-rB) = = p-1 df dm dl(R3/8)(l2 - m2) exp (-Rl) = = e-R(1 + R + R2/3) Como se ve fácilmente de la curva y de la fórmula, la integral de sobreposición tiende a 1 cuando los orbitales están completamente sobrepuestos (rA=rB) y a 0 cuando los orbitales están completamente separados FQMB-2002 Tema 10 18 La integral de sobreposición Obsérvese que, debido a la aproximación de BornOppenheimer, todas las integrales, incluída la de sobreposición, dependen de la distancia internuclear que estamos considerando fija Decíamos que para evitar problemas tomábamos temporariamente la constante de normalización igual a 1. ¿Qué pasa cuándo la queremos calcular correctamente? 1 = c2 dr (1sA + 1sB)(1sA + 1sB) = 2c2[1+S(R)] o bien c={2[1+S(R)]}-½ Esto quiere decir que la función de onda será entonces y+ = {2[1±S(R)]}-½ (1sA ± 1sB) FQMB-2002 Tema 10 19 El enlace, efecto cuántico Tenemos ahora que calcular el numerador de la expresión para la energía dry+*(r;R)Hy+(r;R) = dry+*(r;R)[-½2-1/rA-1/rB+1/R]y+(r;R) = = dr (1sA+1sB)[-½2-1/rA-1/rB+1/R] (1sA+1sB) = = dr (1sA+1sB)[-½2-1/rA-1/rB+1/R]1sA + dr (1sA+1sB)[-½2-1/rA-1/rB+1/R]1sB = Obsérvese que los términos -½2-1/rA y -½2-1/rB aplicados a 1sA y 1sB resultan en E1s1sA y E1s1sB respectivamente FQMB-2002 Tema 10 20 El enlace, efecto cuántico Podemos escribir entonces dry+*(r;R)Hy+(r;R) = = dr (1sA+1sB)[E1s-1/rB+1/R]1sA + dr (1sA+1sB)[E1s-1/rB+1/R]1sB = Tenemos que desarrollar ahora estas integrales, observando que los términos que involucran sólo E1s resultan en integrales de sobreposición dry+*(r;R)Hy+(r;R) = 2E1s(1+S) + 2J + 2K J = dr1sA[-1/rB+1/R]1sA = dr1sB[-1/rA+1/R]1sB = dr1sA(-1/rB)1sA + R-1 K = dr1sB[-1/rB+1/R]1sA = dr1sA[-1/rA+1/R]1sB = dr1sB(-1/rB)1sA +SR1 FQMB-2002 Tema 10 21 El enlace, efecto cuántico Las integrales J y K reciben el nombre de integrales de Coulomb y de intercambio respectivamente La integral de Coulomb refleja simplemente la interacción electrostática entre la distribución de carga |1sA|2 y un protón a la distancia rB integrado sobre todo el espacio. En este sentido puede mirarse a J como una componente clásica La integral de intercambio K no tiene contrapartida clásica. Es un efecto puramente mecano-cuántico que nace de la representación de la función de onda del sistema como una superposición de funciones centradas sobre los distintos átomos. Nótese que podemos calcular entonces E+ como E+ = E1s + (J+K)/(1+S) = E1s + DE+ FQMB-2002 Tema 10 22 El enlace, efecto cuántico DE+ es la energía de estabilización de la molécula de H2+ respecto a un átomo de hidrógeno y un protón infinitamente separados Tanto J como K pueden calcularse de la misma forma en que calculamos S, y tenemos entonces J = e-2R(1 + 1/R) K = SR-1 - e-R(1 + R) Podemos graficar DE+ tal como se ha hecho en la figura adjunta y vemos que la curva tiene un mínimo a cierto R que llamaremos Req FQMB-2002 Tema 10 23 El enlace, efecto cuántico La curva que hemos encontrado para DE+ es lo que se llama curva de energía potencial (o, más generalmente, hiperficie de energía potencial, cuando depende de más de dos variables). Luego hablaremos más de ellas El mínimo de la curva se encuentra para Re=2.50 Å (el experimental es 2.00 Å) y la energía DE+ en ese punto es 170 kJ/mol (el valor experimental es 268 kJ/mol) La curva de energía potencial nos indica como varía la energía electrónica de una molécula en función de las posiciones de los núcleos FQMB-2002 Tema 10 24 El enlace, efecto cuántico Podemos preguntarnos de dónde surge esa estabilización de la molécula, que es responsable del enlace químico entre los dos átomos. Podemos escribir DE+ = (J+K)/(1+S) = J/(1+S) + K/(1+S) y graficar los tres términos, como se ha hecho en la figura adjunta. Se ve que el primer término no presenta ningún mínimo, mientras que sí lo presenta el segundo término Consecuentemente, el enlace químico es un efecto puramente cuántico que no puede explicarse por la mecánica clásica FQMB-2002 Tema 10 25 Orbitales de enlace y antienlace Hemos obtenido dos funciones de onda que son solución de la ES electrónica, al combinar con signos de + y de - los dos orbitales 1s centrados en los dos átomos de hidrógeno Las funciones y+ y y- describen estados diferentes, como se aprecia en las curvas de energía potencial correspondientes a DE+ y DE- respectivamente Podemos graficar las funciones y+ y y- y sus cuadrados para ver lo que representan FQMB-2002 Tema 10 26 Orbitales de enlace y antienlace Si observamos la figura adjunta vemos que la función y+ tiene el efecto neto de que la densidad de carga electrónica se acumula entre los núcleos cargados positivamente Por el contrario, la función de onda y- tiene un nodo entre los núcleos y no acumula a la densidad de carga entre ellos El orbital molecular y+ se llama orbital enlazante y el orbital molecular y- se llama orbital antienlazante FQMB-2002 Tema 10 27 Orbitales de enlace y antienlace Sabemos, de lo que habíamos visto en los ejemplos simples, que cuanto más nodos tenga una función de onda, más alta será su energía. Consecuentemente, y+ representará el estado fundamental de la molécula de H2+ y y- representará un estado excitado Podemos usar el método variacional para encontrar las energías asociadas a cada una de estas funciones y terminaremos encontrando los DE+ y DE- que ya encontramos antes Indicaremos los orbitales enlazantes por el subíndice b (bonding) y los antienlazantes por el subíndice a (antibonding) En principio obtuvimos sólo dos OM debido a que sólo empleamos dos orbitales atómicos de partida. Si hubiéramos empleado mas OA entonces tendríamos más OM, pero siempre el fundamental tendría la forma que describimos Por supuesto que, cuantos más OA usemos, más precisa será la energía (hasta el límite Hartree-Fock) FQMB-2002 Tema 10 28 Orbitales de enlace y antienlace FQMB-2002 Tema 10 29 La molécula de hidrógeno De acuerdo a lo que ya vimos al estudiar átomos multielectrónicos, podemos escribir la función de onda de la molécula de hidrógeno como un determinante de Slater, igual al caso del átomo de He. yMO = (2!)-½ yba(1) ybb(1) = yb(1)yb(2)[((2!)-½[a(1)b(2)-a(2)b(1)] yba(2) ybb(2) A su vez, podemos usar la expresión que vimos antes para yb con lo que obtenemos yMO = {2[1+S]}-1[1sA(1)+1sB(1)] [1sA(2)+1sB(2)] Es decir, que la función de onda es un determinante de Slater de orbitales moleculares, que, a su vez, son combinación lineal de orbitales atómicos FQMB-2002 Tema 10 30 La molécula de hidrógeno El método que describimos en lo anterior se conoce en inglés como LCAO-MO (Linear Combination of Atomic Orbitals-Molecular Orbitals) Si aplicamos este método a la molécula de H2 usando únicamente orbitales 1s y obtenemos las gráficas que se muestran en la figura adjunta. Si bien este método tan simple no nos da un resultado demasiado preciso, se ve en la figura que la forma de la curva de energía potencial del H2 es correcta FQMB-2002 Tema 10 31 Ordenamiento de orbitales El método LCAO-MO permite encontrar tantos orbitales moleculares como orbitales atómicos hayamos usado para crearlos Llenamos los orbitales moleculares en orden de energía creciente (principio de construcción) obedeciendo el principio de exclusión de Pauli Los orbitales moleculares pueden clasificarse por su simetría. El estudio de esta metodología está fuera de los objetivos de este curso, por lo que sólo considereramos algunos ejemplos simples Un orbital que es simétrico respecto al eje internuclear se llama orbital s. Los orbitales que se obtienen de la combinación de dos 1s son respectivamente s1s (el ligante o enlazante) y s*1s (el antiligante o antienlazante) FQMB-2002 Tema 10 32 Simetría de orbitales Para moléculas diatómicas homonucleares podemos diferenciar entre los dos orbitales moleculares creados, de acuerdo a cómo se comporten respecto al punto medio del enlace Si el orbital no cambia el signo frente a una inversión (como es el caso del s1s) se dice entonces que el orbital es gerade (la palabra alemana para simétrico) y se lo identifica con un subíndice g Si el orbital cambia el signo frente a la inversión (como es el caso del s*1s) se dice que el orbital es ungerade (por antisimétrico) y se lo escribe con el subíndice u Dos orbitales 1s producen entonces los OM sg1s y su1s FQMB-2002 Tema 10 33 Simetría de orbitales Obviamente, lo mismo que es cierto para los orbitales atómicos 1s lo es para los 2s, pero veamos que pasa con los orbitales p El caso más simple es el de los orbitales p dirigidos a lo largo del eje internuclear. Como se ve en la figura, se generan dos orbitales moleculares cilíndricos alrededor del eje nuclear, que serán sg2pz y su2pz Por otra parte, los orbitales px,y se combinan para dar OM que no son cilíndricamente simétricos, como se ve en la figura Los orbitales producidos se llama OM p, g y u respectivamente. Nótese que el u tiene un plano nodal menos, así que pu2px y pu2py (degenerados) tienen menor energía que FQMB-2002 Tema 10 34 pg2px y pg2py Ocupación de orbitales Una vez que determinamos la simetría de los orbitales, podemos ocuparlos sucesivamente empleando el principio de Pauli y las reglas de Hund Debe tenerse en cuenta que usar los orbitales generados para el H2+ y ocuparlos sucesivamente tiene un error, que se corrige si calculamos los orbitales Hartree-Fock para cada molécula Podemos ejemplificar como realizamos el estudio de la configuración electrónica de una molécula diatómica empleando el caso de la molécula de N2 Lo que haremos a continuación será indicar qué orbitales atómicos de los dos nitrógenos se van combinando para formar qué orbitales moleculares. Indicaremos con un enlace a los orbitales ligantes y sin enlace entre los átomos a los orbitales de antienlace FQMB-2002 Tema 10 35 Ocupación de orbitales FQMB-2002 Tema 10 36 Ocupación de orbitales FQMB-2002 Tema 10 37 Ocupación de orbitales FQMB-2002 Tema 10 38 Ocupación de orbitales FQMB-2002 Tema 10 39 Ocupación de orbitales FQMB-2002 Tema 10 40 Ocupación de orbitales FQMB-2002 Tema 10 41 Ocupación de orbitales FQMB-2002 Tema 10 42 Ocupación de orbitales La ocupación de cada uno de los OM en una molécula diatómica va haciendo descender la energía orbital del OM con la consecuencia de que el sg2pz se hace más estable que el pu a partir del oxígeno Nótese la aplicación de las reglas de Hund que implican que el O2 es de capa abierta FQMB-2002 Tema 10 43 Orden de enlace Uno de los conceptos más importantes es de orden de enlace La idea, en general, es que la energía estabilizante de un orbital enlazante es similar a la desestabilizante de un orbital antienlazante Por lo tanto, la ocupación de ambos orbitales prácticamente hará que la molécula tenga una energía de unión muy débil o inexistente Si definimos orden de enlace = ½[Nb - Na] donde Nb y Na son el número de electrones en orbitales enlazantes y antienlazantes respectivamente, el razonamiento anterior indica que cuanto mayor sea este número más fuerte será el enlace FQMB-2002 Tema 10 44 Las moléculas de He22+ + He2, He2 y La molécula de H2 tiene los dos electrones en el orbital de enlace sg1s, así que su orden de enlace es 1, como lo es el de todos los enlaces simples La molécula de He2 tiene dos electrones en el orbital enlazante sg1s y dos en el antienlazante su1s, por lo que su orden de enlace es 0 y esperamos que no exista el enlace o sea éste muy débil, lo cual ocurre en la realidad (el enlace tiene una energía de 0.01 kJ/mol Por otra parte, si sacamos electrones, el orden de enlace aumenta Para la moléculas de He2+ y He22+ los órdenes de enlaces son 1/2 y 1 respectivamente, por lo que la segunda debería tener un enlace tan fuerte como la molécula de H2 cosa que es cierta (si bien esta molécula es metaestable) FQMB-2002 Tema 10 45 La molécula de O2 FQMB-2002 Tema 10 46 La molécula de O2 En el caso de la molécula de oxígeno, tenemos que agregar dos electrones a los orbitales pg antienlazantes Como ambos orbitales son degenerados, tenemos que agregar un electrón a cada uno y de forma que la multiplicidad de espín sea máxima (Hund) Consecuentemente, el orden de enlace desciende en 1 respecto al N2, la energía de enlace es menor, la distancia de enlace es mayor y, más importante, el O2 es paramagnético, a diferencia del N2 que es diamagnético Un experimento computacional que podemos hacer es investigar la configuración de las moléculas O2+, O2, O2- y O22- FQMB-2002 Tema 10 47 Correlación con el orden de enlace Especie Configuración Orden de enlace Distancia de enlace (pm) Energía de enlace(kJ/mol) ---------------------------------------------------------------------------------------O2+ ...(pg2px)1(pg2py)0 5/2 112 643 O2 ...(pg2px)1(pg2py)1 4/2 121 494 O2...(pg2px)2(pg2py)1 3/2 135 395 O22...(pg2px)2(pg2py)2 2/2 149 Podemos graficar estos parámetros en forma general para las moléculas diatómicas de la primera fila y tenemos FQMB-2002 Tema 10 48 Correlación con el orden de enlace Se observa en la figura que la energía de enlace (en valor absoluto) aumenta cuando aumenta el orden de enlace y disminuye al hacerlo éste Al hacerse mas fuerte el enlace (es decir al aumentar el orden de enlace) también disminuye la separación entre los átomos (es decir, su distancia de enlace) FQMB-2002 Tema 10 49 Espectroscopía fotoelectrónica Por todo lo visto es obvio que los orbitales moleculares son simplemente construcciones matemáticas que nos ayudan a resolver el problema, pero no tienen existencia real De cualquier forma, análogamente a la resolución del átomo de He, que nos permitió considerar que cada electrón se movía en un campo promedio proviniente de una carga nuclear apantallada, podemos pensar que la aproximación que usamos refleja alguna realidad fundamental dentro de la molécula En efecto, si bien los OM no tienen realidad física, es claro que existe una estructura en capas dentro de la molécula, dado que el teorema de Koopmans nos correlaciona la energía de los OM con los potenciales de ionización de los átomos y moléculas FQMB-2002 Tema 10 50 Espectroscopía fotoelectrónica Existe un tipo de espectroscopía llamada fotoelectrónica que permite desprender los electrones, uno a uno, de una molécula El espectro resulta en algo como lo que se muestra en la figura para el N2 Ahí se ven picos que son los correspondientes a la eyección de los electrones en cada OM FQMB-2002 Tema 10 51 Espectroscopía fotoelectrónica La espectroscopía fotoelectrónica da soporte experimental a la teoría de OM y muestra que ésta es aplicable también a moléculas heteronucleares En la figura adjunta se muestra el espectro correspondiente a la molécula de CO, viéndose los picos correspondientes a los orbitales enlazantes y antienlazantes de distinto tipo FQMB-2002 Tema 10 52 Designación de los términos De la misma forma que en el caso de los átomos, podemos emplear términos de simetría para nombrar los estados electrónicos de las moléculas La caracterización más sencilla ocurre para las moléculas diatómicas, homo o heteronucleares, para las cuales se emplea el valor total ML que es la suma de los ml de todos los orbitales moleculares Para distintos |ML| se emplean distintas denominaciones griegas |ML| Letra 0 S 1 P 2 D 3 F Además, se emplea la multiplicidad, derivado del valor total de MS como un superíndice FQMB-2002 Tema 10 53 Designación de los términos La clasificación de los estados entonces se hace como 2S+1|M | l Consideremos la molécula de H2. Tiene dos electrones en el orbital 1s (ml=0), así que ML= 0 y tienen espín opuesto, así que MS=½-½=0. Consecuentemente, el H2 tiene un estado fundamental rotulado como 1S Algunas moléculas pueden tener varios estados electrónicos para el mismo número cuántico principal, análogamente a lo que vimos para el caso del átomo de oxígeno La molécula de B2, por ejemplo, tiene estados 1D, 3S y 1S. Aplicando las reglas de Hund, determinamos que el estado fundamental es 3S FQMB-2002 Tema 10 54 Designación de los términos Además de incluír la información sobre el ML y el MS, los términos que etiquetan los estados electrónicos pueden incluír información acerca de la simetría de la molécula Si la configuración orbital es simétrica o antisimétrica respecto a la inversión por el eje molecular, se agrega un subíndice g o u, i.e. 3Sg Además, si la configuración orbital no cambia el signo al reflejar por un plano que contiene a los núcleos se le agrega un superíndice +, y si cambia el signo se le agrega un superíndice Por ejemplo, el estado fundamental de la molécula de O2 es 3Sg- FQMB-2002 Tema 10 55 Estados excitados Obviamente no sólo el estado fundamental de una molécula puede rotularse de la forma que vimos, sino también los estados excitados En el caso del H2(1Sg+) tenemos dos estados excitados posibles si excitamos el electrón del orbital enlazante al antienlazante: un triplete 3S + y un singulete 1S + de capa u g abierta Nótese que los singuletes son estados ligados, mientras que el triplete es disociativo FQMB-2002 Tema 10 56