REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NÚCLEO BARINAS INGº CARLOS SANCHEZ PROCESOS DE FABRICACIÓN II JOSÉ FALCÓN 7MO SEMESTRE SECCIÓN “B” DEPARTAMENTO DE INGENIERÍA MECÁNICA BARINAS, JULIO DE 2010 CONTROL NUMERICO EN MÁQUINAS HERRAMIENTAS El Control Numérico de Máquinas Herramientas no fue concebido para mejorar los procesos de fabricación, sino para dar solución a problemas técnicos surgidos a consecuencia del diseño de piezas cada vez más difíciles de mecanizar. En general, el incremento en la utilización de máquinas herramientas con CN se debe a que un gran número de problemas, que se consideraban bien resueltos por los métodos de trabajo clásicos, que pueden tener una respuesta ventajosa desde el punto de vista técnico mediante la utilización de dichas máquinas. El control numérico se puede definir de una forma genérica como un dispositivo de automatización de una máquina que, mediante una serie de instrucciones codificadas (el programa), controla su funcionamiento. Cada programa establece un determinado proceso a realizar por la máquina, con lo que una misma máquina puede efectuar automáticamente procesos distintos sin más que sustituir su programa de trabajo. Permite, por tanto, una elevada flexibilidad de funcionamiento con respecto a las máquinas automáticas convencionales en las que los automatismos se conseguían mediante sistemas mecánicos o eléctricos difíciles y a veces casi imposible de modificar. Los elementos básicos del control numérico son: 1) El programa, que contiene toda la información de las acciones a ejecutar. 2) El control numérico, que interpreta estas instrucciones, las convierte en las señales correspondientes para los órganos de accionamiento de la máquina y comprueba los resultados. 3) La máquina, que ejecuta las operaciones previstas. De acuerdo al desarrollo de la microelectrónica y la informática se aplica a los controladores numéricos, se potencian extraordinariamente las funciones que permiten desarrollar, simplificándolos a la vez, los procedimientos de programación y operación de las máquinas, de tal manera que los CNC – control numérico con ordenador - que se construyen hoy día sólo conservan de los primitivos CN los principios básicos de funcionamiento. Las máquinas herramienta han ido evolucionando hacia la incorporación en una sola máquina de varias operaciones elementales de mecanizado que tradicionalmente se efectuaban en máquinas diferentes, y hacia la incorporación de cambiadores automáticos de piezas y herramientas, apareciendo los centros de mecanizado que permiten obtener una pieza acabada, o casi acabada, en una sola estación de trabajo. En función de las capacidades de proceso y de memoria de los CNC han evolucionado también las técnicas y lenguajes de programación. Desde los primeros programas lineales en lenguaje máquina a la programación asistida por ordenador, gráfica e interactiva, existe un amplio espectro de sistemas y lenguajes de programación. LAS MÁQUINAS El control numérico se monta sobre todo tipo de máquina herramienta convencional, tanto de arranque de viruta como de trazado y deformación. Así, lo encontramos en tornos, fresadoras, rectificadoras, taladradoras, mandrinadoras, dobladoras, plegadoras, punzadoras, máquinas de trazar, punteadoras, máquinas de soldar, de oxicorte, de medir, etc. Sin embargo, el control numérico ha promocionado el desarrollado de dos tipos de máquinas múltiples: El centro de mecanizado, para piezas prismáticas, en el que sobre pieza fija una o más torretas con herramientas giratorias permiten efectuar operaciones de fresado, taladrado, mandrinado, escariado, etc. Si lleva incorporada mesa giratoria pueden efectuarse operaciones de torno vertical. El centro de torneado, dotado de una o más torretas, con herramientas motorizadas que, además de las clásicas operaciones de torneado permiten efectuar fresados, taladrados, escariados, etc., tanto axiales como radiales. Las características de precisión exigidas en estas máquinas en condiciones duras de utilización, han modificado las características de diseño de las mismas. En el aspecto estructural se busca una mayor rigidez y ausencia de vibraciones, lo que lleva a la utilización de bastidores de chapa soldada y de hormigón en vez de la clásica fundición. En el diseño de la cadena cinemática se busca disminuir los juegos, rozamientos, vibraciones e inercia de las masas móviles para mejorar la precisión y repetitividad del posicionamiento de la herramienta, aumentando la rigidez de las guías y utilizando materiales de bajo coeficiente de fricción o sistemas hidrostáticos o de rodadura, husillos a bolas para la transmisión de movimiento sin holguras, etc. Otros puntos en los que se ha mejorado son la estabilidad y uniformidad térmica con potentes sistemas de refrigeración de herramienta, pieza e incluso máquina, y la evacuación de virutas. Sobre las funciones desarrolladas por las máquinas convencionales las máquinas a control numérico incorporan básicamente: Sistemas Sistemas Sistemas Sistemas de de de de posicionado de la herramienta. medición del desplazamiento. medición de piezas y herramientas. control de condiciones de mecanizado. Sistemas de cambio de herramientas. Sistemas de cambio de pieza. E L E C T R O E R O S I O N Este sistema consiste en desbastar un metal mediante una corriente eléctrica. Mecánicamente esta formado por una fresadora u otro tipo de maquina herramienta que trabaje en forma similar. A) El comando de descenso del husillo porta herramienta es remplazado por un motor eléctrico del tipo paso a paso. B) En el porta herramienta se coloca la matriz de cobre cuya forma será copiada en el metal trabajado. C) Sobre la base de la maquina se coloca una batea en la que se apoya la pieza a erosionar y se llena con un liquido dieléctrico. D) Un generador produce corriente de hasta 35 Amperios con una frecuencia variable entre 400 y 40000 ciclos. E) La tensión de trabajo es de 80 Voltios. Para las personas con alguna experiencia en soldadura reconocen que por ejemplo el sistema de soldadura TIG funciona también con una tensión similar y una onda de alta frecuencia ioniza el gas conductor formando el plasma, en este caso lo ionizado es el liquido. MECANIZADO POR ULTRASONIDO Y LÁSER Mecanizado por ultrasonidos rotatorios El término “ultrasonidos” es debido a que la vibración se produce a una frecuencia próxima a los 20kHz (vibra unas 20.000 veces por segundo), frecuencia que está en el rango de los ultrasonidos El mecanizado por ultrasonidos rotatorio (RUM) es un proceso no convencional, indicado para el mecanizado de materiales duros y frágiles como son las cerámicas técnicas, metales duros, vidrios, silicio, piedras preciosas, etc. Se basa en el empleo de herramientas de diamante que eliminan el material por la combinación de un giro y de una vibración ultrasónica en dirección axial. Esta herramienta vibra unas 20.000 veces por segundo incorporado en el cabezal. gracias a un piezoeléctrico La separación continua entre herramienta y pieza gracias a esa vibración ultrasónica hace que, en comparación con los métodos tradicionales, las fuerzas de corte se reduzcan y que la generación de calor sea menor. Esto se traduce en una protección de la herramienta y de la pieza aumentando la productividad en hasta 5 veces la de dichos procesos convencionales, y la obtención de unos acabados superficiales incluso menores que 0,2mm. La presencia de una serie de algoritmos de control inteligentes ayudan a optimizar por completo el proceso de corte, así el ADR monitoriza el par (se protege la herramienta) y el ACC controla la fuerza en dirección axial mediante señales acústicas (se protege el piezoeléctrico). Aplicaciones Industria del automóvil: discos de freno, toberas de inyección, insertos de moldes de inyección; en materiales como Nitruro de Silicio, Alúmina, metal duro, acero templado (55HRc)... Industria de los semiconductores: plaquitas (Wafer), elementos de refrigeración…en materiales como Silicio, Cuarzo Hialino… Industria óptica: lentes cóncavas y convexas, espejos…; en materiales como Zafiro, Silicio, Zerodur y vidrios varios. Industria médica: articulaciones, coronas dentales…; en materiales cerámicos varios como Zirconio, Alúmina… Varios: guías antidesgaste, pirometría, boquillas de soldadura, aisladores térmicos; también en materiales cerámicos. MECANIZADO POR LÁSER La tecnología del Mecanizado Láser se basa en la generación de un rayo láser de alta potencia que es dirigido contra la pieza mediante un sistema de espejos de alta precisión. En la zona de incidencia del rayo se consigue una elevada densidad de potencia que produce la volatilización del material. El rayo láser erosiona el material en múltiples capas obteniendo, de este modo, la geometría y profundidad requerida. El mecanizado por láser es un proceso no convencional que permite obtener mecanizados de formas complejas y de pequeño tamaño. La gran ventaja de esta tecnología es la posibilidad de mecanizar casi todo tipo de materiales independientemente de su dureza o maquinabilidad, desde aceros, aleaciones termoresistentes, cerámicas hasta metal duro, silicio, etc. Se dispone de un láser en estado sólido, compuesto por un cristal de Nd:YAG que permite una potencia media de láser de 100W, siendo los picos de potencia de 20Kw. La alta enfoque haciendo el punto densidad de energía del haz láser en el punto de permite que se produzca el proceso de ablación, que el material se vaporice. El diámetro del haz en de enfoque puede ser de 30mm o de 100mm. Si a la tecnología del láser le añadimos la tecnología de fabricación a alta velocidad, se dispone de un equipamiento más completo que permite el mecanizado de moldes que presenten detalles complejos y precisos, a la vez que se pueden obtener paredes verticales y acabados de esquinas vivas. Una de las grandes ventajas de esta tecnología es que al ser una fuente de energía la que incide sobre el material, no se producen desgastes, roturas ni colisiones de la herramienta de corte, lo que supone una gran ventaja al proceso de arranque de viruta tradicional. Aplicaciones La tecnología del mecanizado por láser posibilita el mecanizado de figuras y piezas de pequeñas dimensiones, permitiendo obtener esquinas vivas y agujeros de pequeño diámetro, es decir, formas geométricas que no es posible o es muy costoso obtener mediante procesos convencionales. Permite la creación de cavidades para aplicaciones tan diversas como moldes técnicos de precisión, técnica médica, electrónica y moldes de semiconductores, micro tecnología, construcción de prototipos. La creación de cavidades para moldes de microinyección, micro postizos para la matricería, grabados superficiales y profundos, y sustituir operaciones de electro erosión en casos concretos. MECANIZADO POR PLASMA El fundamento del corte por plasma se basa en elevar la temperatura del material a cortar de una forma muy localizada y por encima de los 30.000 ºC, llevando el material hasta el cuarto estado de la materia, el plasma, estado en el que los electrones se disocian del átomo. El procedimiento consiste en provocar un arco eléctrico estrangulado a través de la sección de la boquilla del soplete, sumamente pequeña, lo que concentra extraordinariamente la energía cinética del gas empleado, ionizándolo, y por polaridad adquiere la propiedad de cortar. La ventaja principal de este sistema radica en su reducido riesgo de deformaciones debido a la compactación calorífica de la zona de corte. También es valorable la economía de los gases aplicables, ya que a priori es viable cualquiera, si bien es cierto que no debe de atacar al electrodo ni a la pieza. El equipo necesario para aportar esta energía consiste en un generador de alta frecuencia alimentado de energía eléctrica, gas para generar la llama de calentamiento (argón, hidrógeno, nitrógeno), y un porta electrodos, que dependiendo del gas puede ser de tungsteno, hafnio o circonio. Por la vertiente eléctrica del equipo, las normas de seguridad aplicables son las correspondientes a esta maquinaria, considerando adicionalmente los gases que puedan desprenderse en el proceso por suciedad de la pieza. Aplicaciones El acero al Carbón, acero inoxidable, y aluminio puede ser cortado por arriba de 5181.6 mm de ancho y el largo es casi ilimitado. El resonador láser esta especialmente diseñado y montado, y se mueve con la maquina en dirección longitudinal, mientras que en la dirección transversa un sencillo flying optic guía el láser a la pieza de trabajo. Este diseño elimina divergencias en la viga a lo largo del eje longitudinal, asegurando la intensidad del láser y la calidad del corte constantemente se recuerda. USO DEL CONTROL NUMÉRICO EN VENEZUELA En Venezuela los usos del Control Numérico se dedican al diseño mecánico industrial, y al desarrollo e implementación de proyectos de ingeniería plástica. Caracterizados por brindar soluciones en el área de la metalmecánica y manufactura de piezas mecánicas, envases plásticos, moldes de inyección, ingeniería 3D y generación de códigos CNC, lo que brinda herramientas integrales para aumentar la productividad de sus empresas. El Control Numérico ofrece todas las herramientas y software necesario para la generación de códigos y la optimización del mecanizado en maquinaria industrial. Por medio del CN se aumenta la productividad de negocios, empresas, reduciendo la posibilidad de errores en el análisis de la información y le permite comercializar productos con mayor rapidez, optimizando costos y calidad del producto.