VARIABLE ALEATORIA DISCRETA CURSO: ESTADISTICA II PROFESOR: MS. LIC. LUIS J. CASTILLO V. LUIS J. CASTILLO VASQUEZ VARIABLE ALEATORIA DISCRETA Introducción a las distribuciones de probabilidad. Las distribuciones de probabilidad están relacionadas con las distribuciones de frecuencias. Una distribución de frecuencias teórica es una distribución de probabilidades que describe la forma en que se espera que varíen los resultados. Debido a que estas distribuciones tratan sobre expectativas de que algo suceda, resultan ser modelos útiles para hacer inferencias y para tomar decisiones en condiciones de incertidumbre. Una distribución de frecuencias es un listado de las frecuencias observadas de todos los resultados de un experimento que se presentaron realmente cuando se efectuó el experimento, mientras que una distribución de probabilidad es un listado de las probabilidades de todos los posibles resultados que podrían obtenerse si el experimento se lleva a cabo. Las distribuciones de probabilidad pueden basarse en consideraciones teóricas o en una estimación subjetiva de la posibilidad. Se pueden basar también en la experiencia. Tipos de distribuciones de probabilidad. Las distribuciones de probabilidad se clasifican como continuas y discretas. En la distribución de probabilidad discreta está permitido tomar sólo un número limitado de valores. En una distribución de probabilidad continua, la variable que se está considerando puede tomar cualquier valor dentro de un intervalo dado. Las distribuciones continuas son una forma conveniente de presentar distribuciones discretas que tienen muchos resultados posibles, todos muy cercanos entre sí. 2 LUIS J. CASTILLO VASQUEZ Variables aleatorias. Una variable es aleatoria si toma diferentes valores como resultado de un experimento aleatorio. Puede ser discreta o continua. Si puede tomar sólo un número limitado de valores, entonces es una variable aleatoria discreta. En el otro extremo, si puede tomar cualquier valor dentro de un intervalo dado, entonces se trata de una variable aleatoria continua. Se puede pensar en una variable aleatoria como un valor o una magnitud que cambia de una presentación a otra, sin seguir una secuencia predecible. Los valores de una variable aleatoria son los valores numéricos correspondientes a cada posible resultado de un experimento aleatorio. La distribución de probabilidad de una variable aleatoria proporciona una probabilidad para cada valor posible, y estas probabilidades deben sumar 1. Valor esperado de una variable aleatoria. El valor esperado es una idea fundamental en el estudio de las distribuciones de probabilidad. Para obtener el valor esperado de una variable aleatoria discreta, se multiplica cada valor que la variable puede tomar por la probabilidad de presentación de ese valor y luego se suman esos productos. Es un promedio pesado de los resultados que se esperan en el futuro. El valor esperado pesa cada resultado posible con respecto a la frecuencia con que se espera se presente. En consecuencia, las presentaciones más comunes tienen asignadas un peso mayor que las menos comunes. El valor esperado también puede ser obtenido a partir de estimaciones subjetivas. En ese caso, el valor esperado no es más que la representación de las convicciones personales acerca del resultado posible. En muchas situaciones, encontraremos que es más conveniente, en términos de los cálculos que se deben hacer, representar la distribución de probabilidad de una variable aleatoria de una manera algebraica. Al hacer esto, podemos 3 LUIS J. CASTILLO VASQUEZ llevar a cabo cálculos de probabilidad mediante la sustitución de valores numéricos directamente en una fórmula algebraica. Variables aleatorias discretas. Sean x1, x 2,... x n los distintos valores que puede tomar la variable aleatoria. Y p(x1), p(x2),... p(x n) su probabilidades asociadas Los pares de valores (xi, p (xi)) constituyen la distribución de probabilidades de la variable aleatoria. p(x) se denomina función de probabilidad, y debe cumplir con las siguientes propiedades: a) 0 < p (xj) < 1, (p(x) es una probabilidad, y por lo tanto debe tomar valores entre 0 y 1). b) p (xi) = 1 (la suma de probabilidades repartidas entre todos los valores de la variable debe ser igual a 1). De la misma manera que calculamos frecuencias acumuladas, podemos acumular probabilidades, obteniendo la función de distribución de probabilidades: F (xk) = p (xi) Esta función representa la probabilidad de que la variable aleatoria sea menor o igual que un determinado valor: F (xk) = P (X < xk) Gráficamente, la función aumenta de "a saltos", ya que entre dos valores consecutivos de una variable discreta, no puede tomar valores intermedios. 4 LUIS J. CASTILLO VASQUEZ RESOLUCIÓN DE PROBLEMAS 1. Una caja contiene 5 tuercas defectuosas y 5 no defectuosas. Se extraen 2 tuercas aleatorias y sin repetición. a. Hallar la función de probabilidad de la variable aleatoria x: numero de tuercas no defectuosas que se obtienen en la extracción. b. Su valor esperado y su varianza c. El coeficiente de variación SOLUCIÒN oso N = Nª de no defectuosos D= Nº de defectuosos SIN REPOSICIÓN 5=D 5=N Xi 4 P (Xi) D→ X (DD) = 0 → P(X=0) = P (DD) = 5 4 2 = 10 9 9 N→ X (DN) = 1 →P(X=1) = P (DN) = 5 5 5 = 10 9 18 X (ND) = 1 →P(X=1) = P (ND) = 5 5 5 = 10 9 18 X (NN) =2 →P(X=2) = P (NN) = 5 4 2 = 10 9 9 9 D 5 5 9 10 5 5 10 9 D→ N 4 9 N→ 5 LUIS J. CASTILLO VASQUEZ a. Xi P(Xi) 0 2/9 1 5/9 2 2/9 b .ESPERANZA E(X) = 2 5 2 x P(x) = 0 9 + 1 9 + 2 9 = 0 + 5 4 + =1 9 9 VARIANZA E(x2) – Ex 2 V(x) = x u 2 P(x) = E(x2) = x 2 P(x) = 0 9 + 1 9 + 4 9 = V(x) = 13 – (1)2 = 1.44 – 1 = 0.44 9 2 5 2 13 9 = V (x) = 0.663324958 COEFICIENTE DE VARIACIÓN C.V. %= V ( x) 0.663324958 100 100 E ( x) 1 C.V. %= 66.33 % 2. Dos bolas son seleccionadas al azar con repetición de una urna que contiene 8 bolas blancas, 4 negras y 2 naranjas. Supongamos que ganamos $. 2 por cada bola negra seleccionada y perdemos $. 1 por cada bola blanca seleccionada. Sea x la variable aleatoria que denota nuestras ganancias. ¿Cuáles son los posibles valores de x, y cuales son las probabilidades asociadas con cada valor? GANANCIA NEGRA =2 BLANCA = -1 6 LUIS J. CASTILLO VASQUEZ 8 blanca 4 negra 2 roja Blanca P (Xi) Xi P (Blanca; Blanca) = 88 14 14 -2 P (Blanca; negra) 8 4 14 14 1 8 14 4 Blanca 2 Negra 14 8 2 14 14 48 P (Negra; Blanca) = 14 14 14 P (Blanca; Naranja) = Naranja 8 14 Blanca 8 14 4 14 2 4 14 Negra Naranja Blanca 8 14 4 2 = 4 4 14 14 4 P (Negra; Naranja) = 4 2 14 14 2 P (Naranja; Blanca) = 28 14 14 -1 P (Naranja; Negra) = 2 4 14 14 2 P (Negra; Negra) 14 14 Naranja -1 1 Negra 2 = 14 Negra 14 Naranja P (Naranja; Naranja) = 2 2 14 14 0 ESPERANZA E(x) = 64 32 4 64 16 16 x P(x) = 2 196 1 196 0 196 1 196 2 196 4 196 E(x) = 128 32 64 32 64 0 0 196 196 196 196 196 VARIANZA V(x) = ( x u) 2 P(x) = E (x2) – Ex 2 E(x2) = 64 32 4 64 16 16 x 2 P(x) = 4 196 1 196 0 196 1 196 4 196 16 196 7 LUIS J. CASTILLO VASQUEZ 256 32 64 64 256 736 0 3.755 196 196 196 196 196 196 V(x) = 3.755 – 0 = 3.755 E(x2) = DESVIACIÒN ESTANDAR σ = V (x) = 1.93778238 COEFICIENTE DE VARIACIÓN V ( x) 100 E ( x) 3. Tres dados son lanzados. Suponiendo que cada uno de los 6 3 216 CV = posibles resultados son igualmente probables a) encontrar la probabilidad asignada a los posibles valores que toma x, donde x es la suma de los puntos obtenidos en los 3 dados. b) Encontrar su valor esperado y su varianza c) Encontrar el Coeficiente de Variación SOLUCIÓN. Los resultados se muestran a continuación 3 4 5 6 7 8 4 5 5 6 6 7 7 8 8 9 9 10 6 7 7 8 8 9 9 10 11 10 11 12 8 9 10 11 12 13 6 7 8 8 8 99 10 10 7 8 9 10 11 8 9 9 10 11 12 10 11 12 13 10 11 12 13 14 11 12 13 14 15 11 12 13 14 15 16 4 5 6 7 8 9 7 8 9 10 11 12 5 6 6 7 7 8 8 9 9 10 10 11 8 9 9 10 11 12 13 10 11 12 13 14 7 8 8 9 9 10 11 12 10 11 12 13 10 11 12 13 14 15 11 12 13 14 15 16 9 10 11 12 13 14 12 13 14 15 16 17 8 LUIS J. CASTILLO VASQUEZ 5 6 7 8 9 10 8 9 10 11 12 13 6 7 7 8 8 9 9 10 11 10 11 12 9 10 11 12 13 14 10 11 12 13 14 15 8 9 9 10 11 12 13 10 11 12 13 14 11 12 13 14 15 16 12 13 14 15 16 17 10 11 10 13 14 15 13 14 15 16 17 18 a) Por lo tanto su función de probabilidad es: Xi = SUMA DE LOS TRES LANZAMIENTOS Xi 3 1 P(Xi) 216 4 3 216 5 6 7 6 10 15 216 216 216 8 21 216 9 25 216 10 27 216 11 27 216 12 25 216 13 21 216 14 15 16 17 15 10 6 3 216 216 216 216 b) ESPERANZA E(x) = x P(x) = 3 12 30 60 105 168 225 270 297 300 273 216 216 216 216 216 216 216 216 216 216 216 210 150 96 51 18 216 216 216 216 216 E(x) = E(x2) = 2268 10.5 216 x 2 P(x) = 9 48 150 360 735 1344 2025 2700 216 216 216 216 216 216 216 216 3267 3699 3549 2940 2250 1536 867 324 216 216 216 216 216 216 216 216 E( x2) = 25704 119 216 VARIANZA 9 18 1 216 LUIS J. CASTILLO VASQUEZ V(x) = ( x u) 2 P(x) = E(x2) – Ex 2 V(x) = 119 – (10.5)2 = 8.75 DESVIACIÓN ESTÁNDAR = V (x) = 2.958039892 COEFICIENTE DE VARIACIÓN CV = V ( x) S 100 100 28.17% X E ( x) 4. Una mujer tiene 8 llaves de un llavero de los cuales, exactamente uno abre a cerradura de la puerta d su casa. Ella prueba las llaves una en cada vez, escogiendo al azar en cada tentativa una de las llaves que no ha sido experimentada. Sea x la variable aleatoria que denota el numero x. SOLUCIÓN 8 claves X P(X) una abre la puerta de la cerradura 1 2 3 4 5 6 7 8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 Esperanza: E(x)=∑ x P(x)=1 (1/8)+ 2 (1/8)+3 (1/8)+ 4 (1/8)+5 (1/8)+6 (1/8)+7 (1/8)+8(1/8) 1 2 3 4 5 6 7 8 E(x)= 8 8 8 8 8 8 8 8 E(x)= 36 4 .5 8 Varianza V(x)=∑ (x-u) P(x)=E ( x 2 )- E (x) 2 E ( x 2 )=∑ x 2 P(x)= 1 (1/8)+4 (1/8)+9 (1/8)+16 (1/8)+25 (1/8)+36 (1/8)+ 10 LUIS J. CASTILLO VASQUEZ 49 (1/8)+64 (1/8) 1 4 9 16 25 36 49 64 25.5 E ( x 2 )= 8 8 8 8 8 8 8 8 V(x)=25.5- 4.5 =25.5 - 20.25=5.25 2 = V ( x) 2.291288 Coeficiente de Variación CV= V (X ) S 100 (100) 50.92 % X E( X ) 5. Una urna contiene 8 bolas, de las cuales 3 son rojas. Graficar y comparar las funciones de distribución acumulada de las variables aleatorias x: numero de bolas rojas que se obtienen al extraer 2 bolas sin reemplazo, y X: numero de bolas NO rojas que se obtienen al extraer 2 bolas con reemplazo. Sin reemplazo 2/7 3/8 Roja 5/7 3/7 5/8 X 6 3 2 P (Roja, Roja) = = 56 8 7 0 3 5 15 P (Roja, Z ) = = 8 7 56 5 3 15 P (Z, Roja ) = = 8 7 56 Z Roja Z 4/7 xi Roja Espacio muestral P (Z, Z) Z 1 1 20 5 4 = = 56 87 0 1 2 P( x i ) 6/56 30/56 20/56 F(x i ) 6/56 36/56 56/56 2 Esperanza 30 40 60 6 30 20 E(x)=∑ x P(x)= 0 1 2 0 56 56 56 56 56 56 11 LUIS J. CASTILLO VASQUEZ E(x)= 1.074 Varianza V(x)=∑ (x-u) P(x)=E ( x 2 )- E (x) 2 30 80 120 6 30 20 E ( x 2 )=∑ x 2 P(x)= 0 1 4 0 56 56 56 56 56 56 E ( x 2 )=2.143 V(x)= E ( x 2 )- E (x) 2 =2.143- 1.074 2 = 0.989524 V ( x) 0.9947 Coeficiente de Variación CV= V (X ) 0.9947 100 (100) % = 92.62% E( X ) 1.074 Con reemplazo 3/8 3/8 5/8 X 9 3 3 P (Roja, Roja)= = 2 64 88 3 5 15 P (Roja, Z ) = = 1 64 88 15 53 P (Z, Roja) = = 1 64 88 25 55 P (Z , Z ) = = 0 64 88 Roja 3/8 5/8 Espacio muestral Roja Z Roja Z 5/8 Z xi 0 1 2 P(x i ) 9/64 30/64 25/64 F( xi ) 9/64 39/64 64/64 12 LUIS J. CASTILLO VASQUEZ Esperanza 30 18 9 30 25 0.75 E(x)=∑ x P(x)= 0 1 2 0 64 64 64 64 64 Varianza V(x)=∑ (x-u) P(x)=E ( x 2 )- E (x) 2 30 100 130 9 30 25 2.03125 E ( x 2 )=∑ x 2 P(x)= 0 1 4 0 = 64 64 64 64 64 64 E ( x 2 )=2.03125 V(x)= E ( x 2 )- E (x) 2 =2.03125- 0.75 =1.4688 2 V ( x) 1.2119 Coeficiente de Variación CV= V (X ) 100 (100) 82.51 % E( X ) 6. Un capataz de una planta manufacturada tiene 5 hombres y 3 mujeres trabajando en el. El capataz desea seleccionar 4 trabajadores para un trabajo especial. Deseando no tener influencia en la sección de los trabajadores, el decide seleccionar al azar 4 trabajadores. Sea Y el numero de hombres en el grupo. Hallar la tabla de distribución de probabilidad de y. SOLUCIÓN El capataz puede seleccionar 4 trabajadores de 8 de 70 maneras. El 8 4 Espacio muestral asociado a este experimento contiene 70 puntos Muéstrales, cada uno con igual probabilidad de ocurrencia esto es: P wi 1 , i 1,2,....,70 70 Para todo evento simple wi El rango de la variable aleatoria Y es Ry = (1, 2, 3,4) El numero de maneras de seleccionar 4 personas de 8 de modo que en el grupo haya 1 hombre y 3 mujeres es: 13 LUIS J. CASTILLO VASQUEZ PY 1 l PY 2 5 1 3 3 70 5 1 70 14 3 5 2 3 2 70 7 3 | PY 3 70 7 5 3 1 PY 4 4 0 70 14 5 3 3 1 En general, la de distribución de probabilidad de Y es: PY PY Y , Y 1,2,3,4 5 Y 3 4 Y 8 4 Por tanto la tabla de distribución de probabilidad de Y es: Y 1 2 3 4 P(Y) 1/17 6/14 6/14 6/14 7. Hallar la distribución de probabilidad en la variable aleatoria x, definida como el número de caras que se obtienen al arrojar 5 monedas. SOLUCIÓN: Tenemos x: numero de caras que se obtiene al arrojar 5 monedas. - el valor de la variable aleatoria x, esto es, puede ser cualquiera de los enteros 0, 1, 2, 3, 4 o 5, en consecuencia el rango de x es Rx = {0, 1, 2, 3, 4,5} - el espacio muestral asociado a este experimento tiene 2 5 =32 elementos, luego el denominador para todas las probabilidades, por lo tanto para nuestra función de probabilidad, será 32. Para calcular el numero de formas de obtener, digamos 3 caras necesitamos el numero de formas de separar 5 resultados en 2 celdas con 3 caras u 2 sellos asignados a la otra. Esto puede hacerse de sellos pueden ocurrir 10 manera. En general, x caras y 5-x 5 3 formas, donde x puede tomar valores del 0, 1, 5 x 2, 3, 4,5. Así la función de probabilidad es dada por: 14 LUIS J. CASTILLO VASQUEZ P(x)=P(X=x)= - , x 0,1,2,3,4,5 5 x 32 la tabla de distribución de esta probabilidad de esta función es: X 0 1 2 3 4 5 P(x)= P(X=x) 1/32 5/32 10/32 10/32 5/32 1/32 - El diagrama de barras de esta distribución, se muestra en la siguiente figura: - De los pasos anteriores tenemos: a) p( x) 0; x Rx 5 b) 1 5 10 10 5 1 p( x) 32 32 32 32 32 32 1 x 0 P(x) 1/2 10/32 5/32 1/32 1 2 3 4 5 X 8. En el lanzamiento simultáneo de dos dados legales consideremos las siguientes variables aleatorias: X: numero de puntos obtenidos en el primer dado Y: numero de puntos obtenidos en el segundo dado a) Construir la distribución de probabilidad de las siguientes variables: i. W=X-Y ii. A=2Y iii. Z=X-Y iv. B= máximo{x, y} 15 LUIS J. CASTILLO VASQUEZ b) Construir la función de distribución acumulada de las variables aleatorias: W y B esbozar su grafica respectiva. c) Aplicando las propiedades de la función de distribución acumulada, calcular las siguientes probabilidades. i. P{-3<W<3} ii. P{0 W 4.5} iii. P{A>6} iv. P{Z 5.5} v. P{1 B 4} vi. P{20 Z 35} vii. P{-1<A<8} SOLUCIÓN: a) Como dato tenemos las siguientes tablas de distribución de probabilidad de las variables aleatorias W, A, Z y B. w -5 -4 -3 -2 -1 0 1 2 3 4 5 P(w) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36 a P(a) z P(z) 2 4 6 8 10 12 1/6 1/6 1/6 1/6 1/6 1/6 1 2 3 4 5 6 8 9 10 12 15 16 1/36 2/36 2/36 3/36 2/36 4/36 2/36 1/36 2/36 4/36 2/36 1/36 16 LUIS J. CASTILLO VASQUEZ 18 20 24 25 30 36 2/36 2/36 2/36 1/36 2/36 1/36 b 1 2 3 4 5 6 P(b) 1/36 3/36 5/36 7/36 9/36 11/36 i. Según la definición 6 la función de distribución acumulada de w es: 0, si : w 5 1 / 36, si : 5 w 4 3 / 36, si : 4 w 3 6 / 36, si : 3 w 2 10 / 36, si : 2 w 1 15 / 36, si : 1 w 0 F (w)=P W w 21 / 36, si : 0 w 1 26 / 36, si : 1 w 2 30 / 36, si : 2 w 3 33 / 36, , si : 3 w 4 35 / 36, si : 4 w 5 1, si : w 5 ii. La función de distribución acumulada de la variable aleatoria B es: 0, si : b 1 1 / 36, si : 1 b 2 4 / 36, si : 2 b 3 F (b)=P B b 9 / 36, si : 3 b 4 16 / 36, si : 4 b 5 25 / 36, si : 5 b 6 1, si : b 6 9. Una urna I contiene 5 bolas blancas y 2 negras; la urna II contiene 3 bolas blancas y 2 negras; la III contiene 2 bolas blancas y 3 negras .Extraemos una bola de cada urna y sea X el número de bolas blancas extraídas. a) Determine la función de probabilidad de la variable aleatoria X b) Determine la función de distribución acumulada de X y trace su gráfica. 17 LUIS J. CASTILLO VASQUEZ SOLUCIÓN: a) Tenemos X: numero de bolas blancas extraídas, luego el rango de X es Rx= {0, 1, 2,3} Sean los eventos: B1, B2 Y B3: Obtener bola blanca en la primera urna, segunda urna y Tercera urna, respectivamente. N1,N2Y N3: Obtener bola negra en la primera urna, segunda urna y Tercera urna, respectivamente. Según las condiciones del problema, se tiene P[B1] = 5/7 ,P[B2] = 3/5 , P[B3] = 2/5 P[N1] = 2/7, P[N2] = 2/5 , P[N3] = 3/5 Por ser independientes los colores que se obtienen al seleccionar una bola en cada una de las urnas, tenemos: P[X=0] = P[N1] P[N2] P[N3] = 12/175 P[X=1] = P[B1] P[N2] P[N3] + P[B2] P[N1] P[N3] + P[B3] P[N1] P[N2] = (5/7) (2/5) (3/5) + (3/5) (2/7) (3/5) + (2/5) (2/7) (2/5) = 56/175 P[X=2] = P[B1] P[B2] P[N3] + P[B1] P[N2] P[B3] + P[N1] P[B2] P[B3] = (5/7) (3/5) (3/5) + (5/7) (2/5) (2/5) + (2/7) (3/5) (2/5) = 77/175 P [X=3] = P [B1] P [B2] P [B3] = (5/7) (3/5) (2/5) = 30/175 Por tanto, la tabla de distribución de probabilidad de X es X 0 1 2 3 P(x)= P[X=x] 12/175 56/175 77/175 30/175 b) La función de distribución acumulada de esta variable aleatoria es 0, six 0 12 / 175, si 0 x 1 F(x) = P [X x] = 68 / 175, si x 2 145 / 175, six 3 Y su grafica se muestra en la figura: 18 LUIS J. CASTILLO VASQUEZ EJERCICIOS PROPUESTOS: Si p es la probabilidad de éxito de un suceso en un solo ensayo, el numero esperado se sucesos o la esperanza o la esperanza de este suceso en n ensayos, estará dado por el producto de n y la probabilidad de éxito. E=np 1. En el lanzamiento 900 veces de dos dados. ¿Cuál es la esperanza de que la suma de sus caras sea un valor menor a 6? 2. Las caras de un dado común se hallan numeradas de 1 a 6. a) ¿Cuál es la probabilidad de que habiéndole lanzado el dado, aparezca en la cara superior un valor par? b) ¿Cual es la posibilidad de obtener un numero mayor a 2? 3. Cual es la probabilidad de que al lanzar dos dados se presenten dos valores tales que la suma sea. a) 3, b) 4 4. ¿Cuál es la probabilidad de que sean varones los 3 hijos de una familia? 5. Si se tienen dos lápices uno rojo y otro verde, cuyas caras están numeradas 1,2,3,4 y se echan a rodar sobre el piso, leyendo los números correspondientes a sus caras superiores con lo anterior: a) Establezca el espacio muestral de los acontecimientos b) Determine la probabilidad de que la cara superior del lapiza roja sea 1 o 3, mientras que la de verde sea 2 o 4. c) ¿Cual es la probabilidad de que la suma de sus caras sea 4? d) ¿Qué la suma de sus caras sea un numero par? 19 LUIS J. CASTILLO VASQUEZ 6. Tres corredores A, B Y C compiten entre ellos frecuentemente, han ganado el 60, el 30 y el 10 por 100 de las competiciones respectivamente. En la próxima carrera: a) ¿Cuál será el espacio muestral? b) ¿Qué valores podríamos asignar a los puntos muestrales? c) ¿Cuál es la probabilidad de que A pierda? 7. Después de un extenso estudio los archivos de una compañía de seguros revelan que la población de un país cualquiera puede clasificarse, según sus edades, como sigue: un 35 por ciento menores de 20 años, un 25 por ciento entre 21 y 35 años, un 20 por ciento entre 36 y 50 años, un 15 por ciento entre 51 y 65 años y un 5 por ciento mayores de 65 años. Suponga que se quiere elegir un individuo de Tal manera que cualquier habitante del país supuesto tiene la misma posibilidad de ser elegido. Empleando la anterior información, describir el espacio muestral para la edad del individuo elegido y asignar valores a los puntos muestrales. ¿Cuál es la probabilidad de que el individuo sea mayor de 35 años? 8. Un embarque de pintura tiene 2000 latas de 5 kilos de las cuales 800 son de pintura blanca, 500 de amarilla, 300 de roja, 300 de verde y 100 de azul. Durante el viaje las latas se han sumergido accidentalmente en agua y se han borrado todos los rótulos. A la llegada las latas se colocan sobre una plataforma, se coge una y se abre. Respecto del color de la lata elegida. a) Cual es el espacio muestral? b) ¿Qué valores podríamos asignar a los puntos muestrales? c) ¿Cuál es la probabilidad de que la lata elegida contenga pintura blanca, roja o azul? 9. Suponga que al observatorio meteorológico clasifica cada día según las condiciones de cómo ventoso o en calma, según la cantidad de lluvia caída, en húmedo o seco y según la rotura como caluroso normal o frió. ¿Qué espacio muestral es necesario para caracterizar? ¿Qué valores podríamos asignar a los puntos muestrales? 10. Un dispositivo esta compuesto independientemente. La probabilidad de tres elementos que trabajan de falla de cada elemento en una prueba es igual a 0.1. Analizar la variable aleatoria x: numero de elementos que fallan en una prueba. 20 LUIS J. CASTILLO VASQUEZ 11. Cinco hombres y cinco mujeres son clasificados de acuerdo a sus puntajes obtenidos en un examen de matemática I. Supongamos que todos los puntajes obtenidos en dicho examen son diferentes y que todas las 10! Posibles calificaciones igualmente probables. Sea X la variable aleatoria que de nota la clasificación mas alta conseguida por una alumna (por ejemplo , x=2 denota que la alumna fue clasificada en un segundo lugar y que el primer lugar fue ocupado por un alumno).Encuentre: R. 5 5 5 5 5 1 5 , , , , , , , 0, 0, 0,0 2 36 36 84 84 252 252 12.-Un dispositivo esta compuesto de tres elementos que trabajan independientemente. La probabilidad de falla de cada elemento en una Prueba es igual a 0.1. Analizar la variable aleatoria X: numero de Elementos que fallan en una prueba R. X 0 1 2 3 p(x) (0.9)3 3(0.1)(0.9)2 3(0.1)2(0.9) (0.1)3 13.-Sea X la variable aleatoria que denota la diferencia entre el numero de caras y el numero de sellos obtenidos cuando una moneda es Lanzada n veces. ¿Cuales son los posibles valores de X? R. 2k-n , k= 0, 1,….., n 14.- Luego de producir el último producto del día en una fabrica, se observa que se han manufacturado 4 del producto A y 4 del producto B. Como uno de los talleres de manufacturación estuvo fallando, se sospecha que la mitad de la producción sea defectuosa. Obtenga la distribución de probabilidad del número de defectuosos provenientes del producto A, al extraer 4 productos y someterlos a prueba. X 0 1 2 3 4 P(x) 1/70 16/70 36/70 16/70 1/70 15.- Para que valor de existe una constante C para el cual 21 LUIS J. CASTILLO VASQUEZ Cx a, x 1,2,.... P(x) = 0, enotrocaso Es función de cuantía de una variable aleatoria X? 16.- ¿Para que valores de C la función p(x) define una función de Cuantía de una variable aleatoria X? 17.-Una mujer tiene 8 llaves en su llavero de los cuales, exactamente uno abre la cerradura de la puerta de su casa. Ella aprueba las llaves en cada vez, escogiendo al azar en cada tentativa una de las llaves que no ha sido experimentada. Sea X la variable aleatoria que denota el numero de llaves que se prueba (incluyendo la correcta) para abrir la puerta. ¿Cuál es la distribución de probabilidad de X? R. x 1 2 3 4 5 6 7 8 P(x) 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 22