NIVEL UNO Problema 1 20 niñas en Tarariras, entonces 20 niños en Tarariras, entonces 32 niños en Tranqueras. Problema 2 El hexágono se puede dividir en 6 triángulos equiláteros de lado 52, y el triángulo en cuatro triángulos de lado 52. Entonces son necesarios 6 litros. Problema 3 75a 25b 33000 a b 600 Como 33000 es múltiplo de 75, entonces b es múltiplo de 3. b=3k con k<200. 75(599-3k)+25*3k=33000k=79,5 entonces k=80 Para k=80 tenemos 240 niños y 360 adultos, pero se llena k=79 Para k=79 tenemos 237 niños y 361 adultos, total=598. Si ponemos menos adultos, necesitamos más niños. 33000 75a 240 , entonces hay más de 599 personas. Sea a<361 25 ALTERNATIVA 1 adulto + 1 menor = $ 100 Si fueran 300 parejas tendríamos 300 . 100 = $ 30000 Si bajamos una pareja tendríamos 298 . 100 + 4 . 75 = $ 30100 Cada dos parejas que bajen y suban 4 adultos la recaudación sube $ 100, necesito que suba $ 3000 entonces necesito bajar 60 parejas, me queda que con 360 adultos y 240 niños completamos $ 33000, pero con el teatro LLENO, por lo tanto como mínimo tengo 361 adultos. Problema 4 Numeramos los puntos de arriba abajo y de izquierda a derecha del 1 al 10. Podemos colocar Negro en 1 y Azul en 7 y 10. Si 2 es Negro3 es Azul8 es Negro6 es Azul 5 y 9 son Negros Problema Si 2 es Azul9 es Negro Si 8 es Azul3 es Negro4 es AzulProblema Si 8 es Negro5 es Azul4 es Negro3 es AzulProblema