Cabrera Hernández Elizabeth Ramírez Bustos Fabián GENERACION DE NUMEROS ALEATORIOS NUMEROS ALEATORIOS Los números random son un elemento básico en la simulación de la mayoría de los sistemas discretos. Cada número random Ri es una muestra independiente de una distribución uniforme y continua en el intervalo (0,1). NÚMEROS ALEATORIOS La probabilidad de observar un valor en un particular intervalo es independiente del valor previo observado. * * Todo punto en el rango tiene igual probabilidad de ser elegido. * Si el intervalo (0,1) es dividido en n subintervalos de igual longitud, el número esperado de observaciones en cada intervalo es N/n. (N número de observaciones totales). GENERADOR DE NÚMEROS ALEATORIOS El objetivo de cualquier esquema de generación (generador), es producir una secuencia de números entre 0 y 1 que simule las propiedades ideales de distribución uniforme y de independencia. NÚMEROS PSEUDO-ALEATORIOS •Los números aleatorios son calculados a partir de una semilla (seed) y una fórmula. •El problema es que si el método es conocido, entonces la secuencia de números random puede ser replicada. •En la práctica ninguna función produce datos aleatorios verdaderos -- las funciones producen números pseudo-aleatorios. TÉCNICAS PARA GENERAR NÚMEROS ALEATORIOS La mayoría de los métodos (generadores) comienzan con un número inicial (semilla), a este número se le aplica un determinado procedimiento y así se encuentra el primer número random. Usando este número como entrada, el procedimiento es repetido para lograr un próximo número random. Y así siguiendo. TÉCNICAS PARA GENERAR NÚMEROS ALEATORIOS Método Del Cuadrado Medio: comienza con un número inicial (semilla). Este número es elevado al cuadrado. Se escogen los dígitos del medio de este nuevo número (según los dígitos que se deseen) y se colocan después del punto decimal. Este número conforma el primer número random. Ejemplo: X0 = 5497 X02 = (5497)2 = 30,217,009 ===> X1 = 2170 R1 = 0.2170 X12 = (2170)2 = 04,708,900 ===> X2 = 7089 R2 = 0.7089 X22 = (7089)2 = 50,253,921 ===> X3 = 2539 TÉCNICAS PARA GENERAR NÚMEROS ALEATORIOS Método De Congruencia Lineal: produce una secuencia de enteros X1, X2,... entre 0 y m-1 de acuerdo a la siguiente relación recursiva: Xi+1= (a * Xi + c) mod m, i=0,1,2,... X0 es llamado semilla. a es llamado el multiplicador constante. c es el incremento. m es el módulo. El número aleatorio se encuentra de la siguiente manera: R = X /m TÉCNICAS PARA GENERAR NÚMEROS ALEATORIOS Ejemplo: Utilice el método de Congruencia Lineal para generar números aleatorios con las siguiente constantes: X0 = 27 , a = 17, c = 43, m = 100 La secuencia de Xi y subsecuentes Ri serían: X0 = 27 X1 = (17 * 27 + 43) mod 100 = 502 mod 100 = 2 R1 = 2/100 = 0.02 X2 = (17 * 2 + 43) mod 100 = 77 mod 100 = 77 R2 = 77/100 = 0.77 La selección de los parámetros del generador afecta drásticamente las propiedades ideales y la longitud del ciclo. TEST PARA EL CHEQUEO DE UNIFORMIDAD Test de Kolmogorov-Smirnov: compara la distribución de un conjunto de números generados con una distribución uniforme. Este test compara: la función de Probabilidad Acumulada continua F(x) de una Distribución Uniforme, con la función de Probabilidad Acumulada empírica SN(x), de una muestra de N observaciones. TEST DE KOLMOGOROV-SMIRNOV Por definición, la Función de Probabilidad Acumulada (teórica) uniforme entre 0 y 1 tiene: * F(x) = x, 0<=x<=1 Mientras que una Función de Probabilidad Acumulada Empírica se encuentra: * SN(x) = (cantidad de n.r. generados <=x ) / N Este test se basa en la mayor desviación absoluta entre F(x) y SN(x) sobre todo el rango de variable random. Esto es: D = max|F(x) - SN(x)| La distribución de D está tabulada como una función de N. Ejercitación de Distribución Empírica (SN(x)) Si no se conoce la probabilidad de un fenómeno se debe trabajar con las distribuciones empíricas ( basadas en frecuencias). Ejemplo: Que distribución tiene la siguiente secuencia de números?: 3-4-5-3-4-5-3-6-4-3 valor cantidad frel. frelAcum 3 4 4/10=0.4 4/10=0.4 4 3 3/10=0.3 7/10=0.7 5 2 2/10=0.2 9/10=0.9 6 1 1/10=0.1 10/10=1 El test procede de la siguiente manera: 1- Ordena los datos de menor a mayor: R(1)<=R(2)<=... <= R(N) (R(i) denota la observación más pequeña.) 2- Computa: D+ = max { i/N - R(i)}, 1<=i<=N D- = max { R(i)- (i-1)/N}, 1<=i<=N 3- Computa D = max (D+,D-). El test procede de la siguiente manera (continuación): 4- Determina el valor crítico, D para el nivel de significancia alfa y tamaño de muestra N, (estos valores están tabulados). 5- Si la muestra estadística diferencia ha D es mas grande que el valor crítico, D, la hipótesis nula es rechazada. Si D <= D concluye que ninguna diferencia significativa ha sido detectada entre la verdadera distribución de {R1,R2 ..., RN} y la distribución uniforme. Ejemplo Para Ejecutar Test De Uniformidad (Kolmogorov - Smirnov) Suponer que se generaron cinco números random y que se desea ejecutar el test de K.S. para un nivel de significancia = 0.05 Orden cronológico: R1 R2 R3 R3 R5 0.03 0.58 0.87 0.32 0.95 Orden numérico creciente: R(1) R(2) R(3) R(3) R(5) 0.03 0.32 0.58 0.87 0.95 Ejemplo (continuación) Evaluación: D.Teórica F(x) = R(i) 0.03 0.32 0.58 0.87 0.95 D.Empírica SN(x)= i/N 0.2 0.4 0.6 0.8 1 i/N – R(i) (D+ :dif. sup.) 0.17 0.08 0.02 0 R(i) - (i-1)/N (D- :dif. inf.) 0.03 0.12 0.18 0.27 Continuar este ejemplo..... 0.05 0.15 Ejemplo (continuación) 0.6 0.5 0.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.03 0.32 0.58