Crustaceana 86 (4) 507-513 NOTES AND NEWS CRUSTACEAN ZOOPLANKTON COMMUNITIES IN LAKE GENERAL CARRERA (46°S) AND THEIR POSSIBLE ASSOCIATION WITH OPTICAL PROPERTIES BY PATRICIO DE LOS RÍOS-ESCALANTE1,2,5 ), ESTEBAN QUINÁN1 ) and PATRICIO ACEVEDO3,4 ) 1 ) Laboratorio de Ecología Aplicada y Biodiversidad, Escuela de Ciencias Ambientales, Facultad de Recursos Naturales, Universidad Católica de Temuco, Casilla 15-D, Temuco, Chile 2 ) Núcleo de Estudios Ambientales, Universidad Católica de Temuco, Casilla 15-D, Temuco, Chile 3 ) Departamento de Ciencias Físicas, Facultad de Ingeniería, Ciencias y Administración, Universidad de la Frontera, Casilla 54-D, Temuco, Chile 4 ) Center for Optics and Photonics, Universidad de Concepción, Casilla 160-C, Concepción, Chile In central and south Chilean Patagonia (46-51°S) there are numerous deep, oligotrophic lakes of glacial origin and/or with glaciers associated with their basins (Soto & Zúñiga, 1991; Soto et al., 1994; De los Ríos-Escalante, 2011), which contain zooplankton communities with a low number of species and high calanoid dominance (Soto & Zúñiga, 1991; De los Ríos & Soto, 2006, 2007; De los RíosEscalante, 2010). This region is practically unpolluted and has been little studied due mainly to geographical difficulties — mountains, ice fields and fiords — and the weather, characterized by strong winds, especially in the southern spring and summer (October-February) (Soto et al., 1994; De los Ríos-Escalante, 2010). In Central Patagonia (46-49°S) there are three large, deep lakes with marked glacial influence, which straddle the border between Chile and Argentina, namely General Carrera/Buenos Aires; Cochrane/Pueyrredón; and O’Higgins/San Martín (Niemeyer & Cereceda, 1984; Soto & Zúñiga, 1991). From a geomorphological point of view, these lakes are characterized by numerous closed bays, some of which receive effluent rivers carrying glacial sediments. The depth of the lakes varies up to a maximum of 400 m (Soto & Zúñiga, 1991). Unfortunately there are no detailed limnological studies of these great lakes, with the exception of restricted reports of their trophic status (Soto & Zúñiga, 1991), zooplankton species (Menu-Marque et al., 2000; De los Ríos & Soto, 2007; De los RíosEscalante, 2010), and detailed studies on benthic fauna in the surrounding basin 5 ) Corresponding author; e-mail: patorios@msn.com © Koninklijke Brill NV, Leiden, 2013 DOI:10.1163/15685403-00003182 508 NOTES AND NEWS Fig. 1. LANDSAT/ETM+ images (B2) Visible-Green, five zones (S1-S5) denoted with different water reflectance. (Moya et al., 2009; Valdovinos et al., 2010). Nevertheless, on the basis of published information for Argentinean lakes in similar latitudes, these lakes would be oligotrophic, with phytoplankton assemblages dominated by diatoms, zooplankton with low species number and calanoid dominance, few native species and presence of salmonids (Modenutti et al., 1998). The aim of the present study is to make a preliminary analysis of the zooplankton communities in different bays of Lake General Carrera and produce a preliminary characterization of community structure. Lake General Carrera is located in the Aysen Region (fig. 1) and forms part of the Baker River basin. It covers 1892 km2 , reaches a maximum depth of 410 m (Moya et al., 2009; Valdovinos et al., 2010), and contains numerous bays. The study samples were collected in October 2002 in the following bays of the lake: Avilés River, Murta Bay, Jara Bay, Chile Chico, Fachinal, Ibáñez River, Guadal Bay and Tranquila Bay (table I and fig. 1). Sampling collection and data analysis: the samples were collected with vertical hauls at varying depths between 10 and 30 m, using a plankton net of 20 cm diameter and 100 μm mesh size. The specimens collected were fixed with 10% formalin and identified according to specialized literature (Araya & Zúñiga, 1985; Bayly, 1992). The data were transformed to indicate relative abundance (%), and analysed using a Jaccard Cluster Analysis with single-link similarity to determine potential similarities between sites. Biodiversity Pro Software, Version 2.0 (McAleece et al., 2007) was used for this analysis. 509 NOTES AND NEWS TABLE I Geographical location, percentage abundance and optical properties (reflectance) of crustacean species observed in different bays of Lake General Carrera, Chile Murta bay Jara bay Chile Chico Fachinal bay Ibáñez river Guadal bay Tranquila bay Latitude (S) 46°29 30 46°29 16 46°31 28 46°30 40 46°17 58 46°49 59 46°37 43 Longitude (W) 72°41 49 72°48 59 72°41 43 72°57 34 72°55 59 72°41 54 72°39 44 Abundance Neobosmina 0.0 0.0 1.9 0.8 0.0 0.1 0.0 chilensis (Daday) Boeckella 100.0 100.0 98.1 99.2 100.0 99.9 100.0 michaelseni (Mrázek) Reflectance B1 B2 B3 B4 B5 B7 0.0493 0.0343 0.0036 0.0057 0.0016 0.0005 0.0180 0.0260 0.0038 0.0035 0.0013 0.0002 0.0186 0.0030 0.0036 0.0051 0.0014 0.0003 0.0260 0.0047 0.0038 0.0049 0.0018 0.0005 0.0271 0.0224 0.0009 0.0072 0.0013 0.0002 0.0757 0.0352 0.0008 0.0089 0.0016 0.0003 0.0661 0.0308 0.0019 0.0054 0.0017 0.0006 The second step used a LANDSAT/ETM+ image obtained on 14 October 2001 (fig. 1), provided by the Land Processes Distributed Active Archive Center (LP DAAC), U.S. Geological Survey (http://LPDAAC.usgs.gov). The bands of visible, near and mid-infrared were calibrated radiometrically to spectral radiance and then to reflectance, with atmospheric correction being applied (table II). A correlation index was applied between the relative abundance of Boeckella michaelseni (Mrázek, 1901) and the reflectance values (table III), and finally a regression analysis was applied to the most significant regression. All statistical analyses were done using the Xlstat 5.0 software. TABLE II Technical characteristics of ETM+ sensor of LANDSAT 7 Satellite Band B1 B2 B3 B4 B5 B7 Wide band (nm) 452-514 519-601 631-692 772-898 1547-1748 2065-2346 Range Visible-blue Visible-green Visible-red Near infrared Mid-infrared Mid-infrared Spatial resolution (m) 30 30 30 30 30 30 510 NOTES AND NEWS TABLE III Correlation analysis of crustacean species observed in different bays of Lake General Carrera, Chile. P values < 0.05 denote significant differences Correlation coefficient P B1 B2 B3 B4 B5 B7 0.386 0.197 0.563 0.094 −0.467 0.146 0.278 0.273 −0.517 0.118 −0.287 0.266 The results revealed a low species number (one or two). The dominant or exclusive species in some sites was the calanoid B. michaelseni, which coexisted with the small cladoceran Neobosmina chilensis (Daday, 1902) only in the Chile Chico and Fachinal Bay sites (table I). If we compare these results with the optical properties at the sites, a weak direct association is observed between B2 (corresponding to green reflectance in the visible spectrum) and the relative abundance of B. michaelseni (table II) with confidence level 0.1 (table I). Regression analysis revealed a significant linear association between B2 and the relative abundance of B. michaelseni (fig. 2). The results of the cluster analysis revealed the existence of one main group, consisting of Tranquila Bay, Guadal Bay, Ibáñez River, Jara Bay and Murta Bay where only B. michaelseni is present, while the most different comparable sites are Chile Chico and Fachinal bay (fig. 3). Fig. 2. Lineal regression between B2 LANDSAT/ETM+ reflectance and relative abundance of Boeckella michaelseni (Mrázek, 1901). NOTES AND NEWS 511 Fig. 3. Dendrogram with the zooplankton relative abundance data of sites studied. The results described above agree with results obtained for other lakes of glacial origin, for example, lakes Sarmiento and Del Toro in the Torres del Paine National Park (Campos et al., 1994a, b), where the markedly abundant calanoid species B. gracilipes Daday, 1901 and/or B. michaelseni are associated with low abundances of cyclopoid copepods and the cladoceran N. chilensis. Similar results were observed for other glacial, oligotrophic lakes in Torres del Paine National Park, such as Nordsdenkjold and Grey, where the zooplankton communities consist of only two species (B. michaelseni and Tropocyclops prasinus (Fischer, 1860)) (Soto et al., 1994; Soto & De los Ríos, 2006; De los Ríos-Escalante, 2010; De los Ríos-Escalante et al., 2011). This situation differs from that of another Patagonian lake with glacial influence, Todos los Santos Lake, which has four species (De los Ríos & Soto, 2007). Zooplankton communities can be affected by glacial influence. In marine environments zooplankton mortality, mainly associated with the chemical properties of the ice, has been found in areas close to ice fields (Weslawski & Legezynska, 1998). For Patagonian lakes the glacial influence is water turbidity due to glacier sediments and dissolved organic matter which prevent light penetration into water column (Modenutti et al., 2000; Pasquini & Depetris, 2011). In Lake General Carrera/Buenos Aires (Hein et al., 2010), it is probable that the marked glacial 512 NOTES AND NEWS influence in the form of sediments may affect phytoplankton activity. As a result the lake does not support enough phytoplankton biomass to sustain abundant zooplankton biomass. This would make it similar to some lakes with glacial influence in Torres del Paine National Park where only two species are found (Soto et al., 1994; De los Ríos-Escalante, 2010). Considering that Lake General Carrera (Chilean zone) contains bays with glacial influence where green coloring is observed (e.g. Puerto Ibáñez), this would explain the absolute abundance of calanoid B. michaelseni in bays with high reflectance of green light, because these zones would be oligotrophic due to low light penetration. Although the correlation in this study was weak (table III), a stronger correlation would probably be found if a more intensive study were carried out. The results presented indicate that a potential correlation between zooplankton assemblages and optical properties might possibly be found; however it would be necessary to carry out more intensive studies and obtain more data to be able to confirm or discount the possibility of finding potential correlations. ACKNOWLEDGEMENTS The present study received funding from CEFOP CONICYT FB0824 and DI080040 of the Research Directorate of Universidad de la Frontera; Project DIDUACH d2001-11 of Universidad Austral de Chile; and the Research Directorate of Universidad Católica de Temuco (Project MECESUP Project UCT 0804). REFERENCES A RAYA , J. M. & L. R. Z ÚÑIGA, 1985. Manual taxonómico del zooplancton lacustre de Chile. Boletín Limnológico, Universidad Austral de Chile, 8: 1-110. BAYLY, I. A. E., 1992. Fusion of the genera Boeckella and Pseudoboeckella (Copepoda) and revision of their species from South America and sub-Antarctic islands. Rev. Chilena Hist. Nat., 65: 17-63. C AMPOS , H., D. S OTO, W. S TEFFEN, G. AGÜERO, O. PARRA & L. Z ÚÑIGA, 1994a. Limnological studies of Lake del Toro (Chile) morphometry, physics, chemistry and plankton. Arch. Hydrobiol. Suppl., 99: 199-215. — —, — —, — —, — —, — — & — —, 1994b. Limnological studies of Lake Sarmiento (Chile): a subsaline lake from Chilean Patagonia. Arch. Hydrobiol. Suppl., 99: 217-234. D E LOS R ÍOS , P. & D. S OTO, 2007. Crustacean (Copepoda and Cladocera) zooplankton richness in Chilean Patagonian lakes. Crustaceana, 80: 285-296. — — & — —, 2006. Effects of the availability of energetic and protective resources on the abundance of daphniids (Cladocera, Daphniidae) in Chilean Patagonian lakes (39°-51°S). Crustaceana, 79: 23-32. D E LOS R ÍOS -E SCALANTE , P., 2010. Crustacean zooplankton communities in Chilean inland waters. Crustaceana Monographs, 12: 1-109. NOTES AND NEWS 513 D E LOS R ÍOS -E SCALANTE , P., E. H AUENSTEIN & M. ROMERO -M IERES, 2011. Microcrustacean assemblages composition and environmental variables in lakes and ponds of the Andean region — South of Chile (37-39°S). Braz. J. Biol., 71: 353-358. H EIN , A. S., N. R. J. H ULTON, T. J. D UNAI, D. E. S UGDEN, M. R. K APLAN & S. X U, 2010. The chronology of the last Glacial Maximum and deglacial events in central Argentine Patagonia. Quatern. Sci. Rev., 29: 1212-1227. M C A LEECE , N., J. L AMBSHEAD, G. PATTERSON & J. G AGE, 1997. Biodiversity Pro: free statistical software for ecology. The Natural History Museum and Scottish Association for Marine Science. M ENU -M ARQUE , S., J. J. M ORRONE & C. L OCASCIO DE M ITROVICH, 2000. Distributional patterns of the South American species of Boeckella, a track analysis. J. Crust. Biol., 20: 262272. M ODENUTTI , B. E., E. G. BALSEIRO, C. P. Q UEIMALIÑOS, D. A. S UAREZ, M. C. D IÉGUEZ & R. J. A LBARIÑO, 1998. Structure and dynamics of food webs in Andean lakes. Lak. Reserv., Res. Manag., 3: 179-186. M ODENUTTI , B. E., G. P ÉREZ, E. BALSEIRO & C. Q UEIMALIÑOS, 2000. The relationship between light attenuation, chlorophyll a and total suspended solids in a Southern Andes glacial lake. Verh. Intern. Verein. Angew. Limnol., 27: 1-4. M OYA , C., C. VALDOVINOS, A. M ORAGA, F. M ORENO, P. D EBELS & A. OYANEDEL, 2009. Patrones de distribución espacial de ensambles de macroinvertebrados bentónicos de un sistema fluvial patagónico. Rev. Chilena Hist. Nat., 82: 425-442. N IEMEYER , H. & P. C ERECEDA, 1984. Geografía de Chile. Hidrografía: 1-320. (Instituto Geográfico Militar, Santiago de Chile). PASQUINI , A. I. & P. J. D EPETRIS, 2011. Southern Patagoniaś Perito Moreno Glacier, Lake Argentino and Santa Cruz river hydrological system: an overview. J. Hydrol., 405: 48-56. S OTO , D., H. C AMPOS, W. S TEFFEN, O. PARRA & L. Z ÚÑIGA, 1994. The Torres del Paine lake district (Chilean Patagonia): a case of potentially N-limited lakes and ponds. Arch. Hydrobiol., 99: 181-197. S OTO , D. & L. R. Z ÚÑIGA, 1991. Zooplankton assemblages in Chilean temperate lakes; a comparison with North American counterparts. Rev. Chilena Hist. Nat., 64: 569-581. VALDOVINOS , C., A. K IESSLING, M. M ARDONES, C. M OYA, A. OYANEDEL, J. S ALVO, V. O L MOS & O. PARRA , 2010. Distribución de macroinvertebrados (Plecoptera y Aeglidae) en ecosistemas fluviales de la Patagonia chilena: ¿muestran señales biológicas de la evolución geomorfológica postglacial? Rev. Chilena Hist. Nat., 83: 267-288. W ESLAWSKI , J. M. & J. L EGEZYNSKA, 1998. Glaciers caused zooplankton mortality? J. Plankton Res., 20: 1233-1240. First received 10 May 2012. Final version accepted 1 December 2012.