El BJT a pequeña señal J.I.Huircan Universidad de La Frontera January 4, 2012 Abstract El modelo de BJT basado en parámetros h permite tratar el dispositivo como una red lineal, en la cual la corriente de colector es proporcional a la corriente de base desde el punto de vista de señal. El modelo simple solo consta de dos parámetros, hie y hf e . Para los análisis se reemplaza el modelo en el circuito y se determinan la ganancia, la impedancia de entrada y salida. 1 Introducción El análisis a pequeña señal consiste en usar un modelo del BJT basado en una red de dos puertas, el cual es reemplazado en la con…guración ampli…cadora, para así determinar la ganancia, resistencia de entrada y salida del sistema. En este documento primero se de…nen los parámetros h, se muestra el modelo del BJT a pequeña señal para …nalmente plantear un ejemplo de análisis. 2 Parámetros h El modelo de parámetros h considera una red de dos puertas tomando como variables independientes la corriente de entrada y el voltaje de salida de acuerdo a las ecuaciones (1), las cuales representan la red de la Fig. 1. I I2 1 I1 + + I2 h 11 + + + V1 TRANS IS TOR _ V 2 V1 _ _ h 12V2 h21I1 1 h 22 V 2 _ (b) (a) Figure 1: (a) Red de dos puertas. (b) Parámetros h. Así se tiene el siguiente modelo 1 V1 I2 = h11 I1 + h21 V2 = h21 I1 + h22 V2 (1) Los parámetros se resumen en la Tabla 1. Table 1: Parámetros h. Parámetro h11 = hi = VI11 jV2 =0 h12 = hr = VV12 jI1 =0 h21 = hf = II21 jV2 =0 h22 = ho = VI22 jI1 =0 3 Descripción Resistencia de entrada Ganancia inversa de voltaje Ganancia directa de corriente Conductancia de salida Modelo del BJT basado en parámetros h Da acuerdo a lo planteado en el apartado anterior se considera el BJT en emisor común en la Fig. 2. iC + iB vC E + vBE _ _ Figure 2: Transistor en emisor común como red de dos puertas. El modelo usará la nomenclatura de la Tabla 1, agregando el sub-índice e, dada la con…guración en emisor común. De esta forma se tienen los siguientes parámetros hie = hre = hf e = hoe = VBE jV =0 IB CE VBE jI =0 VCE B IC jV =0 IB CE IC jI =0 VCE B Luego el modelo completo basado en parámetros h será una red de dos puertas como la indicada en la Fig. 3. 2 iB iC h ie + + + h re vC E v BE hfe iB 1 hoe v CE _ _ Figure 3: Modelo del BJT de parámetros h. hie es la resistencia en la juntura BE y corresponde al inverso de la pendiente de la curva de iB vBE del transistor, es un valor que depende del punto de operación, y por ende varía. hre , será la ganancia inversa de voltaje, por lo general su valor no es medible por lo que se considera cero hf e , será la ganancia directa de corriente para señal, es equivalente al parámetro de cc. hoe es la conductancia de salida del BJT y corresponde a la pendiente de la curva iC vCE . Por simplicidad en los análisis, se utilizará un modelo a pequeña señal con una resistencia de salida muy alta, es decir, h1oe ! 1; como se muestra en la Fig. 4. iB iC hie iB iC hie hfei B hfei B (a) (b) Figure 4: Modelo simpli…cado. (a) NPN. (b) PNP. El análisis a pequeña señal comprenderá el reemplazo del o los transistores en el circuito, transformando éste en una red lineal. De esta red es posible determinar la ganancia, la impedancia de entrada y salida del circuito. 4 Análisis 1 Sea el ampli…cador en emisor común de la Fig. 5. Se requiere determinar Av , Rin , Rout de la con…guración. 3 Vcc Rc C R1 vout C v in Q R 2 RL Rout RE C Rin Figure 5: Ampli…cador de emisor común. Se lleva el circuito a c.a. de acuerdo a la Fig. 6a, se reemplaza el modelo a pequeña señal del BJT se llega a la red equivalente de la Fig. 6b. RC R R1 R1 vout Q v in RL B v in R R 2 hie iB 2 (a) C C vout hfe i B RL E (b) Figure 6: (a) Circuito en CA. (b) Reemplazando el modelo de parámetros h. Reordenando el circuito de la Fig. 6b de acuerdo a la Fig 7, se plantean las ecuaciones de Kirccho¤ obteniéndose (29 y (3). vout vin = iB (1 + hf e ) (RL jjRC ) = iB hie (2) (3) De esta forma despejando la corriente iB de (3) se obtiene (5) vout = Av = vin (1 + hf e ) (RL jjRC ) hie vout (1 + hf e ) (RL jjRC ) = vin hie 4 (4) (5) hie v in vout R1 R iB hfe i B 2 RC RL Figure 7: Ampli…cador emisor comun a pequeña señal. R hie i C vout + v in R 1 R iB hfe i B 2 RL Figure 8: Cálculo de Rin . La resistencia de entrada dada por Rin = vin i , de acuerdo a la Fig. 8 se tiene vin + iB R1 jjR2 = iB hie i = vin Luego Rin = 1 1 R1 jjR2 + 1 hie = R1 jjR2 jjhie Para el cálculo de Rout , de acuerdo a la Fig. 9, se anula la fuente activa, se reemplaza la resistencia de carga RL por un generador de prueba. ip hie vin =0 R 1 R iB hfe i B 2 R + C Figure 9: Cálculo de R out . Planteando las ecuaciones 5 vp vp + hf e iB RC = iB hie ip = 0 Dado que iB = 0, …nalmente se tiene Rout = 5 vp = RC ip Analisis 2 Sea el ampli…cador de la Fig. 10a. Determinar la ganancia de voltaje y la resistencia de entrada. V cc R c R1 h ie Cc Ci vo Q v i R v R1 R 2 RL 2 vo i ib h fe i b RE RC RE (b) (a) Figure 10: (a) Variante emisor comun. (b) Red en ca a pequeña señal. De acuerdo a la red de la Fig. 10b. vo = Rc hf e ib (6) Pero ib = Despejando la corriente ib = vi RE (1 + hf e ) ib hie vi n o; R (1+hf e) hie 1+ E h (7) reemplazando en (6) se tiene ie Av = vo = vi R c hf e o n e) hie 1 + RE (1+hf hie (8) Si hf e >> 1, entonces la ganancia de tensión tiende Rc RE Av 6 (9) Dado que Rin = vi ii , luego de acuerdo a la Fig. 10b. ii = Entoces ib = vi o; n R (1+hf e) hie 1+ E h vi + ib R1 jjR2 (10) entonces ie ii = Finalmente Rin = 6 vi vi n o + R e) R1 jjR2 hie 1 + E (1+hf hie 1 1 R1 jjR2 + 1 hie +RE (1+hf e) (11) = R1 jjR2 jj fhie + RE (1 + hf e)g (12) Ampli…cador en Base Común El circuito de la Fig. 11a esta conectado en base común, luego se tienen nuevos parámetros de esta nueva interconexión, los cuales se muestran la Fig. 11b. ie ie ic + h ib + vEB v EB vCB _ + h fb i e hrb v CB _ (a) 1 v h ob CB (b) Figure 11: (a) Con…guración base común. (b) Modelo de base común con parámetros h. Esto puede resultar confuso debido a la gran cantidad de con…guraciones posibles. Para evitar esto se utilizará como denominador común en los BJT, la con…guración EC, y en los FET, será la con…guración fuente común. La aplicación de esto es posible, pues, existe una equivalencia entre las con…guraciones de emisor común y base común, las cuales se indican en la Tabla 2. Table 2: Parámetros base y emisor común . Base Común hib hf b hob 7 Emisor Común hie hf e +1 hf e hf e +1 hoe hf e +1 6.1 Aplicación Ampli…cador en base común El circuito de la Fig. 12a, está en base común, luego a pequeña señal en ca como se muestra en la Fig. 12b, se reemplaza el modelo de EC. Determinar la ganancia de voltaje y la resistencia de entrada. Vcc R1 C RC C v i vo C v R 2 i vo C C RL RL RC RE h fe i b vo v i RE h ie ib RE (c) (b) (a) Figure 12: (a) Con…guración en base común. (b) En ca. (c) A pequeña señal. Planteando la LVK en el circuito de la Fig. 12b. vo = Pero como ib = vi hie ; hf e ib (RL jjRC ) (13) entonces Av = hf e (RL jjRC ) hie (14) Para el cálculo de Rin se tiene que ii = Como ib = vi hie ; vi RE ib hf e (15) …nalmente Rin = 7 ib 1 1 RE + (1+hf e ) hie (16) El ampli…cador en colector común La con…guración de la Fig. 13a llamada colector común, implica que para pequeña señal en ca, las mediciones de señal serán referidas respecto del colector. Habitualmente, una de las más usadas es la que se muestra en la Fig. 13b, llamada seguidor de emisor. Note que para ca, el colector del BJT estará conectado a tierra. Se puede usar el modelo del BJT en colector común, sin embargo por simplicidad, se ocupará al igual que para base común el modelo de emisor común. 8 Rc RL Vcc Rc R1 v i Vcc Ci R1 Q R2 Co v i vo Q R2 RL RE Ci Co vo RE (a) RL (b) Figure 13: (a) Colector común. (b) Seguidor de emisor. 7.1 Aplicación Seguidor de Emisor En ca, reemplazando el modelo de parámetros h, se tiene el circuito de la Fig. 14b. Para la con…guración se determinará Av , Ai , Rin y Rout . ib v i R 1 R2 v o R E v i RL h fe i b + h ie R R1 R2 E RL vo _ (a) (b) Figure 14: (a) Seguidor de emisor en ca. (b) Equivalente a pequeña señal. Determinación de la ganancia de voltaje Av Para la salida se tiene que vo = ib (1 + hf e ) (RE jjRL ) (17) vi = ib hie + vo (18) Planteando la LVK en la entrada Así reemplazando (18) en (17), se tiene vo = vi vo hie (1 + hf e ) (RE jjRL ) Finalmente, despejando la relación (19) vo vi (1+hf e )(RE jjRL ) hie o (1+hf e )(RE jjRL ) hie vo Av = =n vi 1+ 9 =n 1 hie (1+hf e )(RE jjRL ) o +1 (20) Para (20) considerando hf e >> 1; se tiene que Av 1 (21) Cáculo de la ganancia de corriente Ai La corriente en la entrada y en la salida estan dada por (22) y (23) respectivamente vi + ib R1 jjR2 ii = io = ib (1 + hf e ) (22) RE RE + RL (23) Pero de acuerdo a (17) y (18) se tiene que vi = ib hie + ib (1 + hf e ) (RE jjRL ) (24) Así, reemplazando ib en (22) ii = ib f1 + hie + (1 + hf e ) (RE jjRL )g (25) Despejando ib para reemplazarlo (23) io = RE RE + R L Se obtiene Ai = ii (1 + hf e ) 1 + hie + (1 + hf e ) (RE jjRL ) (1 + hf e ) io = ii 1 + hie + (1 + hf e ) (RE jjRL ) Calculando la Rin = ii = vi ii : RE R E + RL (26) (27) Reemplazando ib de (24) en (22) vi vi + R1 jjR2 hie + (1 + hf e ) (RE jjRL ) (28) Entonces Rin = 1 1 R1 jjR2 + 1 hie +(1+hf e )(RE jjRL ) (29) Cálculo de Rout Par LCK se tiene ip = Pero ib = vp hie ; ib hf e ib + de esta forma 10 vp RE (30) h fe i b ib hie R1 R2 ip R E + vp Figure 15: Circuito para cálculo de Rout . ip = vp vp (1 + hf e ) + hie RE (31) Despejando Rout = 8 vp = ip 1 (1+hf e ) hie + 1 RE (32) Conclusiones El análisis a pequeña señal permite determinar la ganancia, resistencia de entrada y salida de un ampli…cador con transistores BJT. Al reemplazar el modelo del dispositivo, el circuito electrónico se transforma en una red lineal, pudiendo utilizar todas la herramientas en análisis disponibles para tal efecto. 11