UNDERSTANDING THE LIMITS OF SEMICONDUCTOR

Anuncio
Entendiendo los limites de la tecnología de semiconductores
UNDERSTANDING THE LIM ITS OF
SEM ICONDUCTOR TECHNOLOGY
Department of Electronic Engineering
UPC, Barcelona, Spain
Curs de doctorat DEE-UPC
2003/2004
Entendiendo los limites de la tecnología de semiconductores
OUTLINE OF THE COURSE
• Introduction and motivation
• Limits of the technology at fundamental, material and
component level
• Limits of the technology due to the manufacturing process
• Limits of the interconnections and analogue roadmap
• Semiconductor technology alternatives
Curs de doctorat DEE-UPC
2003/2004
1
Entendiendo los limites de la tecnología de semiconductores
Causes of limitation in semiconductor technology
Fundamental
laws
Circuit level
limitations
Materials
limitations
Manufacturing
limitations
MOS device
limitations
Economical
limitations
Noise and
interconnections
Manufacturing
defects
Process
fluctuations
Curs de doctorat DEE-UPC
2003/2004
Entendiendo los limites de la tecnología de semiconductores
Causes of limitation in semiconductor technology
Fundamental
laws
Circuit level
limitations
Materials
limitations
Manufacturing
limitations
MOS device
limitations
Economical
limitations
Noise and
interconnections
Manufacturing
defects
Analog and
RF circuits
Test
Technology
Process
fluctuations
Curs de doctorat DEE-UPC
2003/2004
2
Entendiendo los limites de la tecnología de semiconductores
Moore’s law : the number of integrable devices in a single
Semiconductor crystal duplicates each 18 months
Evolucion
Evolucion
of thememorias
capacity ofDRAM
DRAMs
EvolutionEvolución
of the complexity
of CIsde(Moore’s
de la complejidad
los CI's Law)
1000
10000
100
(Mbits)
100000
1000
100
10
1
0,1
10
1
1970
1975
1980
1985
1990
1995
2000
0,01
1977 1980 1983 1986 1989 1992 1995 1998 2001
2005
Año
Dimension
critica
(λ )
Photolithography
critical
dimension
(λ)
(micras)
2
1,5
1
0,5
0
1985
0.13
1990
1995
2000
0.07
2005
Intel 486
2010
Curs de doctorat DEE-UPC
2003/2004
Entendiendo los limites de la tecnología de semiconductores
Semiconductors materials
(1) Unitary
(2) Compound
Si, Ge
II
III
IV
V
VI
Be
5
6
7
8
4
(a) IV-IV
(b) III-V
(c) II-VI
d) IV-VI
(3) Alloys
(a) Ternary
(b) Quaternary
Si-Ge
Al-P, Al-As, Al-Sb
Ga-P, In-P, In-As
Zn-O, Zn-S, Zn-Se
Zn-Te, Cd-S, Cd-Se
Pb-S, Pb-Se, Pb-Te
Al xGa 1-x As
Cd 1-x Mn x Te
Ga As 1-x P x
Al x Ga 1-x As y Sb 1-y
Ga x In 1-x As 1-y P y
12
B
C
13
Al
14
30
Zn
31
Ga
32
48
Cd
49
80
Hg
81
Mg
Si
Ge
N
15
P
33
As
In
50
51
Tl
82
83
Sn
Pb
Sb
Bi
O
16
S
3·4
Se
52
Te
84
Po
Brief periodic table
Curs de doctorat DEE-UPC
2003/2004
3
Entendiendo los limites de la tecnología de semiconductores
Crystalline structure
Estructure
Reticular
constant (Å)
(a)
diamant
5,43095
diamant
5,64613
Ga-As
zinc-blend
5,65330
Pb-S
rock-salt
5,93620
Semiconductor
Si
Ge
(300 K)
1 Å = 10-8 cm
Curs de doctorat DEE-UPC
2003/2004
Entendiendo los limites de la tecnología de semiconductores
Bloch theorem
If U(x) is periodic: U(x+a) = U (x)
Ψ (x+a) = e ika Ψ (x)
Idealization of Kronig-Penney
R. F. Pierret and G. W. Neudeck, Modular Series on Solid State Device, vol. VI, Advanced Semiconductor Fundamentals,
Addison-Wesley, 1989
Curs de doctorat DEE-UPC
2003/2004
4
Entendiendo los limites de la tecnología de semiconductores
Energy bands in a crystal
Ec
Eg
Ev
Forbidden band
material
Eg (eV)
Ge
0.66
Si
1.12
Ga-As
1.42
C
5.4
Curs de doctorat DEE-UPC
2003/2004
Entendiendo los limites de la tecnología de semiconductores
N and P type crystals (extrinsec semiconductors)
N type
P type
N type
P type
Curs de doctorat DEE-UPC
2003/2004
5
Entendiendo los limites de la tecnología de semiconductores
Distribution of electron energies and carriers concentrations in Si
• Fermi-Dirac energy distribution function
fn =
1
1 + exp[(E − E F ) / kT ]
• Mass-action law
np = n2i
• Concentration of majority carriers (room temperature)
N-type: ND
P-type: NA
• Intrinsic carrier concentration:
ni = A ⋅ exp(−
Eg
)
2kT
Intrinsic temperature: about 200ºC
Curs de doctorat DEE-UPC
2003/2004
Entendiendo los limites de la tecnología de semiconductores
P-N junction device (diode)
Curs de doctorat DEE-UPC
2003/2004
6
Entendiendo los limites de la tecnología de semiconductores
MOS device ( metal-oxide-semiconductor)
• Controllable resitance
• Fast switch
•Signal amplifier
J. P. Uyemura, Fundamentals of MOS Digital Integrated Circuits, Addison, 1989.
Curs de doctorat DEE-UPC
2003/2004
Entendiendo los limites de la tecnología de semiconductores
The integrated circuit concept: planar technology
Patent de Jack Kilby, Nobel 2000
Intel Pentium II
J. P. Uyemura, Fundamentals of MOS Digital Integrated Circuits, Addison, 1989.
Curs de doctorat DEE-UPC
2003/2004
7
Entendiendo los limites de la tecnología de semiconductores
Moore’s law : the number of integrable devices in a single
Semiconductor crystal duplicates each 18 months
Evolucion
Evolucion
of thememorias
capacity ofDRAM
DRAMs
EvolutionEvolución
of the complexity
of CIsde(Moore’s
de la complejidad
los CI's Law)
1000
10000
100
(Mbits)
100000
1000
100
10
1
0,1
10
1
1970
1975
1980
1985
1990
1995
2000
2005
0,01
1977 1980 1983 1986 1989 1992 1995 1998 2001
Año
Dimension
critica
(λ )
Photolithography
critical
dimension
(λ)
(micras)
2
1,5
1
0,5
0
1985
0.13
1990
1995
2000
0.07
2005
Intel 486
2010
Curs de doctorat DEE-UPC
2003/2004
Entendiendo los limites de la tecnología de semiconductores
Curs de doctorat DEE-UPC
2003/2004
8
Entendiendo los limites de la tecnología de semiconductores
Evolution of the integrated circuits
1958 Kilby’s integrated circuit
Pentium 4, 0.18 microns
42 million transistors
1961 First planar
process IC
• IC area increasing factor, D2, 200
• Critical dimension reduction factor, λ, 1/100
• Packaging efficiency, PE, 50
• Increasing of reliability
• Reduction of cost per device
• Improvement of relation consumption/delay
IBM 70nm transistor
1.2 volts, 27 ps
2
2
8
N = λ− ⋅ D ⋅ PE = 10
Curs de doctorat DEE-UPC
2003/2004
Entendiendo los limites de la tecnología de semiconductores
Effects of the miniaturization
ELECTROSTATICS
area ∝ L2
volume ∝ L3
MECHANICS
force ∝ area ∝ L2
deformation ∝ L
mass ∝ volume ∝ L3
acceleration ∝ force / mass ∝ L-1
frequency ∝ acoustic speed / length ∝ L-1
time ∝ frequency-1 ∝ L
speed ∝ acceleration.time ∝ Constant
power ∝ force· speed ∝ L2
frictional force ∝ L2
THERMODYNAMICS
heat capacity ∝ volume ∝ L3
thermal conductance ∝ L
thermal constant time ∝ L2
voltage ∝ electrostatic length· length ∝ L
electrostatic force ∝ area·(E)2 ∝ L2
resistance ∝ length / area ∝ L-1
ohmic current ∝ voltage / current ∝ L2
electrostatic energy ∝ L3
capacitance ∝ energy / (voltage)2 ∝ L
magnetic energy ∝ Volume· (B)2 ∝ L5
inductance ∝ energy / (current)2 ∝ L
ELECTRODYNAMICS
inductive time constant ∝ Ind / R ∝ L2
capacitive time constant ∝ R·C ∝ Constant
ELECTRONIC CIRCUIT
• Feynman R.P. “There’s plenty of Room at the Bottom”
Eng. And Sci., 23:22-36, 1960
• Drexler, K., “Nanosystems”, John Wiley and Sons, 1992
MOS current ∝ L
MOS resistance ∝ Constant
MOS capacitance ∝ L
MOS time constant∝ L
power consumption ∝ L2
Curs de doctorat DEE-UPC
2003/2004
9
Entendiendo los limites de la tecnología de semiconductores
Evolution of the single bit transition energy
9
10
Landauer88
JSSC
Adiabatic
7
10
Moore’s Law limit?
Switching energy per gate
(pJ)
5
10
3
10
Landauer’s
prediction
1
10
-1
10
Adiabatic trend
-3
10
-5
10
-7
1 eV
10
-9
10
1940
1960
1980
2000
2020
2040
kTln2
Year
R. Landauer, “Irreversibility and heat generation in the computing process”, IBM, J. Res. And Dev., vol. 5, no. 3, pp. 183-191, July 1961.
Curs de doctorat DEE-UPC
2003/2004
Entendiendo los limites de la tecnología de semiconductores
Atoms per bit of memory
V.V. Zhirnov and D. J. Herr, “New Frontiers: Self-Assembly and Nanoelectronics”, Computer, January 2001, pp. 34-43.
Curs de doctorat DEE-UPC
2003/2004
10
Entendiendo los limites de la tecnología de semiconductores
Curs de doctorat DEE-UPC
2003/2004
“International Technology Roadmap for
Semiconductors”, 2001
Entendiendo los limites de la tecnología de semiconductores
“International Technology Roadmap for
Semiconductors”, 2001
Curs de doctorat DEE-UPC
2003/2004
11
(pJ)
Switching energy per gate
Entendiendo los limites de la tecnología de semiconductores
10
9
10
7
10
5
10
3
10
1
10
-1
10
-3
10
-5
10
-7
10
-9
1940
Landauer88
JSSC
Adiabatic
Moore’s Law limit?
Landauer’s
prediction
Adiabatic trend
1 eV
kTln2
1960
1980
2000
2020
2040
Year
0.002 fJ
Curs de doctorat DEE-UPC
2003/2004
Entendiendo los limites de la tecnología de semiconductores
Future evolution
• Bohr radius
50 pm
• ion Cu2+ radius
73 pm
• H2 bond length
74 pm
• C C bond length
120 pm
• C C bond length
135 pm
• C C bond length
150 pm
• ion S2- radius
185 pm
• Cl2 bond length
198 pm
• Si crystal lattice constant
540 pm
• gate exide thinness SiO2, conventional technology, foresee year 2010 1nm = 1000 pm
• layout resolution of an actual IC, 2001, 120.000 pm (0.12 micres)
• typical laateral length of an IC: 15 mm
• wavelength of a signal of 10 GHz: 30 cm
International Technology Roadmap for Semiconductors, www.sematech.org
Curs de doctorat DEE-UPC
2003/2004
12
Entendiendo los limites de la tecnología de semiconductores
Physical effects of the feature size reduction
• the feature size is reaching the mean free path of carriers
“the inelastic mean free path for silicon at room temperature is 100nm”
• the feature size is getting close to the wavelength of electrons
“the wavelength of electrons carriers flowing parallel to surface is 8-10nm”
• the feature size is close to the corresponding to the unitary doping volume
“bulk concept is given room to discrete system”
• the feature size of the gate oxide (tox) is near of few molecule diameters
“the minimum tox deviation causes important effects
• the tunnel effects of narrow barriers are becoming significant
“for 0.5 volts and a SiO2 barrier of 3 nm the current density is 10-6 A/cm2, while
For 1.5 nm is 1 A/cm2”
-----> Implications
Curs de doctorat DEE-UPC
2003/2004
13
Documentos relacionados
Descargar