FUNCIONES CUADRÁTICAS 1 INFLUENCIA DE LOS PARÁMETROS EN LA GRÁFICA DE LAS FUNCIONES CUADRÁTICAS Parábolas del tipo y = ax2 Actividad 1 Representa las siguientes funciones (para ello mueve el deslizador): a) y = 2x 2 b) y = 3x 2 c) y = 4x 2 d) y = 5x 2 Para cada una de estas funciones construye una tabla de valores: x -3 y=x -2 -1 0 1 2 3 2 y = 2x 2 y = 3x 2 y = 4x 2 y = 5x 2 Contesta a las siguientes preguntas: 2 a) ¿Cómo va variando la gráfica y = x a medida que vamos aumentando el valor de a, a > 1? 2 2 b) La función y = x tiene como vértice el punto (0,0), ¿varía el vértice en las funciones tipo y = ax ? Razona tu respuesta. 2 2 c) La función y = x tiene como eje la recta de ecuación x = 0, ¿y las funciones y = ax ? d) Estudia el crecimiento de este tipo de funciones. Actividad 2 Representa las siguientes funciones (para ello mueve el deslizador): a) y = 1 2 x 2 1 b) y = x 2 3 c) y = 1 2 x 4 d) y = 1 2 x 5 Para cada una de estas funciones construye una tabla de valores: x y=x -3 -2 -1 0 1 2 3 2 1 2 x 2 1 y = x2 3 1 y = x2 4 1 2 y= x 5 y= Contesta a las siguientes preguntas: 2 a) ¿Cómo va variando la gráfica y = x a medida que vamos variando el valor de a, 0 < a < 1? 2 2 b) La función y = x tiene como vértice el punto (0,0), ¿varía el vértice en las funciones tipo y = ax ? Razona tu respuesta. 2 2 c) La función y = x tiene como eje la recta de ecuación x = 0, ¿y las funciones y = ax ? Luisa Muñoz FUNCIONES CUADRÁTICAS 2 Actividad 3 Representa las siguientes funciones (para ello mueve el deslizador): a) y = – 2x 2 b) y = – 3x 2 c) y = – 4x 2 d) y = – 5x 2 Para cada una de estas funciones construye una tabla de valores: x y=x -3 -2 -1 0 1 2 3 2 y =– 2x 2 y = –3x 2 y = –4x 2 y = –5x 2 Contesta a las siguientes preguntas: 2 a) ¿Cómo va variando la gráfica y = x a medida que vamos variando el valor de a, a < -1? 2 2 b) La función y = x tiene como vértice el punto (0,0), ¿varía el vértice en las funciones tipo y = ax ? Razona tu respuesta. 2 2 c) La función y = x tiene como eje la recta de ecuación x = 0, ¿y las funciones y = ax ? d) Estudia el crecimiento de este tipo de funciones. Actividad 4 Representa las siguientes funciones (para ello mueve el deslizador): 1 a) y = − x 2 2 1 b) y = − x 2 3 c) y = − 1 2 x 4 d) y = − 1 2 x 5 Para cada una de estas funciones construye una tabla de valores: x y=x -3 -2 -1 0 1 2 3 2 1 y = − x2 2 1 2 y=− x 3 1 y = − x2 4 1 2 y=− x 5 Contesta a las siguientes preguntas: 2 a) ¿Cómo va variando la gráfica y = x a medida que vamos variando el valor de a, -1 < a < 0? 2 2 b) La función y = x tiene como vértice el punto (0,0), ¿varía el vértice en las funciones tipo y = ax ? Razona tu respuesta. 2 2 c) La función y = x tiene como eje la recta de ecuación x = 0, ¿y las funciones y = ax ? Luisa Muñoz FUNCIONES CUADRÁTICAS 3 Actividad 5 Indica cuál es la gráfica de cada una de las siguientes funciones: 20 a) y = 2,5x c) y = -1,5x d) y = 0,7x 2 10 2 5 2 e) y = - 0,4x f) y = 1,3x 15 2 b) y = -3,2x Y X 2 2 0 -5 -4 -3 -2 -1 0 1 2 3 4 5 -5 -10 -15 -20 Estudiado los cuatros casos, vamos a generalizar, para ello, completa las siguientes frases referentes a las 2 funciones y = ax , siendo a cualquier nº real: a) Vértice: _______________ b) Eje de simetría: ________________ c) Cuanto mayor es el parámetro a (en valor absoluto), ¿cómo es la parábola? ____________________ d) Las ramas de las parábolas: o Miran hacia arriba si a es__________________ o Miran hacia abajo si a es _______________________ Luisa Muñoz