3. Interacción nuclear 3.1. La composición del núcleo: interacción fuerte. Energía de enlace. Equivalencia entre la masa y la energía. 3.1.1. Breve referencia al modelo atómico: núcleo y electrones. 3.1.2. Partículas nucleares: protón y neutrón. 3.1.3. Nucleidos; número másico. Isótopos. 3.1.4. Interacciones dominantes en el ámbito atómico-molecular y nuclear y órdenes de magnitud de las energías características en los fenómenos atómicos y nucleares. 3.1.5. Interacción fuerte. 3.1.6. Energía de enlace y defecto de masa. 3.1.7. Principio de equivalencia masa-energía. 3.1.8. Estabilidad nuclear. 3.2. Radiactividad: interacción débil. Magnitudes y leyes fundamentales de la desintegración radiactiva. 3.2.1. Breve reseña histórica. 3.2.2. Descripción de los procesos alfa, beta y gamma y justificación de las leyes de desplazamiento. 3.2.3. Ley de desintegración radiactiva; magnitudes. 3.3. Fusión y fisión nucleares: sus aplicaciones y riesgos. Aplicaciones tecnológicas y repercusiones sociales. 3.3.1. Balance energético (masa - energía) en las reacciones nucleares. 3.3.2. Descripción de las reacciones de fusión y fisión nuclear; justificación cualitativa a partir de la curva de estabilidad nuclear. 3.3.3. Efectos biológicos de las radiaciones. 3.3.4. Utilización de los radioisótopos y reactores nucleares. 3.4. Comparación de las características de las interacciones fundamentales: fuerte, electromagnética, débil y gravitatoria. La búsqueda de la unificación de una teoría unificada para ellas. 3.4.1 Interacciones fundamentales en la naturaleza; estudio comparativo de sus características y dominios de influencia. 3.1.1. Breve referencia al modelo atómico: núcleo y electrones. En 1897, el Inglés J. J. Thomson descubre el electrón utilizando un tubo de rayos catódicos como el de la figura, para ello establece una diferencia de potencial entre el cátodo y el ánodo del tubo y coloca un campo eléctrico vertical que desvía el impacto en la pantalla de modo que se puede determinar la carga de las partículas que impactan como negativa. Este método le permitió calcular la carga específica del electrón: Q esp e −1,602176487 × 10−19 C C = = = −1,7588 · 1011 m kg 9,10938215 × 10−31 kg Al conocer Thomson que la materia era neutra, el descubrimiento del electrón le permitió establecer un modelo del átomo que lleva su nombre. Ernest Rutherford, discípulo de Thomson, realizó un experimento que consistió en bombardear con radiación α una lámina muy fina de oro. Los resultados de este conocido experimento le permitieron deducir la existencia de un núcleo atómico de dimensiones 10-5 veces más pequeño que el átomo. Estableció un nuevo modelo atómico que lleva su nombre. Más tarde se halló la relación entre el tamaño del núcleo y el número de partículas que lo componen: 1⁄ 3 R ≅ 1′ 2 A fm (1 femtómetro ó fermi = 10-15 m) siendo A el número másico. La relación anterior permite hallar la densidad de los núcleos atómicos: 𝑚 𝐴𝑢 𝐴 1,66 · 10−27 𝑘𝑔 𝑘𝑔 17 𝑑= = = ≅ 2,4 · 10 3 1 𝑉 4⁄ 𝜋𝑅3 4 𝑚3 ⁄3 𝜋 (1′ 2 A ⁄3 10−15 ) 3 Lo que demuestra que el átomo está fundamentalmente vacío y que la masa está enormemente concentrada. 3.1.2. Partículas nucleares: protón y neutrón. Rutherford bombardeó nitrógeno 14 con partículas α y observo la aparición de protones: 14 7N + 42He → 17 8O + 11H el protón sólo podía proceder del núcleo del nitrógeno o del helio, luego es una partícula constituyente del núcleo. Rutherford, observó que los núcleos eran más pesados de lo que deberían si sólo estuvieran formados por protones, por lo que postuló la existencia de partículas nucleares sin carga a las que llamó par protón-electrón. En los años 30, del siglo XX, J. Chadwick descubrió el neutrón al bombardear con particular α núcleos ligeros: 9 4Be + 42He → 13 6C + 10n Como se puede ver la masa del neutrón es ligeramente superior a la del protón, un 0,2%. Masa (u) Carga (C) Protón 1,007276 1,6 · 10-19 Neutrón 1,008665 No tiene 3.1.3. Nucleidos; número másico. Isótopos. Una vez conocida la composición del núcleo se simboliza, como hemos visto, con la expresión: A ZX donde A (número másico) es el número de protones y neutrones que tiene el núcleo y Z (número atómico) es el número de protones del núcleo ó la carga eléctrica de la partícula. Se llama núclido o nucleído. Cuando dos núcleos (o átomos) tienen la misma Z pero distinta A, se denominan isótopos. Sólo se diferencian en el número de neutrones pero pertenecen al mismo elemento químico. Al conjunto de isótopos de un mismo elemento se le llama “pléyade”. Por ejemplo, la pléyade del hidrógeno esta constituida por el protio, el deuterio y el tritio. En la figura siguiente (pulsar sobre ella) se representan los nucleídos en función de Z y N (número de neutrones): También se puede ver esta otra tabla de nucleídos (o esta otra). Todos los nucleídos que están en la misma horizontal son isótopos. Los que están en la misma vertical se llaman isótonos. 3.1.4. Interacciones dominantes en el ámbito atómico-molecular y nuclear y órdenes de magnitud de las energías características en los fenómenos atómicos y nucleares. En el ámbito atómico-molecular, ámbito de la química inorgánica y de los seres vivos, la interacción predominante es la electromagnética. Frente a esta la interacción gravitatoria es despreciable. Con respecto al mundo nuclear hay diferencias notables: a) La escala es del orden de entre 104 y 105 veces mayor el mundo atómicomolecular que el mundo nuclear. b) El orden de magnitud de la energía que interviene en procesos nucleares es de MeV como veremos más adelante, mientras que en el mundo atómico-molecular es de eV cómo ocurre con el potencial de ionización de los átomos. 3.1.5. Interacción fuerte. Características. Interacción nuclear fuerte residual o Características La interacción nuclear fuerte es una de las cuatro fuerzas fundamentales que existen en la naturaleza según el modelo estándar que veremos más adelante. Esta fuerza es la responsable de mantener unidos a los nucleones (protón y neutrón) existentes en el núcleo atómico, venciendo a la repulsión electromagnética entre los protones que poseen carga eléctrica del mismo signo (positiva) y haciendo que los neutrones, que no tienen carga eléctrica, permanezcan unidos entre sí y también a los protones. Los efectos de esta fuerza sólo se aprecian a distancias muy pequeñas (menores a 1 fm), del tamaño de los núcleos atómicos y no se perciben a distancias mayores a 1 fm. A esta característica se le conoce como ser de corto alcance, en contraposición con la fuerza gravitatoria o la fuerza electromagnética que son de largo alcance (realmente el alcance de estas dos es infinito). La teoría de la cromodinámica cuántica propuesta a principios de los 70 del siglo pasado propone que los protones y neutrones no son partículas elementales, si no que están compuesta por 3 partículas llamadas quarks (descubierta en 1964). 1 fm (femtómetro o fermi) = 10-15 m Femto es el prefijo para el submúltiplo 10-15 y fermi en honor al científico italiano Enrico Fermi. Un protón o un neutrón tienen un diámetro medio aproximado de 1 fm, mientras que un electrón tiene un diámetro medio de aproximadamente 10-3 fm, es decir, 1 am (1 attómetro). Atto es el prefijo asignado al submúltiplo 10-18. La fuerza con que están unidos los tres quarks para formar el protón o el neutrón se denomina interacción nuclear fuerte y es la más intensa que se conoce en la naturaleza, capaz de vencer la repulsión electrostática entre protones del núcleo con mucho. Según la teoría de campos la forma en que se produce una interacción entre dos partículas es mediante el intercambio de otras partículas portadoras de la interacción. Por ejemplo, en la interacción electromagnética las partículas portadoras de la interacción entre dos cargas es el fotón, en la interacción nuclear fuerte es el gluón (del inglés glue = pegamento). Así que según la teoría de la cromodinámica cuántica los 3 quarks que forman el protón o el neutrón se intercambian gluones (hay 8 tipos de gluones). Según el modelo estándar en el Universo existen 6 tipos de quarks como se ve en la figura, aunque la materia que conocemos está formada por los quarks: u (de up = arriba), d (de down = abajo), el electrón y el e (neutrino del electrón). Es decir, la materia de primera generación. Las otras dos generaciones de partículas (columnas 2 y 3 de la figura) existieron en su momento en el Universo, aunque se pueden obtener en los aceleradores de partículas, pero se desintegran rápidamente dando lugar a partículas de la primera generación que, como se ha dicho, componen la materia conocida. Leptón (partícula de lepto =masa ligera) esto sólo es cierto para el electrón y su compañero el neutrino e y sus respectivas antipartículas, véase la tabla siguiente: Los quarks tienen las siguientes características: entre todas estas características es de resaltar la carga que es fraccionaria, luego la carga del electrón no sería la carga mínima que formaba el cuanto de carga. Si un protón está formado por 3 quarks u y d, su composición será: uud, así la carga daría +1. Si un neutrón está formado por 3 quarks u y d, su composición será: udd, así la carga daría 0. Todas las partículas del modelo estándar tienen su antipartícula. Por ejemplo, la del e- es el e+ (positrón), la del e es el ̅̅̅e (antineutrino del electrón). ̅𝐮 ̅ 𝐝,̅ carga -1. Y el antineutrón: 𝐮 ̅ 𝐝̅𝐝,̅ Así, el antiprotón p̅ estaría formado por: 𝐮 de carga 0. Características de la interacción nuclear fuerte (también llamada fuerza de color). a) Es la interacción más intensa que existe en la naturaleza, la fuerza que une dos quarks es tan intensa que no ha sido posible separarlos hasta ahora. No se ha podido conseguir un quark ni un gluón aislados. Esto se llama confinamiento. b) Cuando los quarks están muy próximos se anula la interacción entre ellos, es como si estuvieran libres, pero si se intenta separarlos no se puede, esto comportamiento se denomina libertad asintótica. Interacción nuclear fuerte residual (fuerza fuerte o fuerza de Yukawa) En los años 30 del siglo pasado, por lo tanto anterior a la teoría cromodinámica cuántica, el japonés Hideki Yukawa propuso la existencia de unas partículas llamadas mesones o piones (mesón = medio), la masa de un mesón es unas 200 veces la masa del electrón. Estas partículas son portadoras de la fuerza que mantiene fuertemente unidos a los nucleones. Yukawa supuso, siguiendo la teoría de campos, que la masa de las partículas portadoras de la interacción es inversa al alcance de la interacción. Así si la interacción electromagnética es de alcance infinito la partícula portadora (fotón) habría de tener masa nula y así es. Si la interacción de Yukawa es de corto alcance la partícula portadora (mesón ) tendría que tener una masa, que según sus cálculos, sería una 200 veces la masa del electrón. Esta partícula fue descubierta en los rayos cósmicos en 1937, dos años después de proponerla teóricamente Yukawa. Existen 3 tipos de mesones según la carga: + ,- y 0. La interacción se explicaría así: un protón se desintegra en dos partículas, una un mesón + y la otra un neutrón. Ese mesón + es capturado por un neutrón que se convierte en un protón. Este proceso se explica utilizando los diagramas de Feymman. n p p + n p p 0 p p p - n n n p n 0 n n Los mesones también son hadrones y están formados por un quark y un antiquark. Por ejemplo el pión + está formado por 𝐮𝐝.̅ Características de la interacción nuclear fuerte residual a) Es de muy corto alcance, es decir, cada nucleón interacciona con los nucleones más próximos, si bien a distancias muy cortas, menores de 9,6 fm, las fuerzas nucleares se hacen repulsivas lo que explica que los nucleones permanezcan a distancias medias constantes y que el volumen por nucleón sea constante. Se dice que es una interacción saturada porque sólo actúa sobre los nucleones que están próximos a otro. b) Es independiente de la carga, por lo que la fuerza entre dos nucleones, bien sean protón-protón, neutrón-neutrón o protón-neutrón, es aproximadamente la misma. De ahí viene el nombre de nucleón, pues tanto el protón como el neutrón se comportan igual con respecto a esta interacción. c) Como la anterior, es la interacción más intensa que existe en la naturaleza, no sólo contrarresta la intensísima repulsión culombiana existente entre los protones, sino que además se requiere mucha energía para romper un núcleo o arrancarle un nucleón. d) Las partículas resultantes de la interacción nuclear fuerte (combinación de quarks mediante el intercambio de gluones) se denominan hadrones. El protón y el neutrón son un tipo de hadrones llamados bariones (que quiere decir que tienen masa alta). Veremos después otro tipo de hadrones. Actualmente, la fuerza de Yukawa se denomina como interacción nuclear fuerte residual ya que se explica como la interacción nuclear fuerte entre quarks de nucleones próximos. Se hace un paralelismo con la interacción electromagnética que existe en una molécula (fuerzas culombianas entre protones y electrones), si esta molécula se polariza puede atraer con la misma fuerza electromagnética a otras moléculas (fuerza intermolecular como la de Van der Waals). La interacción nuclear fuerte residual sería en el mundo nuclear la análoga a la fuerza electromagnética residual de Van der Waals en el mundo atómicomolecular. Para ayudar a la comprensión de estos conceptos visitar la página La Aventura de los quarks. Vídeo sobre el Modelo Estándar. La confirmación experimental de la existencia de los quarks se realizó mediante los aceleradores de partículas. Que también sirven, entre otras aplicaciones, para estudiar fósiles. El LHC (Large Hadrons Collider) sigue investigando la estructura de la materia, en concreto, intenta demostrar la existencia del bosón de Higgs. Véanse los siguientes sobre el LHC: Energía de los experimentos realizados. Extrema sensibilidad de las instalaciones. Los aceleradores mueren. 3.1.6. Energía de enlace y defecto de masa. La estabilidad de los núcleos no se puede explicar considerando la existencia de fuerzas gravitatorias o fuerzas electrostáticas, teniendo en cuenta que las primeras son despreciables frente a las segundas y que éstas y a las distancias a las que se encuentran los protones (cargas del mismo signo) resultan fuertemente repulsivas. Por lo tanto, debe existir otro tipo de fuerza que explique la estabilidad de los núcleos (la existencia de cargas eléctricas del mismo signo muy próximas). Hemos visto que esta fuerza se conoce con el nombre de interacción nuclear fuerte, tiene un corto alcance (a distancias del tamaño de los núcleos) y una gran intensidad. Se ha comprobado mediante técnicas espectroscópicas la masa de los núcleos y se ha comparado con la masa de las partículas que lo forman. El resultado ha permitido comprobar que existe una diferencia entre la masa de los nucleones (protones y neutrones) y la masa del núcleo. Esta diferencia se conoce como defecto m) 𝜟𝒎 = 𝒎𝒏𝒖𝒄𝒍𝒆𝒐𝒏𝒆𝒔 − 𝒎𝒏ú𝒄𝒍𝒆𝒐 = [𝒁 · 𝒎𝒑 + (𝑨 − 𝒁) · 𝒎𝒏 ] − 𝒎𝒏ú𝒄𝒍𝒆𝒐 Siendo A el número másico y Z el número atómico. Este defecto de masa explica la estabilidad de un núcleo. El equivalente entre masa y energía se obtiene a partir de la ecuación de Einstein: ΔE = Δm · c2 En la que c representa la velocidad de la luz en el vacío. Cuando se forma un núcleo a partir de sus nucleones se produce una liberación de energía que corresponde a ese defecto de masa. Se llama energía de enlace a la energía liberada en la formación de un núcleo, esta energía representa la que deberíamos comunicar a un núcleo para separar sus componentes. ΔEenlace = Δm · c2 Cuanto más grande sea ese valor, mayor energía será necesaria para "romper" ese núcleo y, por lo tanto, mayor cantidad de energía se liberará cuando se forme a partir de sus partículas componentes. Si Δm<0 entonces ΔEenlace<0, es decir, se ha liberado energía luego el sistema ha pasado a un situación de mayor estabilidad. Esto es lo que ocurre cuando se forma un núcleo uniendo sus nucleones. El núcleo es tan estable, que se necesita darle una energía igual a la de enlace pero en positivo (ya que se aporta al sistema) para romperlo, o sea, para desestabilizarlo. 3.1.7. Principio de equivalencia masa-energía. En el apartado anterior hemos visto que cuando se construye un núcleo “juntando” los nucleones que lo componen tan cerca como para que la interacción nuclear fuerte (de muy corto alcance) los mantenga unidos, ocurre que en el proceso hay una pérdida de masa, que según la ecuación de Einstein, se manifiesta en una pérdida o liberación de energía. O lo contrario, esa misma cantidad de energía liberada sería la que habría que suministrar al núcleo para descomponerlo (desintegrarlo) en sus nucleones componentes. Toda liberación de energía significa que el sistema ha evolucionado a un estado de mayor estabilidad. Si se aporta energía al sistema este evoluciona hacia un estado de menor estabilidad. La teoría de la relatividad especial ó restringida demuestra la relación entre la masa de un sistema aislado y la energía mediante la ecuación: ΔE = Δm · c2 Se trata de una energía inherente a la masa, distinta de la energía cinética y la energía potencial. Según la teoría de la relatividad especial, los principios de conservación de la masa y conservación de la energía son combinados de manera tal que en un sistema aislado el conjunto de masa-energía permanece constante. Para usar esta ecuación resulta práctico calcular la energía equivalente a una unidad de masa atómica (1 u). En curso anteriores se ha visto que, si la masa de un átomo es X u, la masa de 6,022 · 10 23 (número de Avogadro) átomos es X g ó 6,022 · 1026 kg. O sea: 6,022 · 1026 u = 1 kg Si calculamos la energía equivalente a 1 u, tenemos que: 1𝑘𝑔 2 16 𝑚2⁄ 𝛥𝐸 = 𝛥𝑚 · 𝑐 2 = 𝟏 𝒖 · (3 · 108 )2 𝑚 ⁄ 2 = 1 𝑢 · · 9 · 10 𝑠 𝑠2 6,022 · 1026 𝑢 = 1,495 · 10−10 𝐽 La energía expresada en Julios es pequeña, conviene expresarla en MeV que es el orden de medidas energéticas en física nuclear. 1𝐶 · 1𝑉 6,23 · 1018 |𝑒| 1 𝑀𝑒𝑉 −10 𝛥𝐸 = 1,495 · 10 𝐽· · · = 𝟗𝟑𝟏, 𝟓 𝑴𝒆𝑽 1𝐽 1𝐶 106 𝑒𝑉 En los ejercicios tendremos en cuenta que la pérdida (o ganancia) de 1 u en el proceso nuclear equivale a 931,5 MeV de energía liberada (o aportada) por (o al) sistema. 1 𝑢 = 931,5 𝑀𝑒𝑉 3.1.8. Estabilidad nuclear. Es evidente que cuanto más pesado sea un núcleo más nucleones intervienen en su formación y, mayor será su defecto de masa y la energía de enlace. Pero estos valores no dan una idea de cuan estable es el núcleo. Para poder valorar si un núcleo es más estable que otro es mejor utilizar la energía de enlace por nucleón que se halla dividiendo la energía de enlace correspondiente a un núcleo entre el número de nucleones que tiene (A, número másico). La energía de enlace por nucleón representa la energía necesaria para arrancarle un neutrón a un núcleo. 𝛥𝐸𝑒𝑛𝑙𝑎𝑐𝑒 𝑝𝑜𝑟 𝑛𝑢𝑐𝑙𝑒ó𝑛 𝛥𝑚 · 𝑐 2 = 𝐴 Viene a representar la contribución de cada nucleón a la estabilidad nuclear. Un núcleo será tanto más estable cuanto mayor sea su energía de enlace por nucleón. Se comprueba que los núcleos más estables son los núcleos de la zona intermedia de la Tabla periódica. En general, los núcleos tienden a una situación de mayor estabilidad mediante la emisión de partículas o radiación electromagnética por el núcleo (radiactividad natural) o mediante procesos de fisión o fusión nucleares. La gráfica, de importancia histórica, que representa la relación entre la energía de enlace por nucleón frente al número másico A es la siguiente. Los picos correspondientes a los núcleos de 42He, 126C y 168O nos indica que los núcleos formados por un número entero de partículas α, son más estables que los núcleos inmediatamente anteriores y posteriores en número másico. Obsérvese que arrancar un nucleón requiere energías del orden de MeV, mientras que arrancar un electrón a un átomo (potencial de ionización) requiere de pocos eV. 3.2. Radiactividad: interacción débil. Magnitudes y leyes fundamentales de la desintegración radiactiva. 3.2.1. Breve reseña histórica. En 1895, El físico alemán W. C. Roentgen detectó una misteriosa radiación invisible muy penetrante a la que se llamó rayos X. Animado por este descubrimiento el físico francés H. Becquerel investigó si los cuerpos con fosforecencia inducida por la luz podían emitir algún tipo de radiación tan penetrante como los rayos X. Para ello, colocó sales de uranio sobre una placa fotográfica previamente envuelta en papel negro, exponiendo el conjunto a la luz solar. Pensaba que las sales de uranio, excitadas por la luz solar, podrían emitir una radiación muy penetrante después de ser iluminadas. Pero se sorprendió al comprobar que la película se ennegrecía incluso dentro del cajón oscuro. El uranio, de forma espontánea, emitía una radiación más penetrante aun que los rayos X. Becquerel llamó a este fenómeno radiactividad, e intuyó que estaba directamente relacionado con la estructura atómica de la materia. “Radiactividad es el fenómeno por el cual ciertas sustancia llamadas radiactivas emiten espontáneamente radiaciones penetrantes que son partículas materiales o radiación electromagnética de alta energía” Posteriormente muchos científicos se interesaron por este fenómeno y descubrieron nuevos elementos radiactivos. Destaca por sus investigaciones M. S Curie, descubridora del polonio y del radio que son millones de veces más radiactivos que el uranio. 3.2.2. Descripción de los procesos alfa, beta y gamma y justificación de las leyes de desplazamiento. La emisión α se produce cuando el núcleo se desintegra emitiendo partículas α, es decir, núcleos de 42He. Como hemos visto en la curva de estabilidad nuclear la configuración de 2 protones y 2 neutrones tiene una estabilidad relativa alta, por eso se observan esos máximos relativos en el tramo creciente de la curva. Los componentes del núcleo (nucleones) son los protones y los neutrones. Conviene saber que un neutrón libre es bastante inestable y se desintegra rápidamente (τ = 885,7 s), pero cuando forma parte del núcleo, al estar en contacto con los protones, es mucho más estable. El protón, sin embargo, cuando está libre es enormemente estable (τ = 1035 años), es decir, una vida media bastante superior a la antigüedad del universo, pero cuando está formando parte del núcleo es menos estable y se puede desintegrar más fácilmente. El papel de los neutrones en el núcleo es proporcionar interacción nuclear fuerte sin aportar interacción electromagnética. En el punto 3.1.3. Nucleidos, pudimos ver los nucleídos representados en una gráfica neutrones–protones. En ella aparecen los nucleídos que emiten α, β- y β+. Se puede apreciar que la emisión α ocurre con más frecuencia para números atómicos elevados, a partir del Bismuto, donde el número de neutrones es bastante superior al de protones, estos no pueden proporcionar suficiente estabilidad a los neutrones y ya no hay nucleídos estables. La emisión β- se produce en aquellos nucleídos en los que el número de neutrones es superior al de protones comparados con los nucleídos estables. En esta emisión un neutrón se transmuta en un protón según: 0 1 1 0𝑛 → 1𝑝 + −1𝑒 + 𝜈̅ La figura esquematiza esta emisión β-: Como se pude ver lo que realmente ocurre es que un quark down se convierte en un quark up, emitiéndose un electrón y un antineutrino electrónico. En este tipo de proceso intervienen unas partículas portadoras o mediadoras (W-, W+ y Z0, llamadas bosones) de la interacción nuclear débil responsable de este tipo de desintegración. La interacción nuclear débil también es responsable de la emisión radiactiva β+ y la captura electrónica: La emisión β+ se produce en aquellos nucleídos en los que el número de neutrones es inferior al de protones comparados con los nucleídos estables (ver primera figura). En esta emisión un protón se transmuta en un neutrón según: 0 1 1 1𝑝 → 0𝑛 + 1𝑒 + 𝜈 Captura electrónica: 0 0 1 1 1 1 ó 1𝑝 + −1𝑒 → 0𝑛 + 𝜈̅ 0𝑛 + 1𝑒 → 1𝑝 + 𝜈 Esta interacción es de un alcance inferior al de la interacción nuclear fuerte y de una intensidad unas 1013 veces menor. La interacción nuclear débil, que se engendra mediante el intercambio de los bosones llamados W+, W- y Z0, restringe la materia estable a los consabidos protones y neutrones. Otras partículas más complejas (los quarks strange, charme, top y bottom de la segunda y tercera generación de partículas del modelo estándar y sus respectivos leptones) se degradan inmediatamente por la actuación de esta interacción en partículas de la primera generación (quarks up, down, electrón y neutrino electrónico) que conforman la materia estable que conocemos. La emisión γ se produce cuando un nucleído resultante, después de una radiación α ó β, está excitado. Emite γ, pasando a estabilizarse energéticamente. Por ejemplo, primero 60 27𝐶𝑜 * se descompone en 60 28𝑁𝑖 excitado: 60 27𝐶𝑜 → 60 28𝑁𝑖 + −10𝑒 + 𝜈̅ * Entonces el 60 28𝑁𝑖 cae a su estado fundamental emitiendo dos rayos gamma seguidos uno del otro. 60 ∗ 28𝑁𝑖 → 60 28𝑁𝑖 + 2𝛾 Estas radiaciones se pueden expresar mediante las leyes del desplazamiento o leyes de Soddy y Fajans, en las que se ponen de manifiesto la conservación del número másico (número de nucleones) y la conservación del número atómico ó carga eléctrica. Estas leyes de desplazamiento no reflejan otros principios de conservación, como el del momento lineal o el del momento angular: 𝛼 ⇨ 𝐴𝑍𝑋 → 42𝐻𝑒 + 𝐴−4 𝑍−2𝑌 0 𝐴 β ⇨ 𝑍𝑋 → −1𝑒 + 𝑍+1𝐴𝑌 β+ ⇨ 𝐴𝑍𝑋 → 01𝑒 + 𝑍−1𝐴𝑌 𝛾 ⇨ 𝐴𝑍𝑋 ∗ → 𝐴𝑍𝑋 + 𝛾 Como se puede apreciar cuando un nucleído emite α, β - ó β+ se transmuta en otro nucleído que estará desplazado en la tabla periódica 2 lugares atrás, un lugar adelante ó un lugar atrás, respectivamente. Cuando emite γ no hay transmutación, no se desplaza. Estas emisiones se producen de forma espontánea porque en ellas se libera energía. El núcleo no emite protones o neutrones espontáneamente porque estas emisiones serían endotérmicas necesitarían energía. En la siguiente tabla podemos ver las características de los tres tipos de desintegración. Partículas Propiedades Poder de penetración Poder de ionización Carga Fuentes Velocidad de emisión Masa Son fácilmente absorbidas por la materia: por 3-10 cm de aire, 10-2 mm de aluminio, hoja de papel grueso, etc. Intenso; 105 pares de iones en 3-10 cm de aire Desviadas, con dificultad, por los campos eléctricos y magnéticos Fuentes puras son el 239Pu y el 241 Am, aunque este emite también una débil radiación . Partículas Radiación Atraviesan la materia más fácilmente que las partículas ; pueden atravesar 1 m de aire ó 3 mm de aluminio Gran poder de penetración. Pueden atravesar incluso varios cm de plomo. 100 pares de iones por cm de aire Poca ionización por cm de aire Desviadas, con facilidad, por los campos eléctricos y magnéticos Fuente pura es el 90Sr Hasta 107 m/s ó 0,1 c Hasta 0,99 c. 4 u. 1/1840 u No son desviadas por los campos eléctricos y magnéticos El 60Co. Radiación electromagnética. Se propaga a la velocidad c. No tiene masa, en el sentido clásico. ¿Qué son? Núcleos de helio Electrones o positrones Ondas E-M de muy pequeña longitud de onda. Existen en la naturaleza 4 series o familias radiactivas naturales: Serie 4n, ya que A = 4n, es la del Th-232 acaba en el Pb-208 que es estable. Serie 4n + 1, A = 4n + 1, la del Pu – 241 que acaba en el Bi-237. Serie 4n + 2, la del U-238, que acaba en el Pb-206. Serie 4n + 3, la del U-235 que acaba en el Pb-207. En las siguientes animaciones se puede ver el desarrollo de las series radiactivas: animación 1, animación 2. 3.2.3. Ley de desintegración radiactiva; magnitudes. El proceso de desintegración es aleatorio y no es posible predecir cuándo se desintegrará un núcleo determinado; por eso, se aplica un tratamiento estadístico. Así se ha obtenido la ley de desintegración radiactiva. La pérdida por desintegración de núcleos de una muestra, -dN; es directamente proporcional a una constante λ que depende del material radiactivo, al número N de núcleos de la muestra y al tiempo dt en que transcurre el proceso. Es decir: −dN -dN = λ N dt ó =λN [1] dt Esta última expresión se puede leer así. La velocidad de desintegración de una muestra (Actividad) es directamente proporcional al número de núcleos N de la muestra. −dN =λN dt La actividad se mide en Bq (Becquerel) = 1 desintegración/s ó en Ci (Curie) = 3,67 · 1010 Bq. A= La ecuación diferencial [1] se resuelve integrando: N dN t dN t = −λ dt ⇒ ∫N = ∫0 −λ dt ⇒ [ln N]N N0 = [−λ t]0 ⇒ ln N N0 N −λ t = e 0 ⇒ 𝐍 = 𝐍𝟎 𝐞 N −𝛌 𝐭 N N0 = −λ t ⇒ Está última expresión corresponde a la ley de desintegración radiactiva. Cuanto mayor sea λ más pronunciada será la caída. Dado que la curva es asintótica al eje del tiempo el proceso dura infinitamente. Se define entonces el periodo de semidesintegración ó semivida (T½) como el tiempo que ha de transcurrir para que una muestra se reduzca a la mitad. N0 1 −λ T1⁄ 2 ⇒ 𝑙𝑛 N = N0 e−λ t ⇒ = N0 𝑒 2 2 𝐥𝐧𝟐 = −λ T1⁄ ⇒ 𝐓𝟏⁄ = 2 𝟐 𝛌 Otro concepto estadístico que no se debe confundir con el anterior es la vida media (τ) que nos da el valor promedio de la vida de un determinado núcleo radiactivo: “Vida media de un núcleo radiactivo es el tiempo medio necesario para que se produzca su desintegración” 𝟏 𝐓𝟏⁄ Su valor es: 𝛕 = ⇒ 𝛕 = 𝟐 𝛌 𝐥𝐧𝟐 En los ejercicios la ley de desintegración radiactiva la podemos aplicar según nos den o nos pidan la cantidad de material radiactivo: a) Si nos la dan en número de núcleos (o átomos): N = N0 e−λ t b) Si nos piden o dan actividad de la muestra: Nλ = N0 λe−λ t ⇒ 𝐀 = 𝐀𝟎 𝐞−𝛌 𝐭 c) Si nos dan piden o dan moles de la muestra: N = N0 e−λ t ⇒ 𝑁 𝑁𝐴 = N0 NA e−λ t ⇒ 𝐧 = 𝐧𝟎 𝐞−𝛌 𝐭 d) Si nos dan o piden la masa, como n = m/A, donde A es el número másico: n = n0 e−λ t ⇒ nA = n0 A e−λ t ⇒ 𝐦 = 𝐦𝟎 𝐞−𝛌 𝐭 Las siguientes animaciones pueden ayudar a entender el proceso: animación 1, animación 2. 3.3. Fusión y fisión nucleares: sus aplicaciones y riesgos. Aplicaciones tecnológicas y repercusiones sociales. 3.3.1. Balance energético (masa - energía) en las reacciones nucleares. Como hemos visto en el apartado 3.1.2 Rutherford (premio Nobel de química 1908), bombardeando N-14 con partículas α procedentes de un isótopo radiactivo existente en la naturaleza, comprobó la existencia del protón como partícula componente del núcleo: 14 4 17 1 7N + 2He → 8O + 1H Esta reacción nuclear necesita que la energía cinética de las partículas α sea suficiente para que ocurra, dicha energía ha de ser mayor o igual a la energía equivalente al Δm>0 existente en esta reacción. Igual ocurre con la reacción con la que Chadwick (premio Nobel de física 1935) demostró que el neutrón formaba parte del núcleo. 9 4Be + 42He → 13 6C + 10n Poco después discípulos de Rutherford llevaron a cabo reacciones nucleares utilizando como proyectiles protones acelerados en aceleradores de partículas, obteniendo partículas α, comenzando así la era de la radiactividad artificial. 8 7 1 4 3Li + 1H → 4Be → 2 2He Resulta evidente que la partícula idónea para bombardear un núcleo es el neutrón, ya que al acercarse al núcleo no sufrirá la intensa repulsión electromagnética que sufren partículas como el protón o la partícula α. Estos electrones tienen que ser lentos (neutrones térmicos) para que puedan ser capturados por el núcleo y dar lugar a la reacción nuclear. Las reacciones nucleares que utilizan el neutrón como proyectil pueden dar distintos resultados según las características del núcleo que se bombardee (blanco), así: a) Emisión de radiación γ: 238 239 1 92U + 0n → 92U + γ b) Emisión de radiación α: 10 1 7 4 5B + 0n → 3Li + 2He c) Emisión de un protón: 14 1 14 1 7N + 0n → 6C + 1H d) Fisión nuclear: 235 92U + 10n → 95 39Yi 1 + 138 53I + 3 0n En cualquier reacción nuclear ha de cumplirse: a) b) c) d) Conservación del número de nucleones. Conservación del conjunto masa-energía. Conservación del momento lineal. Conservación del momento cinético o angular. En cualquiera de las reacciones nucleares que existen ha de cumplirse un balance masa – energía tal que Δm 0: Δm =mproductos - mreactivos Así, teniendo en cuenta la relación de Einstein ΔE = Δm · c2, si en la reacción Δm < 0 es exotérmica y si Δm > 0 endotérmica. En las reacciones endotérmicas la energía necesaria para que se produzca la reacción la proporciona la partícula proyectil que impacta sobre el núcleo diana. De tal modo que si la energía cinética de dicha partícula no es suficiente no se producirá la reacción nuclear. Por ejemplo, si la reacción siguiente es endotérmica, la energía necesaria para conseguir el incremento de masa corresponde a la energía cinética de la partícula alfa: 9 13 4 1 4Be + 2He → 6C + 0n 3.3.2. Descripción de las reacciones de fusión y fisión nuclear; justificación cualitativa a partir de la curva de estabilidad nuclear. La fisión nuclear fue descubierta en 1938 por Otto Hahn (premio Nobel de química 1944) y Lise Meitner (sin premio Nobel, ¿por ser mujer y judía?) con la siguiente reacción nuclear: 235 236 ∗ 141 92 1 1 92U + 0n → 92U → 56Ba + 36Kr + 3 0n Recordando la curva de estabilidad nuclear podemos ver que los productos de la reacción nuclear tienen más estabilidad que el uranio, por lo tanto, se liberará energía. En la reacción anterior se liberan 200 MeV por núcleo de uranio. Es decir, 77 TJ/kg. El uranio-235 no siempre se descompone en esos dos fragmentos cuando es bombardeado por un neutrón. Más arriba hay otra posibilidad de fisión del uranio-235. O esta otra: 235 236 ∗ 1 92U + 0n → 92U → 72 30Zn 160 + 62Sm + 4 10n El uranio-235 es el único nucleído fisible que existe en la naturaleza. La energía que libera la fisión nuclear de un átomo de U-235 es de alrededor de 7 millones de veces la energía que libera la explosión de una molécula de trinitrotolueno (TNT). La energía de 1 g de U-235 =2700 kg de carbón = 30000 kg de TNT. El Pu-239 es otro nucleído fisible y se obtiene en los reactores nucleares a partir del U-238. 238 92U β− 238 93Np β− → → 238 94Pu Esta energía se manifiesta principalmente como energía cinética de los fragmentos de la fisión y otra parte la reciben los neutrones expulsados y el resto es radiación gamma. El hecho de que entre los productos de estas reacciones de fisión se encuentren dos o más neutrones que pueden iniciar nuevas reacciones nucleares hace de este proceso una reacción en cadena. Las reacciones en cadena pueden ser controladas como ocurre en los reactores nucleares de fisión donde se absorben los neutrones producidos de modo que en promedio por cada reacción sólo queda un neutrón capaz de iniciar otra reacción. O sin control donde las reacciones en cadena crecen exponencialmente produciéndose una enorme liberación de energía en muy poco tiempo, como es el caso de las bombas atómicas. El U-235 se encuentra en la naturaleza en una proporción de 0,7%, siendo casi todo lo demás U-238, para poderlo utilizar en los reactores nucleares es necesario enriquecerlo hasta que alcance el 3% del mineral (pechblenda). Para usos militares hay que enriquecerlo como mínimo hasta el 20% y en las bombas hasta el 90% para reducir su tamaño. Ver el ciclo de enriquecimiento del uranio. Ver otra animación sobre enriquecimiento del U-235. La masa mínima que debe tener el material radiactivo para que se mantenga una reacción en cadena se conoce como masa crítica, si es menor la mayoría de los neutrones se van fuera y no producen reacción nuclear y, si es mayor, la reacción en cadena está garantizada. La esfera es la forma que posee menor masa crítica. En el caso de un enriquecimiento del 90% la masa crítica del U-235 es de 50 kg y del Pu-239 es de 10 kg. La masa crítica del uranio depende del grado en que este presente (enriquecido) el uranio-235: para un enriquecimiento del 20 % de U-235 la masa crítica es de más de 400 kg; para el 15 % de U-235, la masa crítica excede los 600 kg. Uno de los inconvenientes serios de los reactores nucleares de fisión son los residuos radiactivos que se producen. Estos residuos inicialmente se quedan en las piscinas que hay en las instalaciones de los propios reactores. Cuando se han “enfriado” un poco pasan a almacenes de residuos cuya ubicación es problemática. En España se producen cada año 2.160 toneladas de residuos radiactivos. La alta toxicidad de los mismos y su actividad de hasta miles e incluso millones de años exigen que su tratamiento sea extremadamente seguro. Mientras que las 160 toneladas de combustible irradiado que se producen anualmente en los nueve reactores nucleares operativos se guardan provisionalmente en las propias instalaciones, las otras 2.000 toneladas de materiales de baja y media actividad se depositan de forma definitiva en un complejo denominado El Cabril, en la Sierra Albarrana de Córdoba. Ver el ciclo del combustible nuclear La fusión nuclear se realiza para obtener la energía que se libera al unir núcleos ligeros para formar uno más pesado con lo que se liberaría energía. Este tipo de reacción corresponde al tramo creciente de la curva de estabilidad nuclear. En la fusión se libera energía si el núcleo resultante es menos estable o igual que el Fe-56, ya que este es el nucleído de mayor estabilidad. La fusión nuclear es lo que ocurre en las estrellas y de ella procede la energía que liberan. Por ejemplo en el interior del Sol se fusiona el hidrógeno para convertirse en helio mediante el proceso conocido como cadena protón-protón: 1 1 1H + 1H 1 2 1H + 1H 3 2He ⇒ 21H + 01e + νe ⇒ 32He + γ + 32He ⇒ 42He + 2 11H Sumando [1]+2·[2]+[3] 2 11H + 21H ⇒ 42He + 01e + νe + γ 1 1H [1] [2] + 32He ⇒ 42He + 01e + νe [3] Sumando [1]+[2]+[3] 4 11H ⇒ 42He + 2 01e + 2νe +γ En este proceso se libera del orden de 26,7 MeV, en estrellas de mayor tamaño el proceso predominante en la fusión es el conocido ciclo CNO. Para emular el proceso en la Tierra la reacción de fusión más rentable, ya experimentada en la bomba de hidrógeno es: 2 1𝐻 + 31𝐻 ⇒ 42𝐻𝑒 + 10𝑛 ΔE = 17,6 MeV La dificultad principal para obtener la fusión radica en la energía que hay que emplear para unir dos núcleos de hidrógeno venciendo la repulsión electrostática. En las estrellas la temperatura necesaria para que tenga lugar la fusión es del orden de los 15 millones de grados. En los reactores experimentales de fusión se requieren 100 millones de grados. 3.3.3. Efectos biológicos de las radiaciones. Dependen de: a) Del tejido u órgano irradiado. b) De la intensidad y tiempo de exposición a la radiación. c) Tipo de radiación, energía de la misma y semidesintegración. período de Pueden afectar por: a) Acción externa: de menor a mayor peligro, < < b) Acción interna: ingestión, inhalación, etc. < < Efectos: a) Inmediatos: quemaduras, cáncer,... b) Retardados: mutaciones genéticas en descendientes. Procedencia: a) Espacio exterior: la radiación cósmica al chocar con la atmósfera produce radiación (14C, tritio, ... ). Cuanto más se suba en la atmósfera mayor es la radiación recibida, aumenta un 20 % por cada kilómetro de subida. Un avión en vuelo recibe una radiación 150 veces superior que en tierra. Debido al campo magnético en los polos la radiación es mayor que en el ecuador. En Irlanda, por ejemplo, la radiación es un 10 % superior a la de Grecia. b) Suelo y edificios: las sustancias radiactivas de la tierra pasan a formar parte de ladrillos y hormigón. Los granitos son muy radiactivos, más que la arena y la madera. La tierra libera 222Rn y 220Rn que se acumulan peligrosamente si no hay ventilación en los conductos de aire acondicionado, en los techos falsos, en los aislamientos porosos. c) Aire: en el aire siempre hay Rn procedente del U y el Th, es un gas incoloro e inodoro 7,5 veces más denso que el aire. Es el responsable de más de las ¾ partes de la dosis de radiación natural recibida por las personas. d) Alimentación: Los materiales radiactivos son absorbidos por las plantas y los animales y se disuelven en el agua. La radiactividad se mide con dispositivos como el contador Geiger. En la siguiente animación podemos ver la radiactividad que nos rodea. Otra animación 3.3.4. Utilización de los radioisótopos y reactores nucleares. Los isótopos radiactivos tienen muchas aplicaciones. Además usarse para producir energía (centrales nucleares, propulsión de rompehielos y submarinos), se utilizan en otros campos por las propiedades de las radiaciones que emiten. Medicina: a) Diagnóstico y como trazadores: gammagrafías para estudiar los huesos, estudio del aparato digestivo,... b) Radioterapia. c) Esterilización del material quirúrgico. Industria: a) Radiografías de piezas metálicas y soldaduras: especialmente en piezas “de compromiso” en las cuales no se pueden hacer ensayos destructivos. b) Medida precisa de espesores y de niveles: en depósitos o recipientes opacos, donde se requiere gran precisión. c) Trazadores: para el seguimiento de fluidos en tuberías (determinar posibles fugas) o cauces subterráneos. d) Reacciones químicas: plásticos y modificación de propiedades de tejidos. e) Irradiación de alimentos: para prolongar su conservación. Investigación: a) Datación: carbono -14,... b) Trazadores en química, biología y bioquímica: para estudiar los mecanismos de las reacciones. Se “marca” uno de los reactivos (sustituyendo un átomo estable por un isótopo radiactivo del mismo) y se le sigue la pista en qué compuesto de los productos se encuentra. Domésticos: a) Detectores de humo: en sistemas antiincendios. Consta de un emisor (que contiene 241Am de T1/2 = 432 años) y de un detector de las emisiones; si hay humo, éste se interpone entre el emisor y el detector modificando las características de la emisión que recibe el detector, el cual acciona el sistema para combatir el fuego. b) Pararrayos radiactivo: las radiaciones que emiten mantiene ionizado el aire que lo rodea de forma que la descarga eléctrica tendrá tendencia a pasar por él. Hoy en día, están en desuso, puesto que, además de ser un riesgo potencial, no está demostrado que sean más eficaces que los pararrayos convencionales. Ver la siguiente infografía sobre el uso de las radiaciones ionizantes. REACTORES NUCLEARES DE FISIÓN Animación sobre una central nuclear, otra animación y otra. Principales elementos de un reactor. Combustible: material fisionable, que suele ser 235U o 239Pu. El uranio natural es una mezcla de 238U (99,3%) y 235U (0,7%), generalmente en forma de óxido (pechblenda UO2). El combustible nuclear es uranio enriquecido (contiene de 35% de 235U). Moderador: hace disminuir la energía de los neutrones rápidos mediante choques elásticos. Debe ser un material de pequeña masa atómica y no absorbente de neutrones: carbono (grafito), hidrógeno (agua), deuterio (agua pesada). Barras de control: absorben neutrones (Cd, B, Al, ...) y, por tanto, al introducirlas más o menos en el núcleo del reactor regulan la producción de energía. Circuito primario de refrigeración: extrae el calor del núcleo del reactor; debe contener un cuerpo de elevado calor específico (agua, CO2 ...). Es un circuito cerrado. Blindaje: la pared exterior que encierra al reactor es de hormigón, con un espesor aproximado de 1,5 m; además, tiene chapas de acero o plomo. Circuito secundario: circuito de agua que se calienta y vaporiza en el generador de vapor (intercambiador de calor) y que pasa por la turbina y se condensa en el condensador. Circuito terciario de refrigeración: se utiliza para enfriar el vapor de agua que sale de la turbina; debe enfriarse para que la diferencia de presión entre la entrada de la turbina y la salida sea la máxima posible y su rendimiento sea aceptable. Este circuito terciario puede ser abierto o cerrado. El abierto consiste en tomar agua del río o del mar, que se devuelve íntegramente, si bien un poco más caliente; esta diferencia de temperatura puede modificar el ecosistema, por lo que hay una normativa que obliga a que el agua de salida no exceda en 3º a la de entrada, esto se consigue mediante torres de refrigeración. El circuito cerrado, se hace a través de torres de refrigeración en las que una parte del agua se evapora y se enfría, pasando de nuevo al circuito de refrigeración. REACTORES NUCLEARES DE FUSIÓN Los reactores nucleares de fusión son experimentales, se basan en la fusión de isótopos del hidrógeno (principalmente deuterio y tritio) mediante muy altas temperatura (100 millones de grados). El combustible de hidrógeno a estas temperaturas está en estado de plasma y la principal dificultad estriba en la manipulación de este material a tan alta temperatura. Existen dos formas de contener (confinar) este plasma: a) Por confinamiento magnético, el plasma se mantiene confinado en una región del espacio mediante campos electromagnéticos de modo que no toca las paredes de recipiente alguno. El proyecto más importante con este tipo de confinación es el ITER basado en el reactor prototipo ruso Tokamak. b) Por confinamiento inercial, el plasma es confinado por potentes rayos laser que presionan el material aumentando su temperatura hasta alcanzar la temperatura de fusión. El proyecto más importante se lleva a cabo en EEUU en el NIF. 3.4. Comparación de las características de las interacciones fundamentales: fuerte, electromagnética, débil y gravitatoria. La búsqueda de la unificación de una teoría unificada para ellas. 3.4.1 Interacciones fundamentales en la naturaleza; estudio comparativo de sus características y dominios de influencia. Tabla 1 INTERACCIÓN Nuclear fuerte Yukawa ó nuclear fuerte residual INTENSIDAD RELATIVA 1 ALCANCE 10-15 SIGNO Atractiva Gluones (8) masas = 0 ÷ 20* Mesones +, -, 0 masas = 210* DOMINIO DE INFLUENCIA ORIGEN Quarks Up Strange Top u s t m=0,003 m=1,3 m=175 Down Charme Bottom d c b m=0,006 m=0,1 m=4,3 Mecánica Cuántica Nucleones Mecánica Cuántica Fotones masas = 0* Cargas eléctricas Toda la Mecánica excepto la Cosmología Repulsiva Bosones W+, W-, Z0 masas = 80,80,91* Desintegración β Mecánica Cuántica Atractiva siempre Gravitones masas = 0* Masas Toda la Mecánica 1 10-15 Electromagnética 10-2 Muy grande 1 ≈ 2 r Atractiva ó repulsiva Nuclear Débil 10-12 < 10-17m Gravitatoria 10-40 Muy grande 1 ≈ 2 r *Masas medidas en GeV/c2. PARTÍCULAS PORTADORAS Atractiva /repulsiva Tabla 2 c Mecánica Cuántica Relativista Mecánica Relativista Cosmología Relativista Mecánica Cuántica Mecánica Clásica Cosmología Velocidad 0,1c ¿? Núcleo 10-14 Átomo 10-10 1020 Tamaño (m) Galaxia Teorías del campo unificado Ley de la gravitación universal de Newton en 1685 Mecánica celeste + mecánica terrestre Teoría electromagnética de Maxwell en 1860 Electricidad + magnetismo + óptica Teoría electrodébil de Glashow, Salam y Weinberg en 1960 Electromagnetismo + nuclear débil Gran teoría unificada (GUT) (por verificar) Electrodébil + fuerte Teoría de campos unificada ó Teoría del Todo Teorías de supercuerdas – Teoría M GUT + relatividad general