2.2 Estrategia: sumar números de dos cifras descomponiendo y

Anuncio
Recursos
didácticos
Agrupamiento
Esta es una estrategia que se puede
mostrar al alumnado fácilmente con
regletas de Cuisenaire o con Multibases
de Diennes.
Lista de
cotejo con
dos
aspectos:
Resuelve
los
cálculos y
Sabe
explicarlos
2 sesiones por estrategia +
5minutos de práctica en
distintas ocasiones
2.1 Estrategia para sumar dos números
de una cifra con resultado mayor que 10,
completando a diez.
Resolución y
explicación de
los cálculos
Sesiones
Estrategia para los primeros niveles
(alumnado de 6-8 años)
Instrumento
Evaluación
Productos
evaluables
SECUENCIA DIDÁCTICA
PG
/I
Ejemplos para practicar con el alumnado
3+9=
8+4=
9+5=
7+4=
8+7=
7+9=
2.2 Estrategia: sumar números de dos cifras descomponiendo y componiendo.
24+32=
Veamos el siguiente ejemplo: 24+32= realizado con regletas
Es necesario insistir al alumnado en que hemos sumado los distintos órdenes por separado
(descomposición) y luego hemos vuelto a juntar (composición) los resultados parciales para
obtener un total.
Para practicar:
Sin cambio de orden
62 + 34 =
33 + 64 =
23 + 71 =
26 + 52 =
Con cambio de orden en las decenas
55 + 62 =
73 + 60 =
36+73=
81+ 32=
Con cambio de orden en las unidades
36 + 17 =
48 + 25 =
29 + 45 =
72 + 37 =
2.3 Estrategia:
Sumar por compensación
17+35=
Esta estrategia se basa en completar uno de los sumandos hasta la decena para facilitar la suma
de decenas completas. El manejo de las descomposiciones del 10 facilita su adquisición y una
puesta en práctica más eficaz.
Para practicar:
27 + 45=
34+48=
46+27=
75+17=
39+14=
62+29=
Esta estrategia también se puede presentar con Regletas de Cuisenaire.
64+47=
2.4 Estrategia Sumar decenas
Para practicar:
42+20=
38+40=
2.5 Estrategia: Restar
20+45=
completas.
13+50=
decenas completas
34+20
60+56=
19+70=
65-20=
Al formar el minuendo se observará que la resta es una operación interna pues no se coloca
material para el sustraendo, pues éste indica lo que es necesario quitar del total que constituye el
minuendo.
Para practicar:
43-20=
34-10=
74-40=
57-20=
69-30=
47-30=
2.6 Estrategia: Restar
Para practicar: 23-15=
completando en la recta numérica 37-27=
35-26=
52-35=
65-48=
76-57=
84-69= 91-69=
.
2.7
Estrategia: Calcular dobles: El doble de 24
Para practicar: 12+12=
43+43=
24+24=
31+31=
42+42=
34+34=
23+23=
Plantear como reto de ampliación el doble de números en los que haya cambio de unidades
2.8
Estrategia: Dobles de números acabados en 5
(Caso particular). Doble de 35
Para practicar: Doble de 25, doble de 45, doble de 55, doble de 65, doble de 75, doble de 85, doble
de 95, doble de 105, doble de 115.
2.9 Estrategia: Mitad de
números pares por descomposición
Veamos cómo planteamos con regletas Multibase de Dienes la situación de cálculo de mitad de
números pares con números de dos cifras. Después se puede ampliar a números pares de tres cifras
empezando por aquellos que no requieren cambio de orden, solo un cambio de orden, dos cambios
de orden…Se puede generalizar en los cursos superiores (10-12 años a números) de cuatro cifras.
Para practicar:
La mitad de 34 es _____
La mitad de 84 es _____
La mitad de 28 es _____
La mitad de 34 es _____
La mitad de 44 es ____
La mitad de 66 es ____
La mitad de 88 es ____
La mitad de 56 es ____
3.- Estrategias para alumnado de 8-10 Resolución y
explicación de
años.
los cálculos
En el caso de que el alumnado tenga este
intervalo de edades y se esté iniciando en
cálculo mental es preciso asegurarse de
que domina las estrategias recomendadas
para el grupo de edad inferior. En caso
contrario se debe iniciar el trabajo por
éstas. Generalmente es posible avanzar
rápido pues requieren un conocimiento de
los números que ya se tiene.
Lista de
1
cotejo con
dos
aspectos:
Resuelve
los
cálculos y
Sabe
explicarlos
PG
3.1 Estrategia sumar decenas completas con cambio de orden en las decenas
74 + 52 = 126
Para practicar: 73+30=
81+50=
40+96=
64+70=
20+87=
80+63=
Esta estrategia tiene como requerimiento previo el saber contar de 10 en 10.
3.2 Estrategia: sumar números de dos cifras con cambios de orden en las
unidades.
36+29=65
Para practicar: 15+48 =
38+15=
47+16=
18+ 59=
67+24=
73+48=
Esta estrategia requiere dominar las composiciones del 10, o la suma de dos números de una cifra con
resultado mayor que 10.
3.3 Estrategia: restar
números como acción de quitar
68-25=
Estrategia que permite observar la resta como operación interna, donde el minuendo contiene como
una parte al sustraendo, precisamente la parte que necesitamos a quitar.
Para practicar: 57-23=
87-24=
58-36=
65-42=
94-42=
88-52=
Es aconsejable que el orden de la acción de quitar se inicie por las decenas pues facilita el
cálculo final.
3.4 Estrategia: restar
Ejemplo 173-145=
como acción de completar. Ampliación
Para practicar
167-139=
183-158=
250-237=
3.5 Estrategia: Multiplicar
347-328=
462-437=
575-558=
342-327=
por cuatro duplicando el doble.
Ejemplo 4x21
Para practicar 4x 15= 4x23=
4x74= 4x67= 4x78=
4x29=
3.6 Estrategia: Multiplicar
4x34=
4x 37=
4x41=
4x48=
4x51=
4x62=
por descomposición.
4x23=
Esta estrategia se apoya en la descomposición decimal de uno de los factores o, en su generalización,
de ambos. Requiere la aplicación de la propiedad conmutativa de la multiplicación en su uso habitual.
Veamos el ejemplo 4x23= (4x20) + (4x3)
4 veces 20 y 4 veces 3
Para practicar: 3x45=
4x23=
8x31=
3.7 Estrategia: Multiplicar
12x10=
7x24=
5x38=
un número 10, 100…
6x100=
Veamos los ejemplos 12x10 y 6x100
Para practicar: 8x10= 13x10= 25x10= 35x10= 46x10= 79x10=
4x100= 12x100= 32x100= 54x100= 61x100=
6x29=
3x63=
3.8 Multiplicar por
multiplicar por 10, 100…)
14 x 20=
cualquier decena o centena exacta
(Ampliación de
8 x 200=
Veamos
14x20= 14x(2x10) = (14x2)x10= 28x10 esto es 28 veces 10 y 28 veces 10
10 veces 10 es 100
otras 10 veces diez es 100
100
Para practicar: 12x40=
Ahora
+
8x20=
100
y ocho veces 10 es 80
+
32x30= 22x20=
8x200= 8x(2x100)= (8x2)x100= 16x100=
16 x 100 es 16 veces 100
80
=
280
Para practicar: 6x200= 12x200=
3.9 Estrategia:
4x300=
12x300=
4x400=
2x400=
Multiplicar por descomposición.
4 x 15
Para practicar: 4x16=
3x24=
5x14=
6x12=
7x32=
8x15=
5x28=
3.10 Estrategia: Multiplicar por 5 como multiplicar por diez y calcular su mitad
Ejemplo 14x5= la mitad de 14x10
14x10= 14 veces 10=140
mitad
mitad
70
70
El resultado es 70.
4.- Estrategias para el intervalo de edad
10-12años.
2
En estas edades podemos iniciar el
trabajo de cálculo mental desde el
símbolo numérico con la ayuda de la
calculadora para comprobar.
4.1 Estrategia: Suma por descomposición de números decimales (0,25- 0,50- 0,75)
Ejemplo:
3.25
3 +
+ 4.25=
0,25 + 4+
3+ 4 +
0,25
0,25 + 0,25
7 + 0,50 = 7,50
Las flechas indican el proceso mental que el alumnado realiza para dar la respuesta final. Si fuera
preciso en los inicios se puede permitir realizar este proceso gráfico escrito para eliminarlo en cuanto
se hayan hecho varias prácticas.
Para la comprobación se utilizará la calculadora.
Esta estrategia requiere el conocimiento previo de sumas de los siguientes decimales para que sea
eficaz.
0,25 + 0,25= 0,50
0,25 + 0,50=0,75
0,50 + 0,50= 1
0,50 + 0,75= 1,25
0,75 + 0,75= 1,50
Para practicar: 6,25 + 3,50=
0,50 + 4,25=
4,75 + 2,25=
8,50 + 1,75=
4.2 Estrategia: Suma de números decimales. (Ampliación de la estrategia
anterior) (0,10 - 0,20 -0,30 - 0,40 - 0,60 - 0,70 - 0,80 - 0,90)
2,40
Ejemplo: 2,40 + 3,30=
2 +
+
3,30
0,40 + 3 +
2 +3
+
0,30
0,40 + 0,30
5 + 0,70 = 5,70
Esta estrategia también puede iniciarse con tarjetas Montessori. Para ello primero se formará el
número y luego se descompone se realiza su suma y se compone el número resultante.
Para realizar los cálculos el alumnado puede disponer, si lo solicita, de papel para anotar cálculos
parciales.
Para practicar: 4,40 + 2,30=
5,40 + 6,70=
3,80 + 6,70=
3,90 + 4,50=
3,80 + 3,80=
4.3 Resta de números decimales
(0,25- 0,50 - 0,75 – 0,10 – 0, 20…)
con parte decimal
Ejemplo: 6,50 – 2,25=
Resuelvo la operación calculado la diferencia entre el sustraendo y el minuendo, es decir saltando
desde 2,25 hasta 6,50. Empiezo avanzando hasta 3 para lo que añado 0,75 , de 3 a 6,50 van3,50 en
total 0,75 + 3,50 lo
que da una diferencia de 4,25
2,25
3
+0,75
+
Para practicar: 8,25 – 5,75=
5,60 – 4,90=
6,50
=
La diferencia es de 4,25
0,
7
3,50-1,70=
5,25 – 3,50=
5, 30 – 2,60=
5
+ 3,50
4,60 – 2,80=
6,25 – 2,50=
7, 25 – 3,75=
7,20 – 2,40=
4,50 – 0,75=
4.4 Estrategia: Multiplicar por 0,5 como calcular la mitad, multiplicar por 0,25
como calcular la mitad de la mitad.
Fracción-decimal-porcentaje son tres aspectos que deben trabajarse juntos como equivalencias,
especialmente para los valores
½= 0.5=50%
¼= 0.25=25%
¾=0.75=75%
1/5=0.20=20%
1/10=0.1=10%
La calculadora permite comprobar que la mitad se obtiene como x0.5, o como se leería “media vez….”y
debe relacionarse con el cálculo del 50%
Calcula
0.5 x 24=
0.5 x 38=
0.5 x 134=
0.5 x 300=
0.5 x 540=
¿Qué observas en el resultado?
4.5 Estrategia: multiplicar por 1,5 como una vez el número más su mitad.
Multiplicar por 1,25 como una vez el número más la mitad de la mitad.
1.50 x 26= 1 vez 26+ 0.5 veces 26= una vez 26 + la mitad de 26=26+13=39
Calcula
1.50 x 34=
1.50 x 72=
1.50 x 90=
1.50 x 215=
1.50 x 350=
1.50 x 670=
1.50 x 970=
1.50 x 1350=
Multiplicar por 1.25
1.25 x 32= 1 vez 32 más 0.25 veces 32= una vez 32 mas la mitad de la mitad de 32= 32+8= 40
Calcula
1.25 x 56=
1.25 x 84=
1.25 x 248=
1.25 x 456=
1.25 x 904=
1.25 x 1300=
1.25 x 864=
1.25 x 642=
Se incluye la dificultad que implica calcular mitad de números impares.
4.6 Estrategia: Estimar divisiones utilizando la multiplicación por la unidad seguida de
cero y doble y mitad.
356 : 16=
16
Para estimar el resultado tomo el divisor y lo multiplico por 10,
observo que aún no estoy cerca porque es un dividendo es mayor,
X 10
x 10
Doble
160
1800
Mitad
así que duplico y tengo 16x20=320,resultado un poco inferior al
20
xX 20
dividendo a continuación calculo el resultado para la decena
siguiente 16x30= 16x20+16x10= 480, este último resultado excede
320
360
X
x 55
80
90
al dividendo. Por lo tanto el resultado exacto está entre 20 y 30.
Para practicar: 580÷17=
276÷23= 765÷24= 972÷42= 915÷32= 667÷53= 503÷19= 365÷27=
4.7 Estrategia: División de números de tres cifras entre números de dos cifras por
repartos sucesivos.
562÷18=
Empiezo siempre teniendo presente una anotación como la de la
derecha.
La cantidad a repartir es 562.
Hago un primer reparto de 20 como 18x20=360
entonces me queda 562–360=202,
ahora puedo hacer un segundo reparto de 10
entonces repartiré un total de 180 y me quedará 202–180=22
Aún puedo hacer un tercer reparto de 1 entonces
repartiré 1x18=18 y me quedará 22–18=4 que será el resto pues
ya no puedo hacer más repartos enteros.
18
X 10
x 10
Doble
180
1800
20
xX 20
360
Mitad
Xx 55
90
Por lo tanto tengo:
Primer reparto
20
Segundo reparto 10
Tercer reparto + 1
_______________________
Total
31
El resultado es 31 y sobran 4
Tanto la estimación como el cálculo de divisiones son estrategias importantes para dotar al alumnado
de herramientas mentales para todas las operaciones.
Descargar