1 ! " $%& ' &( ) * & %)% # +, # $ # +- " # #% +, ! " . # # 2 ( ) /( ) , /)% 012 % 3" 4 5 ( ) /( 6 %7 1%* ( ) )1 $ & 18 * 3" 5 . ( ) /( ,( :1* %)( 3 ##5 9 3 , / " 9 ; . " " 9 < # 4 " " . ! # . % % ! = 4 6 ># # # 7 9 # $?@ρ A# / 9 . 4 ! ! ; ! < , = ? , ! 5 6 % 9 3 ?B5 ?B C- $? =? , $?@ρ 6 . ?@ . , #, @>B ) , 3 3 DE # 5? F D ! 5 ? GD & 6 / 9 " 3 5 3" 5 3 . % 5 . 8 0 &% " %:/ % 8 0 & % 1* %:/ " 7 , 6 . ) 0 1 , : 1 " 3 9 5 % 8 1 " & 9 " 3 5 . +1 " 4 ! # 1$( +1 " . 3 5 +1 " +1 " ! ! ; < " 9 " ! 4 9 >BBB . 3 " 5 * 3 BBB 4 3" 5 " . H " 5 " 5 # # % /! 3 BB@IBB . 5 3 9 4 . 5 4 H 10 ;0 < " " ! 11 . 9 3 5# . , , J - 12 0 " D - - ? - @ 3 " - C - @ - 5 13 = J " K / 14 = 3>5 >@ / " K / #* / " @ / . 4 . # 4 = 4 . 9 " # = " J , K / 15 = A@ 3 5 " 9 " # " " # L@ / 9 I@ 39?B5 3 " 5 ! 3 @> @ 5# ! " ! " # M#@ * " 3 . 5# 16 , J? N = K/ ( %/ 3 @>5 3 @> @ J , 5 K / 4 " ! . 3 5 3 5 - ? - @ - C B - @ B , B ? 17 , 3 5 K=C K/O ? C K=?B / = 1 " 4 # 18 $ " 0 ?Σ , × # ( >5 1 3 ! D ! 5 5, 3 " 5 19 , 3 " E)5 9 K=C K/ O K = O E) K=/? B ) 3 B ? C / = ? 5 B > C E)/D 20 . 4 ( " P Q 21 " A) - " >5 " 4 . 5/ " " " A5 / 4 9 9 .3 9 A)5 22 " 4 / ; . < ! " ; ) 4 < 3; " < 5 " = . 3 5 C 0 3 5 23 % " 4 @" @ 3 " 5 " . 0 ∆4 = ∆4 ? 4 4B " ) " ?" )? ?" $? ? ? E>? >#I T E> C E $) 3 @ 5 U 3 5 D 4 " D 4 R R E ? #MS × >B@A 24 $ 4 4 % % 25 , " 4 4 # ! 4 4 " . 26 . " 3. D 4 D ) 5 - 9 = . , , 9 27 " % . . >) 3 .5 , 3 5 * " 28 ) ! ) 3/ ∂c Flujo = − K ∂x ? ' 0 E5 × R / 0 E 6 3 ? B5 c (t) = 2 (π t ) M 1/ 2 K 1/ 2 e 1 − 4t x2 K 29 ? 30 P$ Q 9 σ = (2Kt ) 1/ 2 c= M = (2K ⋅ x / u ) (2 π ) σ 1/ 2 1/ 2 e − " " 9 " x2 2σ 2 σ 3 D 5 V ?B 9 31 4 4 4 . 9D 32 & )1 * 1( * " - A) . " 9B 9B 4 9 c= M (2 π ) σ xσ yσ z 3/ 2 e − ( x − x0 ) 2 2σ x2 − e y2 2σ y2 e − ( z −h)2 2σ z2 39B B 45 39 .5 33 :4 A ) 31 5 >F SL 1 LI IB , " +" . > + 4 D R9?R ?B#LI @> R.?B# B (σ = (2Kt ) ) 1/ 2 P, Q 34 @> :4 3 5 , 3 >E @ 5 0.000009 0.000008 0.000007 0.000006 0.000005 0.000004 0.000003 0.000002 , 0.000001 0 -100 -0.000001 200 500 800 1100 1400 1700 2000 35 )( " )1 3 4 * 1( * 5 " 3. D 4 D 5 . - 9 4 ) Q c= e 2 π u σ y σz * " J ! − y2 2 σ 2y 3 ( z − h )2 − e D 2 σ 2z 5 36 )( " 3 4 = * 1( * . . % )1 9 5 . >) , 3 5 * " Q e c= 1/ 2 (2 π) u H σ y − y2 2 σ 2y 37 / ! / 4 " " " " 3 ! - * & >B 5D @> " 5 , 3 3 5 4 ≥ LDS 0 W ADS % %@: : %@: : , A@I : :@, , ) I@M , ,@) ) ) ) ≥M , ) ) ) ) B@ @A @ @ 0 38 - ! 3 , 5 % >BBBB : , ) σ 0 >BBB σ D >BB >B A B#> > V DR >B 3 >BB 5 39 - ! 3 .5 % IBBB : , σ. ) >BBB σ. D >BB 0 >B > B#> > V DR >B 3 >BB 5 40 - ! Fórmulas para los coeficientes de dispersión para suelos urbanos Estabilidad σ σ. A-B 0.32 x ( 1 + 0.0004 x)-1/2 0.24 x ( 1 + 0.0001 x)-1/2 C 0.22 x ( 1 + 0.0004 x)-1/2 0.20 x D 0.16 x ( 1 + 0.0004 x)-1/2 0.14 x ( 1 + 0.0003 x)-1/2 E-F 0.11 x ( 1 + 0.0004 x)-1/2 0.08 x ( 1 + 0.0015 x)-1/2 6 σ 3 5 Xσ 3 5 σ. 3 5 X σ. 3 5 41 & 4 BR # " $# # ### " $# # 4 ### " . $# # 4 . 42 & Q c= e 1/ 2 (2 π) u H σ y Q c= e 2 π u σ y σz c= M − − 2 σ 2y y2 2 σ 2y (2 π ) σ xσ yσ z 3/ 2 y2 e e − >) ( z − h )2 − ) 2 σ 2z ( x − x0 ) 2 2σ x2 e y2 − 2σ y2 e − ( z −h)2 2σ z2 A) 43 7 . , . . " c (x , y, z ) = Frecuencia i × ci (x , y, z ) viento estabilidad fuentes atmosférica 44 , ) , 3. ? B5 Q c= e π u σ y σz − y2 % Q e c= π uσ y σ z − 2 σ 2y e " − h2 2 σ 2z 3. ? B ? B5 h2 2 σ 2z 45 ) 3 ! " 3. ? B ? B5 5 >B@A @ 4? B >B@L DJ 4?IB >B@I 4?>BB >B@M 4?ABB >B@G >B@S B#> > >B V DR >BB 46 3 ! . 5 , >B@A @ 4? B >B@L DJ 4?IB % >B@I . 4?>BB =?>BB =?ABB >B@M 4?ABB =?>BBB >B@G >B@S B#> /! ?B =? BBB > >B V DR >BB 47 , 9 Y , ( *(9 Q e c= 2 π u σ y σz 9 − y2 2 σ 2y e ( z − h )2 − 2 σ 2z Y , ,( ,( - 9 Q c= e 2 π u σ y σz − y2 2 σ 2y e ( z − h )2 − 2 σ 2z +e ( z + h )2 − 2 σ 2z 3 5 48 1 4 ! 4 # $& ( , )1 1 * ( ># # # 4 3" " 4 5 A# 49 , ,D ? @E , → ,D,B ? " >D 0 @E ? DE D Z ,?, ? 9 3@ D >D 3 5 5 ?9D 50 . . 3 5 )" " H " 3" 5 9 ! " 51 $ 1 , 3" 4 3 5 . , 3 ?B5 A@ , ? 5 3 C∆ L@ , I@ * ! 5 3 5 " 52 ( 7# # " 4 $ DD[ [ [ # % # "D 3 $%5 D 53