Manual de Alcantarillado

Anuncio
Productos Nacobre, S.A. de C.V.
Criterios de Diseño para Redes
de Alcantarillado Empleando
Tubería de PVC
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
INDICE
GENERAL
Página
1.
Introducción
1-1
1.1.
Generalidades
1-1
1.2.
Los alcantarillados
1-1
1.3.
Alcantarillados con PVC
1-1
1.4.
La tubería de PVC DURADRÉN
1.4.1.Especificaciones dimensionales de la tubería DURADREN
1-2
1-2
1.5.
Terminología en alcantarillado
1-4
1.6.
Sistemas de alcantarillado
1-6
1.7.
Cumplimiento de normas nacionales e internacionales
1-6
2.
Requerimientos técnicos de una red de alcantarillado
2-1
2.1.
Especificaciones de diseño
2.1.1. Velocidad permisible
2.1.2. Pendientes permisibles
2-1
2-1
2-1
2.2.
Aportaciones de aguas residuales
2.2.1. Cuantificación de los gastos de aguas residuales
2.2.1.1. Gasto medio diario
2.2.1.2. Gasto mínimo
2.2.1.3. Gasto máximo instantaneo
2.2.1.4. Gasto máximo extraordinario
2-2
2-3
2-4
2-4
2-5
2-6
3.
Aspectos hidráulicos de los alcantarillados
3-1
3.1.
Fórmulas para cálculos hidráulicos
3.1.1. Fórmula de Manning
3.1.1.1. Corrección de Thormann
3.1.2. Fórmula de Darcy-Weisbach
3.1.3. Fórmula de Chezy
3-1
3-1
3-3
3-7
3-9
3.2.
Efecto de la deflexión de la tubería en la capacidad de descarga
3-10
3.3.
La sedimentación en los tubos de alcantarillado
3-13
I -1
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Página
4.
Aspectos mecánicos
4-1
4.1.
Rigidez de la tubería
4-1
4.2.
Influencia del suelo en la tubería enterrada
4-3
4.3.
Influencia del tráfico vehicular en la tubería enterrada
4.3.1. Cargas máximas permisibles en México para los vehículos
4-3
4-4
4.4.
Fórmulas para el cálculo de deflexión
4.4.1. Teoría de deflexión de Spangler
4.4.2. Clasificación de los suelos
4.4.2.1. Módulo de reacción del suelo (E')
4-5
4-5
4-8
4-9
5.
Instalación y mantenimiento
5-1
5.1.
Transporte, manejo y almacenamiento en obra
5.1.1. Transporte
5.1.2. Carga, descarga y manejo
5.1.3. Almacenamiento en obra
5-1
5-1
5-2
5-3
5.2.
Instalación
5.2.1. Conexiones de la línea Duradrén
5.2.2. Acoplamiento de la tubería
5.2.3. Instalación en la zanja
5.2.4. Dimensiones de zanja
5.2.5. Rendimiento de instalación
5.2.6. Instalación de la descarga domiciliaria
5-5
5-5
5-5
5-8
5-9
5-10
5-11
5.3.
Pruebas de hermeticidad en sistemas de alcantarillado
5.3.1. Pruebas hidrostáticas
5.3.2. Pruebas neumáticas
5-12
5-12
5-13
5.4.
Mantenimiento
5.4.1. Equipo hidroneumático de limpieza ( limpieza a alta presión)
5-17
5-18
6.
Bibliografía
6-1
Anexos
A1. Cuadros de deflexión de la tubería Duradrén
A1-1
A2. Resistencia química del tubo de PVC 1114
A2-1
A3. Tablas complementarias
A3-1
I -2
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
I -3
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
INDICE
DE
CUADROS
Página
Cuadro 1.1.
Cuadro 1.2.
Cuadro 1.3.
Cuadro 2.1.
Especificaciones de la tubería Duradrén Inglés
Especificaciones de la tubería Duradrén Métrico
Normas de la tubería Duradrén
Velocidades permisibles para tuberías de diferentes materiales
Cuadro 2.2.
Pendientes permisibles para tubería usando la fórmula de
Manning, n=0.009
Cosumo doméstico per capita
Clasificación de climas por su temperatura
Periodo de diseño para elemetos de sistemas de agua potable
y alcantarillado
Gastos mínimos recomendados para diferentes diámetros
Gastos mínimos recomendados para PVC
Cálculo del área, perímetro mojado y radio hidráulico, con la
corrección de Thormann
Valores recomendados de rugosidad en los sistemas (ε' ) con
tubería de PVC
Reducción de la sección transversal del tubo y el gasto, debido
a la deflexión
Fricción requerida por los alacntarillados según el tipo de
material para ser usada en la figura 3.7.
Rigidez de la tubería Duradrén S.I.
Pesos de diferentes vehículos automotores
Factor de impacto vs profundidad de relleno
Principales tipos de suelos (SUCS)
Valores promedio del módulo de reacción del suelo (E') (Para
la deflexión inicial en tubos flexibles)
Guía aproximada para estimar el rango del grado de
compactación vs la clase y el método de relleno como
porcentaje Proctor o de la Densidad Relativa para materiales
granulares
Porcentaje Proctor y Módulo de reacción del suelo (E') para
diferentes clases de suelo
Capacidad de carga de tubería en camión tipo torton
Dimensiones de zanja recomendadas
Rendimiento de lubricante para uniones anger
Rendimiento de instalación
Tiempo mínimo requerido para una caida de presión de 1 PSI
(0.070 kg/cm2 ) en función de la longitud de prueba para Q
= 0.000457 m3/min/m2
Tiempo mínimo requerido para una caida de presión de 0.5 PSI
(0.035 kg/cm2 ) en función de la longitud de prueba para Q
= 0.000457 m3/min/m2
1-2
1-2
1-5
2-1
Cuadro 2.3.
Cuadro 2.4.
Cuadro 2.5.
Cuadro 2.6.
Cuadro 2.7.
Cuadro 3.1.
Cuadro 3.2.
Cuadro 3.3.
Cuadro 3.4.
Cuadro 4.1.
Cuadro 4.2.
Cuadro 4.3.
Cuadro 4.4.
Cuadro 4.5.
Cuadro 4.6.
Cuadro 4.7.
Cuadro 5.1.
Cuadro 5.2.
Cuadro 5.3.
Cuadro 5.4.
Cuadro 5.5.
Cuadro 5.6.
I -4
2-2
2-3
2-3
2-3
2-5
2-5
3-5
3-10
3-11
3-14
4-1
4-4
4-7
4-8
4-9
4-10
4-10
5-1
5-9
5-10
5-10
5-16
5-16
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
INDICE
DE
FIGURAS
Página
Figura 1.1.
Figura 3.1.
Figura 3..2.
Figura 3.3.
Figura 3.4.
Figura 3.5.
Figura 3.6.
Figura 3.7.
Figura 4.1.
Figura 4.2.
Figura 4.3.
Figura 4.4.
Figura 5.1.
Figura 5.2.
Figura 5.3.
Figura 5.4.
Figura 5.5.
Figura 5.6.
Figura 5.7
Figura 5.8.
Figura 5.9.
Figura 5.10.
Figura 5.11.
Figura 5.12.
Figura 5.13.
Figura 5.14.
Tubería de PVC para alcantarillado
Radio hidráulico, perímetro mojado, diámetro del tubo totalmente
lleno y parcialmente lleno
Relación del grado de llenado (d/D), gasto (Qp/Qt) y velocidad
(Vp/Vt), normal y con la corrección de Thormann
Viscosidad cinemática (υ) del agua a presión atmosférica del
nivel del mar
Efecto de la deflexión en la conducción en tubos de PVC
Transporte de material sólido a través de los alcantarillados
Alcantarillados parcialmente llenos
Pendiente requerida en relación al diámetro y al grado de llenado
en el tubo, para evitar sedimentación
Conceptos de diseño para varios tipos de tubos enterrados
Acción del suelo sobre el tubo
Valores del coeficiente Cd para usarse en la fórmula 4.4.
Valor del coeficiente Cs para usarse en la fórmula 4.6.
Transporte de la tubería
Carga, descarga y manejo de la tubería
Almacenamiento en obra
Almacenamiento a la intemperie
Silleta con Desv./45º
Codo de 45º
Codo de 90º
Cople reparación
Acoplamiento de la tubería Duradrén
Forma de Instalación de la tubería
Unión anger utilizada en la tubería Duradrén mostrando el anillo
empaque (según Norma NMX-E-111)
Zanja tipo
Instalación de la descarga domiciliaria
Equipo de limpieza a alta presión (hidroneumático)
I -5
1-3
3-1
3-4
3-9
3-11
3-12
3-13
3-15
4-2
4-3
4-6
4-7
5-2
5-3
5-4
5-4
5-5
5-5
5-5
5-5
5-6
5-6
5-7
5-8
5-11
5-18
Capítulo 1
Introducción
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
CRITERIOS DE DISEÑO PARA REDES DE ALCANTARILLADO
EMPLEANDO TUBERIA DE PVC.
1.- INTRODUCCION.
1.1.- Generalidades.
Tubos Flexibles S.A. de C.V. fabricante de líneas de Poli (cloruro de Vinilo) (PVC), para diferentes
aplicaciones: alcantarillado, hidráulica, sanitario, riego, ducto telefónico, protección de cables, etc.
Las línea DURADREN ya sea en sistema INGLÉS o MÉTRICO, por sus propiedades fisicoquímicas
es la opción para un saneamiento ecológico.
El presente boletín técnico, se elaboró, con la finalidad de proporcionar los criterios de diseño básicos
para la aplicación del tubo PVC en alcantarillado.
El alcantarillado se define como la red de alcantarillas, generalmente tuberías enterradas, a través de
las cuales se deben evacuar en forma rápida y segura las aguas residuales y pluviales
conduciéndolas a cauces o plantas de tratamiento establecidas.
1.2.- Los alcantarillados
Los alcantarillados en la mayoría de los casos funcionan por gravedad aprovechando la pendiente
propia del terreno, aunque en zonas muy planas se hace necesario el uso de sistemas de bombeo.
Actualmente el uso de la tubería se ha generalizado para conducir el agua de desecho. A través del
tiempo se han usado distintos materiales en la fabricación de esta tubería como es la de cerámica (
barro, barro vidriado ), concreto, asbesto-cemento, fibrocemento y en las últimas décadas los
materiales plásticos como Policloruro de Vinilo PVC y polietileno ( PE ).
1.3.- Alcantarillados con PVC
En México los alcantarillados, usando tubería de PVC, han tenido aplicaciones satisfactorias, en
Europa y EE.UU. su uso es muy generalizado, ya que se aprovecharon las grandes ventajas que
tiene este material tales como, resistencia química, hermeticidad, ligereza, impermeabilidad, pared
interior lisa, larga vida útil, etc.. lo cual permite a iguales condiciones de pendiente y diámetro,
transportar un mayor gasto que las tuberías sucedáneas.
Los tubos DURADREN INGLÉS y DURADREN MÉTRICO, cumplen con las más estrictas normas de
calidad, excediendo los requerimientos de las normas nacionales e internacionales.
1-1
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
1.4 La tubería de PVC DURADREN INGLÉS y DURADREN MÉTRICO y DURAHOL.
1.4.1. Especificaciones dimensionales de la tubería de PVC para alcantarillado.
El cuadro 1.1 presenta en resumen la dimensiones principales de la tubería DURADREN INGLÉS Tipo
35 , Tipo 41 y Tipo 51 de 150 mm hasta 300 mm de diámetro. El cuadro 1.2 muestra las
dimensiones de la tubería de DURADREN MÉTRICO Serie 16.5, Serie 20 y Serie 25 de 11 cm hasta
63 cm de diámetro nominal. El cuadro 11.3, se presentan las dimensiones del tubo DURAHOL de
160 a 315 mm de diámetro.( ver figuras 1.1., 1.2 y 1.3.)
Fig. 1.1. Tubería de PVC para alcantarillado DURADRÉN INGLÉS.
Longitud 6 m.
Nicho
DE
DI
Marca tope
Campana
Espiga
DE: Diámetro Exterior
DI: Diámetro Interior
e: Espesor de pared
Cuadro 1.1 Especificaciones de la tubería DURADREN INGLÉS
DIAMETRO
NOMINAL
( DN )
DIAMETRO
EXTERNO
( DE )
ESPESOR
DE PARED
(e)
(mm)
(pulg)
Mínimo
(mm)
Máximo
(mm)
150
200
250
300
6
8
10
12
159.1
213.1
266.3
317.0
159.7
213.7
267.1
318.0
150
200
250
300
6
8
10
12
159.1
213.1
266.3
317.0
159.7
213.7
267.1
318.0
Mínimo
(mm)
PESO
POR TRAMO
(Longitud Útil: 6 m.)
Máximo
(mm)
Mínimo
(kg)
Máximo
(kg)
5.3
6.9
8.6
10.2
19.296
34.452
53.964
77.232
22.134
38.820
60.822
86.256
4.5
5.9
7.4
8.7
16.558
29.628
46.466
65.758
19.316
34.049
53.556
69.529
3.6
4.8
5.9
7.0
13.134
23.940
37.272
53.124
15.204
27.282
42.174
59.820
TIPO 35
4.6
6.1
7.6
9.1
TIPO 41
3.9
5.2
6.5
7.7
TIPO 51
150
200
250
300
6
8
10
12
159.1
213.1
266.3
317.0
159.7
213.7
267.1
318.0
1-2
3.1
4.2
5.2
6.2
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Fig. 1.2. Tubería de PVC para alcantarillado DURADRÉN MÉTRICO.
Longitud 6 m.
Nicho
DE
DI
Marca tope
Campana
Espiga
DE: Diámetro Exterior
DI: Diámetro Interior
e: Espesor de pared
Cuadro 1.2. Especificaciones de la tubería DURADREN MÉTRICO.
DIAMETRO
NOMINAL
( DN )
(cm)
(pulg)
11
16
20
25
31.5
35.5
40
45
50
63
4
6
8
10
12
14
16
18
20
24
DIAMETRO
EXTERNO
( DE )
ESPESOR
DE PARED
(e)
Mínimo
(mm)
Máximo
(mm)
110
160
200
250
315
355
400
450
500
630
110.3
160.5
200.6
250.8
315.9
356.1
401.2
451.4
501.5
631.9
Mínimo
(mm)
PESO
POR TRAMO
(Longitud Útil: 6 m.)
Máximo
(mm)
Mínimo
(kg)
Máximo
(kg)
3.7
5.4
6.7
8.2
10.3
11.6
13.1
14.7
16.3
20.4
9.318
19.902
31.458
49.086
78.132
98.034
126.324
159.642
198.246
316.704
10.164
22.764
35.574
54.924
87.150
110.718
140.916
178.122
220.536
349.944
3.5
4.6
5.6
7.0
8.7
9.8
11.0
12.3
13.7
17.1
8.754
17.016
26.262
41.880
65.724
83.682
106.338
134.286
167.562
266.406
10.164
19.448
29.904
47.124
74.010
93.954
118.986
149.706
186.384
294.972
3.5
3.7
4.5
5.6
7.0
7.9
8.8
10.0
11.0
8.754
13.680
21.012
33.282
53.184
67.296
85.080
108.264
134.418
10.164
15.768
24.168
37.920
59.886
76.290
95.736
122.736
150.504
SERIE 16.5
3.2
4.7
5.9
7.3
9.2
10.4
11.7
13.1
14.6
18.4
SERIE 20
11
16
20
25
31.5
35.5
40
45
50
63
4
6
8
10
12
14
16
18
20
24
110
160
200
250
315
355
400
450
500
630
110.3
160.5
200.6
250.8
315.9
356.1
401.2
451.4
501.5
631.9
3.0
4.0
4.9
6.2
7.7
8.7
9.8
11.0
12.3
15.4
SERIE 25
11
16
20
25
31.5
35.5
40
45
50
4
6
8
10
12
14
16
18
20
110
160
200
250
315
355
400
450
500
110.3
160.5
200.6
250.8
315.9
356.1
401.2
451.4
501.5
1-3
3.0
3.2
3.9
4.9
6.2
7.0
7.8
8.8
9.8
Tubos Flexibles, S.A. de C.V.
63
24
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
630
631.9
12.3
14.0
213.882
242.754
Fig. 1.3 Tubería de pared estructurada longitudinalmente para alcantarillado DURAHOL.
Geometría
E spesor
de par ed
inter ior
Diámetro
exterior
E spes or
de pared
total
Cuadro 1.3. Especificaciones de la tuberia DURAHOL.
Diámetroámetro
Nominal
Mm
160
200
250
315
Diámetroámetro
exteriorl
Mm
160
200
250
315
Tolerancia
( +/- )
mm
0.5
0.6
0.8
1.0
1.5.- Terminología en alcantarillado ( Fuente: Referencia
Espesor de
Pared total
mm
4.1
5.1
6.4
8.1
(1)
Espesor de
Pared interior
Mm
0.5
0.6
0.7
0.8
)
1.5.1. Accesorios.- Son estructuras o elementos que comunican al alcantarillado con el exterior
permitiendo realizar trabajos de inspección, limpieza, reparación. Siendo los principales; pozo
de visita, pozo con caída, pozos especiales y cajas de unión.
1.5.2. Agua freática.- Es el agua natural que se encuentra en el subsuelo a una profundidad que
depende de las condiciones geológicas, topográficas y climatológicas de cada región.
1.5.3. Aguas residuales domésticas.- Conjunto de líquidos resultado del uso primario doméstico y
comercial, por el que haya sufrido degradación original.
1.5.4. Aguas pluviales.- Agua procedentes de la precipitación pluvial.
1.5.5. Aguas residuales municipales.- Aguas procedentes de un sistema de agua municipal.
1.5.6. Albañal.- Tubería de la red de alcantarillado que recoge las aportaciones de las aguas
domésticas y las conduce a las atarjeas.
1-4
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
1.5.7. Alcantarilla.- Conducto subterráneo destinado en las localidades para conducir y eliminar las
aguas residuales derivadas de los usos doméstico, comercial e industrial.
1.5.8. Alcantarillado sanitario.- Red de alcantarillas, generalmente tubería, a través de la cual se
deben evacuar en forma rápida y segura las aguas residuales domésticas, de establecimientos
comerciales y pequeñas plantas comerciales conduciéndose a una planta de tratamiento y
finalmente a un sitio de vertido donde no causen ni daños ni molestias.
1.5.9. Anillos de hule.- Elemento elastomérico que se usa como sello de juntas o uniones de las
tuberías, para conseguir su estanquidad.
1.5.10. Aportaciones de aguas residuales.- Volumen de agua residual por habitante y por día que
se utiliza para la obtención de los gastos de diseño.
1.5.11. Atarjea.- Conducto de servicio público colocado generalmente a lo largo y al centro de las
calles y que tiene por función recoger las aguas de los albañales y conducirlas a los
subcolectores y colectores.
1.5.12. Caja de unión.- Estructura que desempeña la misma función que los pozos de visita solo
que se construyen en las uniones de dos o más conductos con diámetro de 76 cm y
mayores.
1.5.13. Colector.- Tubería que recoge los caudales de las atarjeas en los pozos de visita, pueden ser
simples o ramificados. Las ramas se denominan subcolectores.
1.5.14. Conexión domiciliaria.- Conjunto de piezas usadas para conectar el sistema interno de
desagüe (albañal) con la red de atarjeas.
1.5.15. Emisor.- Conducto que recibe las aguas de un colector o un interceptor. No recibe ninguna
aportación adicional en su trayecto y su función es conducir las aguas residuales a la planta
de tratamiento. También se le llama emisor al conducto que lleva las aguas tratadas de la
planta de tratamiento al sitio de descarga.
1.5.16. Estanquidad.- Característica de un sistema sanitario de no permitir el paso del agua
(exfiltraciones ni infiltraciones) a través de la paredes de los tubos, las conexiones y los
accesorios
1.5.17. Sistema flexible.- Propiedad de una línea de conducción sanitaria de permitir movimiento
relativo entre sus componentes (tubo, conexiones y accesorios)
1.5.18. Hermeticidad.- Característica de una red de conductos de no permitir el paso del agua
(exfiltraciones ni infiltraciones) a través de sus juntas.
1.5.19. Interceptor.- Conducto que capta en forma parcial o total el gasto de dos o más colectores.
1.5.20. Junta.- Es el sistema de unión entre dos tubos y/o accesorios.
1.5.21. Madrinas.- Tuberías generalmente paralelas a los colectores que tienen la función de las
atarjeas.
1.5.22. Pozos de caídas.- Pozo de visita que sirve fundamentalmente para absorber desniveles.
1.5.23. Pozo especial.- Pozo de visita que se construye sobre los colectores y emisores con
diámetros de 76 cm a 107 cm.
1-5
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
1.5.24. Pozo de visita.- Accesorio que se coloca o construye en la red de alcantarillado y sirve para
hacer cambios de dirección, de diámetro y pendiente, permite la recepción de las atarjeas,
así como la ventilación del sistema y cuyas dimensiones son las adecuadas para el acceso
de un trabajador para inspección y mantenimiento de la red.
1.5.25. Registro.- Estructura formada por una caja, en donde se unen los albañales interiores del
predio y son generalmente de mampostería, de tabique o concreto.
1.5.26. Tratamiento de aguas residuales.- Serie de procesos artificiales a que se someten las
aguas residuales para eliminar o alternar sus constituyentes inconvenientes y obtener una
calidad, que satisfaga los requisitos para su disposición final, de acuerdo con lo que señale la
legislación relativa a la prevención y control de la contaminación ambiental.
1.5.27. Tubería trabajando a presión.- Conducto que se diseña hidráulicamente para que trabaje a
presión interna como el los casos de líneas por bombeo de agua residuales y de sifones.
1.5.28. Tuberías trabajando como canal.- Red de conductos de alcantarillado sanitario cuyo
diseño hidráulico se hace para que trabaje a superficie libre (gravedad).
1.5.29. Vertido.- Lugar en que un emisor o interceptor entrega las aguas residuales municipales
tratadas, para su disposición final, también se denomina desfogue
1.6.- Sistemas de alcantarillado
Sistemas de
Alcantarillado
Sistema
Combinado
Sistema
Separado
Sanitario +
Pluvial
Gravedad
Bombeo
Vacio
Sanitario
Pluvial
Gravedad
Bombeo
Vacio
Fundamentalmente existen dos esquemas de alcantarillado; combinado, cuando las aguas residuales
y las pluviales son conducidas por la misma tubería; separado, cuando una red conduce las aguas
residuales y otra independiente el agua pluvial.
1-6
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
En la construcción de un sistema de alcantarillado siempre se piensa en ejecutar obras económicas,
por lo tanto, se trata de evitar la construcción de estaciones de bombeo para aguas residuales y
pluviales, procurando que estas aguas escurran por gravedad hasta su sitio final de disposición; sin
embargo, de acuerdo con las condiciones topográficas de la localidad de que se trate, habrá
ocasiones en que sea obligado el bombeo.
1-7
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
1.7.- Cumplimiento con Normas Nacionales e Internacionales de la tubería DURADREN
INGLÉS, DURADREN MÉTRICO y DURAHOL.
Cuadro 1.4. Normas de la tubería DURADREN Y DURAHOL.
LÍNEA
DURADRÉN INGLÉS
TIPO 35, 41 y 51
150 a 300 mm
DURAHOL MÉTRICO
160 mm a 630 mm
DURADRÉN MÉTRICO
SERIE 16.5, 20 y 25
15 cm - 63 cm
NORMA
DE
PRODUCTO
NMX - E 211 / 1994
NMX - E 222 / 1994
NMX - E 215 / 1994
NORMA
DE
COMPUESTO
ASTM - D 3034 / 1988
NMX - E 31 / 1994
ASTM - D 1784 / 1981
ISO/DIS 4435
NMX - E 31 / 1994
NMX - E 31 / 1994
ASTM - D 1784 / 1981
ASTM - D 1784 / 1981
NMX - NORMA MEXICANA;
ASTM - AMERICAN SOCIETY FOR TESTING AND MATERIALS
ISO - INTERNATIONAL STANDARS ORGANIZATION
1-8
Capítulo 2
Requerimientos Técnicos de una
Red de Alcantarillado
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
2.- REQUERIMIENTOS TECNICOS DE UNA RED DE ALCANTARILLADO
2.1. Especificaciones de diseño
2.1.1. Velocidades permisibles.
En el diseño hidráulico de un alcantarillado lo ideal es tener excavaciones mínimas y no requerir de la
utilización de equipo de bombeo, pero esto no siempre se puede lograr debido a las características
topográficas de cada región. De aquí, se desprende que en el estudio de la solución óptima sea
necesario tener en consideración los límites permisibles para velocidades de conducción con el
objeto de asegurar el buen funcionamiento de la tubería y de las estructuras del sistema.
Cuadro 2.1. Velocidades permisibles para tubería de diferentes materiales.
MATERIAL
DEL TUBO
VELOCIDAD
PERMISIBLE
MINIMA ( m/s)
MAXIMA (m/s)
Concreto hasta 45 cm
0.3
3.0 *
Concreto mayor de 45 cm
0.3
3.5
Asbesto Cemento
0.3
5.0
PVC
0.3
5.0**
Polietileno
0.3
5.0
* El limitar las velocidades tiene el objeto de evitar la generación de gas hidrógeno sulfurado, que es muy tóxico y
aumenta los malos olores en las aguas así como reducir los efectos de la erosión en las paredes de los
conductos. Fuente: Referencias (4)(2)
** En el caso del PVC los gases generados por la conducción de las aguas en este rango de velocidades no lo
afecta, además de soportar la abrasión.
2.1.2. Pendientes permisibles
Con el fin de tener volúmenes menores de excavación se debe procurar que la pendiente de la tubería
siga en lo posible la pendiente del terreno (4) , sin embargo se debe contemplar lo siguiente:
-La pendiente mínima permisible se considera aquella necesaria para tener una velocidad de
0.30 m/s con un gasto de 1 lps y un tirante mínimo de 1.5 cm.(2)
En base a las velocidades permisibles para el PVC, se tienen las siguientes pendientes para cada
diámetro en los dos sistemas.
2-1
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Cuadro 2.2. Pendientes permisibles para tubería DURADRÉN y DURAHOL
usando la fórmula de Manning, n=0.009
DIAMETRO
LÍNEA
Duradrén
Inglés
TIPO 35
Duradrén
Inglés
TIPO 41
Duradrén
Inglés
TIPO 51
NOMINAL
( mm ó cm)
INTERNO
PROMEDIO
(mm )
150
200
250
300
150
200
250
300
150
200
250
300
149.54
200.39
250.54
298.19
151.01
202.28
252.85
301.13
152.69
204.38
255.58
304.28
GASTO
MÍNIMO
(lps )
1.0
1.0
1.0
2.0
1.0
1.0
1.0
2.0
1.0
1.0
1.0
2.0
PENDIENTE
MÍNIMA
(v = 0.3 m/s)
( mm / m)
MÁXIMA
( v= 5.0 m/s )
( mm / m)
1.22
1.34
1.45
0.86
1.22
1.34
1.46
0.86
1.22
1.35
1.46
0.87
124.66
84.38
62.65
49.67
123.05
83.33
61.89
49.02
121.24
82.19
61.01
48.35
11
103.25
1.0
1.12
204.28
16
150.15
1.0
1.22
123.99
20
187.70
1.0
1.31
92.07
25
234.90
1.0
1.42
68.27
31.5
295.95
2.0
0.85
50.17
SERIE 16.5
35.5
333.55
2.0
0.89
42.78
40
375.80
2.0
0.93
36.49
45
422.90
3.0
0.69
31.17
50
469.85
4.0
0.56
27.09
63
592.15
5.0
0.51
19.90
11
103.65
1.0
1.12
203.23
Duradrén
16
151.65
1.0
1.22
122.35
Métrico
20
189.90
1.0
1.32
90.72
25
237.20
1.0
1.43
67.39
31.5
299.05
2.0
0.86
49.48
SERIE 20
35.5
337.05
2.0
0.90
42.18
40
379.80
2.0
0.94
35.98
45
427.40
3.0
0.69
30.73
50
474.75
4.0
0.57
26.72
63
598.45
5.0
0.51
19.62
11
103..65
1.0
1.12
203.23
Duradrén
16
153.35
1.0
1.23
120.55
Métrico
20
191.90
1.0
1.32
89.39
25
239.90
1.0
1.44
66.38
31.5
302.25
2.0
0.86
48.78
SERIE 25
35.5
340.65
2.0
0.90
41.59
40
384.00
2.0
0.94
35.45
45
431.90
3.0
0.70
30.31
50
479.95
4.0
0.57
26.33
63
604.65
5.0
0.51
19.35
160
151.80
1.0
1.22
122.19
Durahol
200
189.80
1.0
1.31
90.72
250
237.20
1.0
1.42
67.39
315
298.80
2.0
0.86
49.53
Nota: Los datos para pendiente mínima son gasto mínimo y velocidad mínima (0.3 m/s ); para pendiente máxima, se usó
velocidad máxima (5.0 m/s) y un 82 % de llenado.
Duradrén
Métrico
2.2. Aportaciones de aguas residuales
2-2
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
El sistema de alcantarillado mantiene una relación directa con el servicio de agua potable, por lo tanto
existe una razón de proporción entre la dotación de agua potable y la aportación de aguas residuales
a la red de alcantarillado. Es comunmente aceptado que la aportación de aguas residuales representa
el 75 % de la dotación de agua, asumiendo que el 25% restante se pierde y nunca llega a la tubería.
Para tal efecto, se consideran las cantidades de agua que se indican en el cuadro 2.3, las cuales
están en función del clima y clase socioeconómica. El cuadro 2.4 presenta la clasificación del clima
en base a su temperatura media anual.
Cuadro 2.3. Consumos domésticos per capita.
CLIMA
CÁLIDO
SEMICÁLIDO
TEMPLADO
CONSUMO POR CLASE SOCIOECONÓMICA
RESIDENCIAL
MEDIA
POPULAR
400
230
185
300
205
130
250
195
100
NOTAS::
1) Para los casos de climas semifrío y frío se consideran los mismos valores que para el
clima templado.
2) El clima se selecciona en función de la temperatura media anual (cuadro 2.4.)
Cuadro 2.4. Clasificación de climas por su temperatura
TEMPERATURA MEDIA ANUAL
(ºC)
Mayor que 22
De 18 a 22
De 12 a 17.9
De 5 a 11.9
Menor que 5
TIPO DE CLIMA
CÁLIDO
SEMICÁLIDO
TEMPLADO
SEMIFRÍO
FRÍO
Cuando dentro del área de servicio del sistema de alcantarillado se localicen industrias, se debe
considerar la aportación de éstas, sin olvidar que se debe tratar y regular sus descargas dentro de
sus propias fábricas antes de ser vertidas a la red municipal.
2.2.1. Cuantificación de los gastos de aguas residuales
Debido a que la construcción de un sistema de alcantarillado involucra fuertes inversiones, se
proyecta para servir de manera eficiente a un número de habitantes mayor al existente en el momento
de elaborar el proyecto. En base a estudios de carácter técnico-económico, normalmente el período
de diseño de los proyectos se establece de acuerdo con el siguiente criterio (ver el Manual de Diseño
de Agua Potable, Alcantarillado y Saneamiento de la C.N.A. en el libro V, Datos Básicos de
Ingeniería Básica).
Cuadro 2.5. Período de diseño para elemento de sistemas de
agua potable y alcantarillado.
ELEMENTO
PERIODO DE DISEÑO
(años)
2-3
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Fuente:
a) Pozo
5
b) Embalse (presa)
hasta 50
Línea de conducción
de 5 a 20
Planta potabilizadora
de 5 a 10
Estación de Bombeo
de 5 a 10
Tanque
de 5 a 20
Distribución primaria
de 5 a 20
Distribución secundaria
a saturación (*)
Red de atarjeas
a saturación (*)
Colector y emisor
de 5 a 20
Planta de tratamiento
de 5 a 10
(*) En el caso de distribución secundaria y red de atarjeas, por condiciones de
construcción difícilmente se podrá diferir la inversión.
Para la cuantificación del gasto medio de aguas residuales, se considera como aportación el 75 %
de la dotación de agua potable tomando en cuenta el crecimiento que pudiera tener este dentro de un
período de 5 a 20 años el área a la cual prestará su servicio la red, así como la longitud acumulativa
de la tubería tributaria o el área acumulativa servida y la densidad de población.
2.2.1.1. Gasto Medio Diario
El gasto medio diario se calcula con la siguiente fórmula:
Qmed =
( Ap × P )
86400
( 2.1)
En donde:
Ap = Aportación de aguas residuales en l/hab/día
P = Población en No. de Hab.
En el caso del diseño por tramos de la línea de alcantarillado la fórmula anterior tiene una variación:
Qmed a −b =
( No. Haba −b × Dp × Ca)
86400
(2.1a)
En donde:
Qmeda-b= Gasto medio del tramo a-b, lps
Dp
= Dotación de agua potable en l/hab/día (cuadro 2.3.)
No. Haba-b = No de habitantes en el tramo
Ca
= Coeficiente de aportación
2-4
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
2.2.1.2. Gasto Mínimo
El gasto mínimo es el menor de los valores que generalmente se presentará en la conducción . El
criterio aceptado es considerar que el gasto mínimo en un flujo variable de aguas residuales es la
mitad del gasto medio. (7)
Qmín =
Qmed
2
(2.2)
Este gasto es aceptado generalmente como base en la elaboración de proyectos.
En los casos en que se tengan gastos muy pequeños se acepta como gasto mínimo 1.5 lps que
corresponde a la descarga de un inodoro de 18 litros, y de 1 lps para uno de 6 litros; el siguiente
cuadro muestra las recomendaciones de la SAHOP y CNA de gastos mínimos para los diferentes
diámetros. (14), (7)
Cuadro 2.6. Gastos mínimos recomendados para diferentes diámetros
Diámetro
en concreto
cm
20
25
30
38
45
61
No. de
descargas
simultáneas
1
1
2
2
3
5
Aportación por descarga
Gasto mínimo de aguas
residuales ( lps )
Inodoro 18 Lts.
Inodoro 6 Lts.
Inodoro 18 Lts.
Inodoro 6 Lts.
1.5
1.5
1.5
1.5
1.5
1.5
1.0
1.0
1.0
1.0
1.0
1.0
1.5
1.5
3.0
3.0
4.5
7.5
1.0
1.0
2.0
2.0
3.0
5.0
El cuadro 2.7, se elaboró tomando como base el cuadro 2.6.
Cuadro 2.7. Gastos mínimos recomendados para PVC
Diámetro
en concreto
mm
200
250
300
315
400
450
500
630
No. de
descargas
simultáneas
1
1
2
2
2
3
4
5
Aportación por descarga
Gasto mínimo de aguas
residuales ( lps )
Inodoro 18 Lts.
Inodoro 6 Lts.
Inodoro 18 Lts.
Inodoro 6 Lts.
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.5
1.5
3.0
3.0
3.0
4.5
6.0
7.5
1.0
1.0
2.0
2.0
2.0
3.0
4.0
5.0
2.2.1.3 Gasto máximo instantáneo
El máximo gasto que se considera, pueda presentarse en un instante dado, se le conoce como
gasto instantáneo. Este valor determina la capacidad requerida en las tuberías.
2-5
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Para obtener el gasto máximo instantáneo se requiere multiplicar el gasto medio por el coeficiente de
Harmon que es aceptado en México como un valor bastante aproximado, Este coeficiente fue
desarrollado en forma empírica por W.G. Harmon y trata de cubrir la variabilidad en las aportaciones
por descargas domiciliarias durante el año y el día. (7) La relación es la siguiente:
Qmáx . inst. = M × Qmed
(2.3)
Siendo M, el coeficiente de Harmon, el cual se define de la siguiente forma:
M = 1+
14
4+ P
( 2. 4)
Donde:
P = Población de proyecto en miles de habitantes
Esta relación es válida para poblaciones hasta 63,454 habitantes, para poblaciones mayores el
coeficiente será igual a 2.17, es decir, que para poblaciones mayores a 63,454 usuarios, la variación
no sigue la ley establecida por Harmon. Para poblaciones menores a 1,000 habitantes será igual a
3.8. (7)
2.2.1.4 Gasto Máximo extraordinario
Este gasto prevé los excesos de las descargas a la red de alcantarillado. Se obtiene multiplicando el
gasto máximo instantáneo por el coeficiente de previsión o seguridad .
La relación para obtener el gasto máximo extraordinario es la siguiente:
Qmáx . ext . = Qmáx . inst . × Cs
(2.5)
Donde:
Cs =
Coeficiente de seguridad, 1.0 ≤ Cs ≤ 2.0
Los valores del coeficiente de seguridad van de 1.0 a 2.0 tomándose comúnmente 1.5. para sistemas
combinados y 1.0 para sistemas separados.
Ejemplo 2.1.
Obtener los gastos medio, mínimo y máximo extraordinario y el diámetro para un tramo inicial de una
red de alcantarillado, de una población de proyecto de 150,000 habitantes. La zona en su mayoría es
de clase socioeconómica media y tiene una temperatura media anual de 20 ºC (cuadro 2.3. y 2.4.).
Solución
Del cuadro 2.4. se tiene que para una temperatura media anual de 20 ºC el clima se clasifica como
semicálido. Del cuadro 2.3. para una clase socioeconómica media y un clima semicálido se tiene un
consumo de 205 l/hab/día.
1. Datos de la línea:
Longitud del tramo:
Longitud tributaria:
Longitud acumulada:
Densidad de población:
Población en el tramo:
90 m
0
90 m
0.867 hab/m
72 hab
2-6
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
2. Cálculo de los gastos de proyecto.
Qmed =
( 72 hab × 205 l / hab / día × 0. 75 )
= 0.128 lps (fórmula 2.1 a)
86400
Qmín = 0.128/2 = 0.064 lps (fórmula 2.2)
por norma el gasto no debe ser menor al mostrado en el cuadro 2.7 por lo que se considerará como
gasto mínimo 1.0 lps que corresponde a la descarga de un inodoro de 6 litros de capacidad.
Qmín por norma = 1.0 lps
El coeficiente de Harmon aplicado en el tramo se toma de 3.8, por lo que el gasto máximo
instantáneo es:
Qmáx. inst. = 3.8 ×0.128 lps = 0.486 lps (fórmula 2.3), por lo que se toma de 1 lps
y el gasto máximo extraordinario aplicando un coeficiente (Cs) de 1.5 es:
Qmáx. ext. = 0.486 lps ×1.5 = 0.730 lps (fórmula 2.5), por lo que se toma de 1 lps
Cálculo del gasto y la velocidad a tubo lleno con pendiente y diámetro propuesto.
Una vez calculados los diferentes gastos se procede a hacer el diseño de la línea de conducción,
para ello se calcula primeramente el diámetro usando la pendiente de la línea y el gasto máximo
extraordinario. Las pendientes se muestran en la siguiente figura
1
2
90 m
113.4
St = 7.3 mm/m
112.74
Sp = 8 mm/m
φ = 200 mm
Normalmente las pendientes de plantilla propuesta, se expresan en enteros, debido a que en la
práctica es difícil dar en el campo pendientes con aproximaciones a la décima.
Por tratarse de un tramo inicial se propone el diámetro mínimo, que desde el punto de vista
operacional y de conservación, para evitar las obstrucciones, es de 20 cm en concreto y 200
mm en PVC Duradrén S.I. Tipo 41.
2-7
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Cálculo de Velocidad y Gasto a tubo lleno.
a) Para PVC
La velocidad a tubo lleno es:
Datos:
n de Manning
φ interno del tubo
Pendiente propuesta
= 0.009
= 202.28 mm = 0.2023 m
= 8 mm / m = (0.008 m/m)
1
VT.LL. =
1
0 . 2023 23
×(
) × ( 0. 008 ) = 1. 36 m / s
0. 009
4
2
(ver fórmulas 3.1 y 3.8)
y el gasto a tubo lleno.
Q T.LL. =
π × ( 0 . 2023 ) 2
× 1. 36 × 1000 = 43 . 69 lps
4
Nota: Se pueden usar para calcular los valores anteriores los cuadros A3.1. y A3.2. del
anexo A3
b) Para concreto
La velocidad a tubo lleno es:
Datos:
n de Manning
φ interno del tubo
Pendiente propuesta
= 0.013
= 20 cm = 0.20 m
= 8 mm = (0.008 m/m)
1
VT.LL. =
1
0 . 20 23
×(
) × ( 0 . 008 ) = 0.93 m / s
0. 013
4
2
(ver fórmulas 3.1 y 3.8)
y el gasto a tubo lleno.
Q T.LL. =
π × ( 0 . 20 ) 2
× 0 . 93 × 1000 = 29 . 34 lps
4
Cálculo de velocidades reales
Las velocidades reales máxima y mínima se determinan en función de las relaciones Qp/Qt y Vp/Vt
(figura 3.2. - también se puede usar el cuadro A3.3. del anexo A3 -).
El cálculo de velocidad máxima es el siguiente:
a) Para PVC.
2-8
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Qmáx . ext
1 lps
=
= 0. 023
QT.LL.
43. 69 lps
b) Para concreto
Qmáx . ext .
1 lps
=
= 0. 034
QT.LL.
29 . 34 lps
Obteniendo este valor se consulta la Relación del grado de llenado (d/D), gasto (Qp/Qt) y velocidad
(Vp/Vt), normal y con la corrección de Thormann, de la figura 3.2., capítulo 3. (ver también el cuadro
A3.3. del anexo A3)
2-9
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
a) Para PVC
Vmáx . .
= 0. 442
V T.LL.
b) Para concreto
Vmáx .
= 0. 464
V T.LL.
Con este valor se puede determinar la velocidad máxima de la siguiente manera:
a) Para PVC.
V m áx = 0. 442 × VT. LL. = 0 .442 × 1. 36 = 0 .601 m / s (< 5 m/s dentro del rango permisible)
b) Para concreto
V m áx = 0. 464 × VT. LL. = 0. 464 × 0.9 3 = 0 .432 m / s (< 3 m/s, dentro del rango permisible)
Para el cálculo de la velocidad mínima se hace lo mismo que con la velocidad máxima:
a) Para PVC.
Qmín .
1. 0lps
=
= 0. 023
QT.LL.
43. 69 lps
b) Para concreto
Qmín .
1. 0lps
=
= 0. 034
QT.LL.
29. 34 lps
Utilizando nuevamente la figura 3.2 o el cuadro A3.3. del anexo A3
a) Para PVC
Vmáx . .
= 0. 442
V T.LL.
b) Para concreto
2 - 10
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Vmáx .
= 0. 464
V T.LL.
Con estos valores se determina la velocidad mínima
a) Para PVC.
V m áx = 0. 442 × VT. LL. = 0 .442 × 1. 36 = 0 .601 m / s (< 0.3 m/s dentro del rango permisible)
b) Para concreto
V m áx = 0. 464 × VT. LL. = 0. 464 × 0.9 3 = 0 .432 m / s (< 0.3 m/s, dentro del rango permisible)
En ambos casos el tubo está dentro de los rangos permisibles.
2 - 11
Capítulo 3
Aspectos Hidráulicos de los
Alcantarillados
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
3. ASPECTOS HIDRAULICOS DE LOS ALCANTARILLADOS
3.1. Fórmulas para cálculos hidráulicos
Para los cálculos hidráulicos de tuberías existe gran diversidad de fórmulas, en este boletín se
aplicarán las fórmulas de Manning, Darcy-Weisbach y Chezy.
3.1.1 Fórmula de Manning
Por lo general la fórmula de Manning se ha usado para canales, en tuberías la fórmula se usa para
canal circular parcial y totalmente lleno. Uno de los inconvenientes de esta fórmula es que solo
toma en cuenta un coeficiente de rugosidad obtenido empíricamente y no toma en cuenta la
variación de viscosidad por temperatura. Las variaciones del coeficiente por velocidad, si las toma
en cuenta aunque el valor se considera para efectos de cálculo constante, la fórmula es como
sigue aplicada a tubos:
v=
1 2 3 12
Rh S
n
Rh =
(3.1),
A
Pm
(3. 2)
En donde:
v = Velocidad del flujo ( m/s )
n = Coeficiente de rugosidad ( adim )
S = Pendiente del tubo ( m/m )
Rh = Radio hidráulico ( m )
A = Área del tubo ( m² )
Pm = Perímetro mojado ( m )
Figura 3.1. Radio hidráulico, perímetro mojado, diámetro de tubo totalmente lleno
y parcialmente lleno.
Pm
S
α°
D
D
d
D
β°
S
Pm
a). Tubo lleno
c). Tubo parcialmente lleno
por abajo de la mitad
b). Tubo parcialmente lleno
por arriba de la mitad
Ya que el gasto es igual al producto del área por la velocidad, esto es:
Q = vA
(3.3)
Sustituyendo en ( 3.1 )
Q=
A 2 3 12
Rh S
n
3- 1
(3.4)
Pm
d
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Donde:
Q = Gasto en ( m³ /s )
n = Coeficiente de rugosidad ( adim )
S = Pendiente del tubo ( m/m )
Rh = Radio hidráulico ( m )
Para tubo completamente lleno el área, el perímetro y el radio hidráulico quedan definidos de la
siguiente manera:
A=
πD
4
2
Pm = π D
(3.5),
π D2
)
A
D
Rh =
= 4
=
Pm
πD
4
(
(3.6),
(3.7)
Donde:
π
= 3.1415927
D = Diámetro interno de la tubería ( m )
La fórmula de Manning para tubo completamente lleno es la siguiente: (Fig. 3.1 a) )
Q=
A D 2 3 12
( ) S
n 4
(3.8)
Cuando es tubo parcialmente lleno (en la mayoría de los casos ), la fórmula es un poco más
compleja. Para tubo lleno por arriba de la mitad ( d/D > 0.5 ) las fórmulas del área, perímetro
mojado y radio hidráulico serían:
A=
D2
α senα °
(π − +
)
4
2
2
(3.9)
Pm =
D
( 2π − α )
2
( 3.10 )
Rh =
D
4
1+
senα °
(2 π − α )
Donde:
α°= Angulo formado desde la superficie del agua hasta el
centro del tubo. ( figura 3.1 )
α ° = 4 tan−1
1− K
K−K
2
(gr ados)
(3.12 )
Donde:
3- 2
α = α° ×
π
(r ad)
180
(3.13 )
( 3.11)
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
K = d/D
( Fig. 3.1 b) )
Ejemplo 3.1.: Un tubo lleno a 3/4 de su capacidad ( K= 3/4 = 0.75 ) valor comunmente utilizado
para el diseño, resultaría:
α = 2.0944 rad = 120°
A = 0.6319 D²
Pm = 2.0944 D
Rh = 0.3017 D
Para tubos por abajo de la mitad del diámetro ( K ≤ 0.5 )
D 2 β senβ º
( −
) (3.14 )
4 2
2
D
Pm = β (3.15 )
2
D
senβ °
Rh = ( 1 −
) (3.16 )
4
β
K
β ° = 4 tan−1 (
) (3.17 )
K − K2
π
β = β °×
( 3.18 )
180
A=
Donde:
para K ≤ 0.5
K = d/D
(Fig. 3.1 c) )
Ejemplo 3.2.: Un tubo lleno al 1% de su capacidad ( K= 0.01 ).
β = 0.40067 rad = 22º 57' 24"
A = 0.00133 D²
Pm = 0.20033 D
Rh = 0.00664 D
3.1.1.1. Corrección de Thormann
Con las fórmulas desarrolladas anteriormente se puede deducir que la máxima descarga ocurre
cuando el tubo esta parcialmente lleno al 95 % de su capacidad. Muchos investigadores han
3- 3
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
llevado a cabo experimentos sobre el flujo en líneas de tuberías parcialmente llenas, Thormann
llegó a la conclusión de que la máxima descarga no ocurre al 95 % sino a tubo lleno, esto se
podría explicar por la fricción que existe entre la frontera del aire y del agua. Thormann desarrolló
una ecuación para corregir los valores de gastos, esto sería demostrado para tirantes de más del
50 % de llenado. (18)
La modificación es la siguiente:
Pm' = Pm + ω S
(3.19)
Donde:
Pm'
Pm
ω
S
=
=
=
=
Perímetro mojado corregido de acuerdo a Thormann (m)
Perímetro mojado (m)
Factor de corrección
Ancho del nivel del agua (m) [ver figura 3.1 a), b)]
El valor de ω es calculado como sigue:
ω=
(10
d
d
− 5) 3 − 5(10 − 5)
D
D
150
(3. 20)
El cuadro 3.1 (12) muestra las relaciones del área, perímetro mojado y radio hidráulico en función del
diámetro para los tubos parcialmente llenos y totalmente llenos incluyendo la corrección de
Thormann.
La figura 3.2. muestra la relación existente entre el grado de llenado , el gasto y la velocidad,
usando la fórmula de Manning (ver también cuadro A3.3. en el anexo A3)
Figura 3.2. Relación del grado de llenado (d/D) , gasto (Qp/Qt) y velocidad (Vp/Vt) ,
normal y con la corrección de Thormann
3- 4
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Cuadro 3.1 Cálculo del área , perímetro mojado y radio hidráulico , con la
corrección de Thormann
K=
d/D
αóβ
rad
α°ó β°
Grados
º
A/D²
Pm/D
Rh/D
ω
S/D
Pm'/D
Rh'/D
0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.67
0.70
0.80
0.90
1.00
0.0000
1.2870
1.8546
2.3186
2.7389
3.1416
2.7389
2.4478
2.3186
1.8546
1.2870
0.0000
0.0000
73.7398
106.2602
132.8436
156.9261
180.0000
156.9261
140.2463
132.8436
106.2602
73.7398
0.0000
0.0000
0.0409
0.1118
0.1982
0.2934
0.3927
0.4920
0.5594
0.5872
0.6736
0.7445
0.7854
0.0000
0.6435
0.9273
1.1593
1.3694
1.5708
1.7722
1.9177
1.9823
2.2143
2.4981
3.1416
0.0000
0.0635
0.1206
0.1709
0.2142
0.2500
0.2776
0.2917
0.2962
0.3042
0.2980
0.2500
-----0.0000
-0.0267
-0.0239
-0.0133
0.0800
0.2933
0.6667
-----1.0000
0.9798
0.9404
0.9165
0.8000
0.6000
0.0000
-----1.5708
1.7460
1.8952
1.9701
2.2783
2.6741
3.1416
-----0.2500
0.2818
0.2951
0.2981
0.2956
0.2784
0.2500
Ejemplo 3.3.:
1. ¿Qué gasto conducirá y cual será la velocidad del agua en una tubería parcialmente
llena al 67 % de su diámetro (d/D = 0.67), si el material de que está compuesta es PVC
con un coeficiente de rugosidad de Manning (n) igual a 0.009, una pendiente de 0.005 m/m
(0.5 %, 5 mm) y un diámetro nominal de 200 mm (Duradrén Inglés Tipo 41)?
3- 5
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
2. Para las mismas condiciones ¿cuál serán el gasto y la velocidad, si la tubería fuera de
concreto (n = 0.013), con diámetro nominal de 20 cm?
Solución:
1. Para tubería de PVC
I.- De la figura 3.2 entrando con el valor de d/D = 0.67 en el eje de las ordenadas se traza
una línea recta hasta que intercepte las curvas Qp/Qt y Vp/Vt, se le en el eje de las
abscisas los siguientes valores:
a) Sin corrección de Thormann (normal):
Qp/Qt = 0.785
Vp/Vt = 1.120
b) Con corrección de Thormann
Qp/Qt = 0.785
Vp/Vt = 1.105
Haciendo el cálculo a tubería completamente llena (fórmula 3.8) se tiene lo siguiente:
Para PVC, el diámetro interno promedio de la tubería de 200 mm es: 202.30 mm;
A = πD² /4 = 0.0321 m²,
Rh = D/4 = 0.0506 m:
Qt = 0.0321 / 0.009 x ( 0.0506)2/3 (0.005)1/2 = 0.0345 m3 /s = 34.54 lps
Vt = Qt / A = 0.0345 m3 /s / 0.0321 m² = 1.074 m/s
3- 6
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
a)
Qp = 0.785 x 34.54 lps = 27.11 lps
Vp = 1.120 x 1.074 m/s = 1.20 m/s
b)
Qp = 27.11 lps
Vp = 1. 105 x 1.074 m/s = 1.19 m/s
II.- Usando el cuadro 3.1 se tienen los siguientes valores para d/D = 0.67
A/D² = 0.5594; A = 0.0229 m²
a)
Rh/D = 0.2917;
Rh = 0.0590 m
b)
Rh'/D = 0.2951;
Rh' = 0.0597 m
Calculando el gasto y la velocidad:
a)
Qp = 0.0229 / 0.009 x ( 0.0590 )2/3 ( 0.005)1/2 = 27.27 lps
Vp = 0.0273 / 0.0229 = 1.19 m/s
b)
Qp = 0.0229 / 0.009 x ( 0.0597 )2/3 ( 0.005 )1/2 = 27.48 lps
Vp = 0.0275 / 0.0229 = 1.20 m/s
2. Para tubería de Concreto
I.- Los valores obtenidos de la gráfica son iguales en el caso del concreto, haciendo el
cálculo para tubería completamente llena con un diámetro interno de 200 mm:
A = πD² /4 = 0.0314 m²,
Rh = D/4 = 0.05 m:
Qt = 0.0314 / 0.013 x ( 0.05)2/3 (0.005)1/2 = 0.0201 m3 /s = 23.19 lps
Vt = Qt / A = 0.0232 m3 /s / 0.0314 m² = 0.738 m/s
a)
Qp = 0.785 x 23.19 lps = 18.20 lps
Vp = 1.120 x 0.738 m/s = 0.83 m/s
b)
Qp = 18.20 lps
Vp = 1.105 x 0.738 m/s = 0.82 m/s
II.- Usando el cuadro 3.1 se tienen los siguientes valores para d/D = 0.67
A/D² = 0.5594;
A = 0.0224 m²
a)
Rh/D = 0.2917;
Rh = 0.0583 m
b)
Rh'/D = 0.2951;
Rh' = 0.0590 m
Calculando el gasto y la velocidad:
a)
Qp = 0.0224 / 0.013 x ( 0.0583 )2/3 ( 0.005)1/2 = 18.32 lps
Vp = 0.0183 / 0.0224 = 0.82 m/s
3- 7
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
b)
Qp = 0.0224 / 0.013 x ( 0.0590 )2/3 ( 0.005 )1/2 = 18.47 lps
Vp = 0.0185 / 0.0224 = 0.83 m/s
3.1.2. Fórmula de Darcy - Weisbach
Una de las fórmulas más exactas para cálculos hidráulicos es la de Darcy-Weisbach sin embargo
por su complejidad en el cálculo del coeficiente "f" ( ó λ ) de fricción ha caído en desuso. Algunas
dependencias del gobierno la han retomado actualmente por lo que se anexa:
La fórmula original de tuberías a presión es: ( 3 ), (4 ), (5 )
∆H = f
L v2
D 2g
(3. 21)
Donde:
∆H = Pérdidas de energía ( m)
f = Coeficiente de fricción ( adim )
L = Longitud del tubo ( m)
v = Velocidad media ( m/s)
g = Aceleración de la gravedad ( m/s² )
D = Diámetro interno del tubo ( m )
para el cálculo de f existen diferentes fórmulas por citar algunas de las siguientes:
Poiseville
Para flujo laminar desarrollo la siguiente relación: ( 5 )
f = 64
(3. 22 )
Re
Donde:
Re = Número de Reynolds.
Re = vD
υ
(3. 23)
Siendo:
υ = Viscosidad cinemática ( m²/s )
En la figura 3.3. se muestra la variación de viscosidad cinemática del agua por la temperatura (
fuente ( 5 ) )
Esta fórmula es válida para tubos lisos o rugosos y para Re ≤ 2300 en régimen laminar.
Colebrook - White
1
= − 2 Log
f
ε
D + 2. 51
3. 71 Re f
3- 8
( 3.24)
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Figura 3.3. Viscosidad cinemática (υ ) del agua a presión atmosférica
del nivel del mar
C
i
n
e
m
á
t
V
i
s
c
o
s
i
d
a
d
i
c
a
-6
( x 10
m²/s)
2.0
1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0
10
20
30
40
50
60
70
80
90
100
Temperatura ºC
Donde:
ε =
Re =
υ =
f =
D =
Rugosidad absoluta del material ( m )
Número de Reynolds.
Viscosidad cinemática ( m²/s )
Coeficiente de fricción ( adim )
Diámetro interno del tubo ( m )
La cual es iterativa y es válida para tubos lisos y rugosos en la zona de transición o turbulenta y
con Re > 4000.
Para canales es apropiado cambiar el diámetro por el radio hidráulico (Rh), tanto para la f como
para el Re. ( 1 ) , ( 3 )
f =
8gRhS
v2
( 3.25)
Despejando para la velocidad y multiplicando por el área mojada
RhS
f
v = 8g
Q= A
8g
RhS
f
3- 9
( 3.26)
( 3.27)
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
La fórmula de f y Re quedarían
(3)
ε
0. 627
+
14. 8 Rh Re f
1
= − 2 Log
f
Re = vRh
υ
(3. 28)
( 3.29 )
La referencia (19) recomienda la siguiente fórmula desarrollada a partir de la fórmula original de
Darcy - Weisbach
ε
2. 51 υ
v = −2 ( 2 g ⋅ DS ) Log
+
( 3.30)
3. 7 D D 2 g ⋅ DS
Donde:
S = Pendiente del gradiente hidráulico (m/m)
v = Velocidad (m/s)
g = Aceleración de la gravedad (m/s²)
D = Diámetro interno del tubo (m)
υ = Viscosidad cinemática del fluido 1.31 × 10-6 (m²/s)
3.1.3. Fórmula de Chezy
La fórmula de Darcy - Weisbach es muy precisa y laboriosa, en la práctica la fórmula de Chezy (o
la de Manning) es más aceptable para el cálculo de flujo en los alcantarillados (18), es como sigue
(10), (18).
Q = CA RhS
(3.31)
Donde:
Q = gasto en ( m³/s )
C = Coeficiente de Chezy ( m½ / s )
A = Perfil del tubo ( área mojada ) ( m² )
Rh = Radio hidráulico ( m )
S = Pendiente o gradiente ( m/m )
La velocidad puede ser calculada como:
v = C RhS
(3.32)
y el coeficiente de C de Chezy podría ser calculado con la siguiente fórmula simplificada:
C = 18 Log
12 Rh
ε,
3 - 10
(3.3 3)
(4)
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Donde:
ε' = Es la rugosidad del sistema ( m )
Los valores de rugosidad ( ε' ) que pueden ser usados en la fórmula se muestran en el cuadro 3.2.;
estos valores integran la rugosidad de la tubería, la influencia de los pozos de visita y los
sedimentos y la capa fangosa que se forma en el tubo. ( 4 )
Cuadro 3.2 Valores recomendados de rugosidad en los
sistemas ( ε' ) con tubería de PVC.
TIPO
CONCRETO
mm
PVC
mm
1.5
0.4 (1.0 )
- Alcantarillado de aguas residuales
1.5
0.4
- Alcantarillado de agua pluvial
1.5
0.4 ( 1.0 )
Sistema combinado
Sistema separado
3.2 Efecto de la deflexión de la tubería en la capacidad de descarga.
Al deflexionarse el tubo de PVC, el área de sección transversal del tubo se ve ligeramente reducida.
El área elíptica de sección transversal después de la ovalación del tubo será un poco menor que el
área de sección transversal antes de la deflexión.
Figura 3.4. Efecto de la deflexión en la conducción en tubos de PVC
r
b
a
Tubo
sin deflexión
Tubo
deflexionado
3 - 11
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Para comparar el área seccional entre un tubo sin deflexión ( forma circular) y uno deflexionado
(forma elíptica ) se tienen las siguientes relaciones:
C = π D (3.3 4)
C2 = 4 a E(e) (3.3 5)
e=
a2 −b2
a
(3.3 6)
Donde:
C = Perímetro del círculo
D = Diámetro interno no deflexionado
C2 = Perímetro del tubo deflexionado
E (e) = Función elíptica del primer tipo de e. ( excentricidad numérica)
Por otro lado se tienen las siguientes relaciones para calcular el área de la elipse. (17),(4)
Ae = π × a × b
(3.37)
Donde:
Ae = área de la elipse ( m² )
a = Radio largo de la elipse ( m )
b = Radio corto de la elipse ( m )
La fórmula 3.34 muestra la relación para obtener el área del circulo.
El área del tubo deflectado se calculó asumiendo que los perímetros del tubo deflectado y sin
deflexión son iguales ( C2 = C ) ( 6 ) el cuadro 3.3 muestra el efecto de la deflexión en el área y el
gasto.
Cuadro 3.3 Reducción de la sección transversal del tubo y el gasto
debido a la deflexión.
DEFLEXION ( % )
5.0
7.5
10.0
15.0
20.0
25.0
30.0
35.0
Fuente: Ref. ( 17 )
% REDUCCION DE LA SECCION
TRANSVERSAL DE FORMA
CIRCULAR A ELIPTICA
% REDUCCION DEL GASTO
0.366
0.898
1.431
3.146
5.473
8.378
11.814
15.761
0.6
1.3
2.4
5.2
8.9
13.6
18.9
24.9
3 - 12
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
3.3 La sedimentación en los tubos de alcantarillado.
El agua que se conduce a través de los tubos de alcantarillado contiene muchos elementos sólidos
tales como heces fecales, restos de vegetales, arena, etc.. Estos materiales pueden sedimentarse
dentro de los tubos si las condiciones de flujo no generan una fuerza suficiente para arrastrar
dichos materiales. Por mucho tiempo se ha considerado que la velocidad baja del flujo es la
principal causa de que se provoquen asentamientos de materiales, sin embargo se ha encontrado
que el esfuerzo cortante ( τ ) es el factor fundamental.
La fuerza de fricción del material sólido, asumiendo que la capa del agua es mayor a la capa que
forma el material sólido, se obtiene (Fig. 3.5):
τ f = φ p (ρ d − ρ w ) g d
(3.38)
Donde:
τf = Fricción del material a lo largo del fondo ( N / m² )
φ = Factor
ρ d = Densidad del material ( kg / m3 )
g = Aceleración de la gravedad ( m/s² )
ρ w = Densidad del agua en el alcantarillado ( kg/m3 )
d = Espesor de la capa de material ( m )
p = Porosidad del material
Haciendo:
Tendríamos:
f =φ p
τ f = f(ρ d − ρ w ) g d
(3.3 9)
(3.40)
Los valores de f se han determinado experimentalmente y varían de 0.04 a 0.8.
Figura 3.5. Transporte de material sólido a través de los alcantarillados
τ
τf
Para prevenir sedimentación la fuerza del agua que circula tendrá que actuar con fuerzas mayores
a la de fricción . (18)
El peso del agua residual por unidad de longitud será: (Fig. 3.6)
3 - 13
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
G = ρw g A
(3.41)
Donde:
G = Peso del agua residual por unidad de longitud (N/m)
ρ w = Densidad del agua residual (kg/m2)
g = Aceleración de la gravedad (m/s2)
A = Area mojada (m2)
Fig. 3.6. Alcantarillados parcialmente llenos
W
v
Sh
G
A
θ = Arco Tan (S)
Pm
Debido a la pendiente del tubo (S) la componente de la masa sería:
W = G Sen θ = ρ w Ag Sen θ
(3.42 )
Donde:
θ = Tan-1 (S)
S = Pendiente de la tubería (m/m)
Así el esfuerzo cortante quedaría como:
τ = ρw g
A
Sen θ
Pm
(3.43)
Y cuando se tienen pendientes pequeñas:
τ = ρw g
A
S (3.4 4)
Pm
Donde:
A/Pm
Pm
= Rh = Radio Hidráulico (m)
= Perímetro mojado (m)
3 - 14
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Para flujo permanente uniforme la fórmula de Chezy (fórmula
queda:
v2
S = Sh = 2
(3.4 5)
C Rh
3.32) despejada para pendiente
Donde:
C = Coeficiente de Chezy (m 1/2/s) (fórmula 3.33)
v = Velocidad del flujo (m/s)
Rh = Radio Hidráulico (m)
Sh = Pendiente Hidráulica (línea de energía) (adim)
Sustituyendo (3.45) en (3.44)
τ = ρW g
v2
C2
(3.4 6)
Esto muestra que el esfuerzo cortante (τ) es una función del cuadrado del cociente v/C.
La figura 3.7. puede ser usada para calcular la pendiente requerida para evitar sedimentación en la
tubería, basandose en el diámetro, el % de llenado y el esfuerzo cortante mostrados en el cuadro
3.4. dependiendo del tipo de sistema de alcantarillado y el material de la tubería. Se agregan dos
ejemplos del uso del nomograma.
Cuadro 3.4. Fricción requerida por los alcantarillados
según el tipo de material para ser usada
en la figura 3.7. (Fuente: Ref.(18) )
FRICCIÓN
REQ. (N/m²)
TIPO DE SISTEMA
COMBINADO
PVC
CONCRETO
1.5 - 3.0 (3)
3-6
SEPARADO
AGUAS PLUVIALES
AGUAS RESIDUALES
(1), (2) y (3)
1.0 - 2.0
0.5 - 1.5
(2)
(1)
2-4
1-3
Indicados en la figura 3.7.
Ejemplos 3.4.:
1a.
Para PVC de 300 mm de diámetro al 10 % de llenado, con esfuerzo cortante de 1
N/m² se requiere una pendiente de 0.005 m/m ( 0.5 % ó 1:200).
1b.
Para concreto con las mismas condiciones de llenado y un esfuerzo cortante de 2
N/m², la pendiente requerida es de 0.01 m/m (1% ó 1:100).
2a.
Para concreto de 300 mm de diámetro con una pendiente de 0.005 m/m (0.5 % ó
1:200) y un esfuerzo cortante de 2 N/m², requiere de un llenado al 23 %
2b.
En PVC bajo las mismas condiciones con un esfuerzo cortante de 1 N/m², requiere
de un llenado del 10 %
3 - 15
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
3 - 16
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Figura 3.7. Pendiente requerida en relación al diámetro y al grado de
llenado en el tubo, para evitar sedimentación (Fuente: Ref (18)).
DIÁMETRO (D) LÍNEA DE
AYUDA
m
2.0
1.5
% LLENADO
DEL TUBO
ESFUERZO
CORTANTE
PENDIENTE
DEL TUBO
N/m²
30
100
80
60
20
40
30
%
90
70
50
20
15
10
1.0
8
6
0.9
0.8
4
3
2
0.7
0.6
0.5
0.4
10
9
8
7
6
5
1.5
1.0
0.8
0.6
0.4
3.3
(1:30)
2.5
(1:40)
2.0
(1:50)
1.7
1.4
(1:60)
(1:70)
(1:80)
1.3
1.1
1.0
9
7
5
m/m
0.01
(1:90)
(1:100)
0.67
(1:150)
0.50
(1:200)
(3)
(2)
0.9
0.7
0.5
0.3
0.2
0.1
4
(1)
0.33
PVC
(1:300)
0.25
0.20
(1:400)
0.17
0.14
0.13
(1:600)
(1:700)
(1:800)
(1:900)
(1:500)
0.11
0.10
0.001 (1:1000)
0.067
(1:1500)
0.050
(1:2000)
0.033
(1:3000)
0.020
(1:4000)
0.3
3
0.2
3 - 17
Capítulo 4
Aspectos Mecánicos
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
4.- ASPECTOS MECANICOS.
4.1. Rigidez de la tubería.
La rigidez es la propiedad inherente a los tubos de oponer resistencia a ser deflexionados. La
relación siguiente es recomendada por ASTM-D-2412 para el cálculo de la rigidez de la tubería
medida a un valor del 5% de deflexión. (17)
Ps = 4. 47
E
( RD − 1) 3
( 4.1)
Donde:
Ps
E
RD
= Rigidez del tubo (kg/cm²)
= Módulo de elasticidad del PVC ( 28,129.4 kg/cm² - 2758 MPa - )
= Relación de dimensiones (adim)
RD =
DE prom
emín
(4.2)
DE prom = Diámetro externo promedio (mm)
e min
= Espesor mínimo de pared (mm)
Nota: En la tubería Duradrén Sistema Inglés el RD corresponde al Tipo.
Aplicando la fórmula anterior se obtiene la siguiente rigidez según el RD de la tubería:
Cuadro 4.1. Rigidez de la tubería Duradrén.
Tipo o Serie
Rigidez (Ps)
kg/cm²
PSI
51
41
35
1.006
1.965
3.199
14.3
27.9
45.5
25
20
16.5
1.006
1.965
3.500
14.3
27.9
49.8
Durahol
1.965
27.9
Como se puede observar la rigidez del tubo aumenta conforme disminuye el RD esto es que la pared
del tubo es más gruesa.
El tubo DURAHOL tiene una rigidez equivalente a un tubo serie 20.
4-1
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Se denomina tubo flexible, aquel que permite deflexiones de más de un 3% sin que haya fractura, y
tubo rígido, aquel que no permite deflexiones mayores a 0.1 % sin que haya fractura (13). Las
principales diferencias de las tuberías rígidas, semi-flexible y flexible se muestran en la figura 4.1. (13)
Se han hecho estudios exhaustivos en tuberías rígidas y flexibles los cuales demostraron que: (13)
"1. Las cargas desarrolladas sobre la tubería rígida son mayores que las desarrolladas sobre
la tubería flexible.
2.
Las cargas externas tienden a concentrarse directamente abajo y arriba del tubo rígido,
creando un momento de aplastamiento que debe ser resistido por las paredes del tubo.
En los tubos flexibles la carga es distribuida uniformemente alrededor de su
circunferencia, y la carga en cualquier punto es menor que para la del tubo rígido.
3.
Las cargas externas son soportadas por fuerzas de compresión en la sección transversal
de la tubería. Parte de estas cargas son transmitidas lateralmente al material alrededor
del tubo, del módulo de elasticidad del material del tubo y del tipo de relleno."
"Estas son las diferencias inherentes entre el comportamiento del tubo rígido y el
comportamiento del tubo flexible; es por ésto que la teoría de las cargas combinadas sobre
tubos rígidos (Schlick), no se debe aplicar a las tuberías flexibles."
Figura 4.1. Conceptos de diseño para varios tipos de tubos enterrados
Rígido
Determinación de la
vida estructural
Semi - Flexible
Flexible
Cap. de deform. (%)
Resistencia del Cap. deform. del Rigidez anular
material del tubo material del tubo del tubo +
+ rigidez suelo
rigidez suelo
El tubo solo for- Ambas caracte- El tubo + el suelo
ma la estructura rísticas
forman la estructura
≈ 0
≈ 5
>5
Ejemplos de materiales
Concreto
Barro
Crit. diseño del tubo
Esfuerzo
Características de la
estructura
Fuente: Referencia (6)
Acero
Esfuerzo /
deformación
PEAD
PP
PVC
Deflexión y
estabilidad
PEAD: Polietileno de alta densidad, PP: Polipropileno
4-2
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
4-3
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
4.2. Influencia del Suelo en Tubería Enterrada
Una tubería enterrada recibe fuerzas laterales y verticales del suelo que la rodea, así al que está por
encima del tubo. El grado en que se compacta el relleno en la zanja afecta de manera relevante al
comportamiento del tubo en el suelo. Cuando se instala una tubería lo ideal sería alcanzar los valores
de Peso Volumétrico Seco ( γs ) (Proctor) más altos por medio de la compactación, de tal forma que
fuesen lo más semejantes posibles a los originales del suelo sin alterar; así se evitarían futuros
reacomodos que afectasen la tubería. Sin embargo los resultados de la práctica en muchas
ocasiones distan mucho de llegar a ser los valores requeridos por el tubo.
Uno de los principales parámetros para conocer el comportamiento del tubo ante dichas fuerzas es
la rigidez; un tubo rígido (como concreto) tenderá a soportar las cargas del suelo, mientras un tubo
flexible tenderá a deformarse ante dichas cargas cambiando su forma original circular a una forma
elíptica. La norma ASTM D-3034(7) recomienda que la máxima deflexión permisible en la tubería sea
de 7.5 % , esto no quiere decir que el tubo falle al 7.5 % de deflexión sino que es un valor tomado
para evitar una disminución significativa de la capacidad de conducción de la tubería (ver sección
3.2.). Debido a que el tubo flexible reacciona de acuerdo a los movimientos relativos del suelo se
puede decir que se forma un sistema suelo-tubo. La siguiente figura ilustra la manera en que actúa el
suelo en tuberías flexibles y en tuberías rígidas.
Figura 4.2. Acción del suelo sobre el tubo
Fricción
Fricción
a). Tubo Rígido
b). Tubo Flexible
4.3. Influencia del Tráfico Vehicular en la Tubería Enterrada
Además de las fuerzas que recibe la tubería del suelo, existen otras fuerzas debidas al tráfico. La
influencia del tráfico es más notoria cuando la tubería está enterrada a profundidades cercanas a la
superficie del suelo, conforme aumenta la profundidad la influencia disminuye. La fuerza ejercida por
el tráfico depende del tipo de vehículo. Para los métodos de cálculo de deflexión que se verán en el
siguiente apartado se usan camiones normalizados.
4-4
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
4.3.1. Cargas máximas permisibles en México para los vehículos.
Existe una clasificación de vehículos de acuerdo a la carga para facilitar los cálculos; así se tiene
vehículos tipo A donde se involucran todos los automóviles, las camionetas tipo pick-up y los que
tengan un peso menor a 3 ton, los tipo B en el que quedan incluidos todos los autobuses y los tipo
C, que son los camiones de carga con más de 3 ton y los cuales se desglosan en grupos por existir
una gran variedad de características, su peso puede variar desde 3 ton hasta 60 ton con diferentes
combinaciones en la posición de ejes y llantas. El siguiente cuadro muestra la clasificación de
vehículos en México de acuerdo a la carga máxima permisible:
Cuadro 4.2. Pesos de diferentes vehículos automotores
Tipo de
vehículo
Peso
total
(ton)
Peso de ejes cargados (ton)
Tractor
SemireRemolque
Delantero
Trasero
molque
Delantero
Trasero
Automóvil
A2
2
1.0 (s)
1.0 (s)
Autobús
B2
B3
B4
15.2
20.0
27.0
5.5 (s)
5.5 (s)
9.0 (t)
10.0 (s)
14.5 (s)
18.0 (t)
Camiones
A '2
5.5
1.7 (s)
3.8 (s)
C2
15.5
5.5 (s)
10.0 (s)
C3
23.5
5.5 (s)
18.0 (t)
C4
28.0
5.5 (s)
22.5 (tr)
T2-S1
25.5
5.5 (s)
10.0 (s)
T2-S2
32.5
5.5 (s)
10.0 (s)
T3-S2
41.5
5.5 (s)
18.0 (t)
C2-R2
35.5
5.5 (s)
10.0 (s)
C3-R2
43.5
5.5 (s)
18.0 (t)
C3-R3
51.5
5.5 (s)
18.0 (t)
T2-S1-R2
45.5
5.5 (s)
10.0 (s)
T3-S3
50.5
5.5 (s)
18.0 (t)
T2-S2-R2
53.5
5.5 (s)
10.0 (s)
T3-S1-R2
53.5
5.5 (s)
18.0 (t)
T3-S2-R2
61.5
5.5 (s)
18.0 (t)
T3-S2-R3
69.5
5.5 (s)
18.0 (t)
T3-S2-R4
77.5
5.5 (s)
18.0 (t)
(s) = eje sencillo; (t) = eje tándem; (tr) = eje triple;
10.0 (s)
18.0 (t)
18.0 (t)
10.0 (s)
22.5 (tr)
18.0 (t)
10.0 (s)
18.0 (t)
18.0 (t)
18.0 (t)
10.0 (s)
10.0 (s)
10.0 (s)
10.0 (s)
18.0 (t)
10.0 (s)
10.0 (s)
10.0 (s)
10.0 (s)
18.0 (t)
18.0 (t)
18.0 (t)
Fuente: referencia (8)
C = Camión con un chasis; T = Tractor (unidad solo motor); S= Caja o semirremolque jalado directamente por el tractor;
R = Remolque; caja jalada por el semirremolque.
En México, las cargas máximas legales por eje son: (8)
5.5 ton por eje sencillo rueda sencilla,
10.5 ton para eje sencillo rueda doble,
18.0 ton para eje tándem (doble) rueda doble,
27.0 ton para eje triple rueda doble.
4-5
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
4.4. Fórmulas para el Cálculo de Deflexión
Se han desarrollado variadas relaciones para calcular la deflexión de las tuberías debido a las cargas
que soportan, ya sean las que recibe del suelo llamadas comunmente cargas muertas, o aquellas
que recibe del tráfico vehícular denominadas cargas vivas. En el presente capitulo se presentarán las
fórmulas más usuales. Un ejemplo del cálculo se muestra en el anexo.
La mayoría de las fórmulas se basan en la siguiente expresión general:(18)
Deflexión =
Cargas Externas
Rigidez del suelo + Rigidez del tubo
4.4.1. Teoría de Deflexión de Spangler
Una de las relaciones de mayor uso para el cálculo de deflexión es la de Spangler llamada
comunmente "Fórmula Iowa", la cual además de relacionar las características del suelo y de la
tubería considera un factor de deflexión a largo plazo, esto es la deflexión alcanzada en el momento
que el suelo finaliza de asentarse en la zanja y la tubería deja de deflexionarse. La fórmula es la
siguiente: (17)
∆y
% = 100
D
Dl K Wc + K Wsc
2E
+ 0. 061 E '
3 ( RD − 1) 3
( 4. 3)
Donde:
∆y/D
Wc
Wsc
E
E'
Dl
RD
= Deflexión del tubo en base al diámetro original
= Cargas muertas (MN/m2 ó kg/cm2 )
= Cargas vivas (MN/m2 ó kg/cm2 )
= Módulo de elasticidad del tubo (2,759 MN/m2 ó 28,129.4 kg/cm2 )
= Módulo de reacción del suelo (MN/m2 ó kg/cm2 )
= Factor de deflexión a largo plazo (adim, Spangler recomienda un Dl = 1.5)
= Relación de dimensiones (adim) ver fórmula 4.2
Nota: En el tubo Duradrén Sistema Ingles los tipos corresponden al RD, en el caso del tubo métrico se hace
necesario aplicar la fórmula 4.2. con los datos proporcionados en el cuadro 1.2. del capitulo 1.
Las cargas muertas se calculan con la siguiente relación, desarrollada por Martson:
Wc = Cd γ Bd
(4.4)
Donde:
γ
Bd
Cd
= Densidad del relleno (MN/m3 ó kg/cm3 )
= Ancho de la zanja (m ó cm)
= Coeficiente de carga para conductos instalados en zanjas (adim)
y se obtiene con la siguiente expresión:
4-6
(18)
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
− 2 k µ'
H
Bd
1− e
Cd =
2 k µ'
(4.5)
Donde:
H
kµ'
= Profundidad de relleno (m)
= Factor determinado por la relación de la presión horizontal y vertical (k) y la
fricción de la pared de la zanja (adim)
= Base de los logaritmos naturales ( 2.71828 )
e
Figura 4.3. Valores del Coeficiente Cd para usarse
en la fórmula (4.4) (fuente: Ref. (17))
10.0
V
A
5
4
3
L
O
2
R
E
1.0
Valores de Kµ'
S
0.5
Kµ'=0.1924 (A)
0.4
Cd
0.3
0.2
Kµ'=0.165
(B)
Kµ'=0.150
(C)
Kµ'=0.130
(D)
Kµ'=0.110
(E)
0.1
0.1
0.2
0.3 0.4 0.5
1.0
2
3
4
5 6
10
20
30
VALORES DE H/Bd
(A) Para materiales granulares sin cohesión; (B) Máximo para arena y grava; (C) Máximo para suelos saturados;
(D) Máximo para arcillas; (E) Máximo para arcillas saturadas.
La presión del suelo debido al tráfico se determina con la siguiente relación, la cual es una
modificación a la teoría de Boussinesq. (18)
Wsc = Cs
PF '
L DE
(4.6)
Donde:
P
L
DE
F'
= Carga concentrada de la rueda (0.70 MN ó 7,135.6 kg)
= Longitud efectiva (0.9 m ó 90 cm)
= Diámetro externo de la tubería (m ó cm)
= Factor de impacto (adim)
4-7
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Cuadro 4.3. Factor de impacto vs Profundidad de relleno
Profundidad de
Enterramiento (m)
0.0 a 0.3
0.3 a 0.6
0.6 a 0.9
Mayor a 0.9
Carreteras
Vías de
FF.CC.
1.75
-
1.50
1.35
1.15
1.00
Pistas de
Aterrizaje
1.00
1.00
1.00
1.00
Nota: Para propósitos prácticos se puede tomar un valor de 1.5 excepto en cruces de vías de FF. CC.
Fuente : Ref. (17)
Cs
Cs = 1 −
= Coeficiente de carga de ruedas (adim)
2
( sen −1 ( H
π
F
ABH
1
1
) −
(
+ 2
) )
2
2
( A 2 + H 2 )( B 2 + H 2 )
(
A
+
H
)
(
B
+
H2 )
F
(4.7)
Donde:
A=L/2
L
H
F = A2 + B2 + H2
B = DE / 2
= Longitud efectiva (m)
= Profundidad de relleno (m)
Figura 4.4. Valor del Coeficiente Cs
para usarse en la fórmula (4.6)
1.0
Diámetro Nominal
0.9
Diámetro Nominal
Duradrén
Sistema Inglés
0.8
Duradrén
Sistema Métrico
100 mm
35.5 cm
150 mm
C
o
e
f
i
0.7
0.6
c
i
0.5
e
n
0.4
t
e
0.3
Cs
0.2
40 cm
200 mm
45 cm
250 mm
50 cm
300 mm
63 cm
0.1
0.0
0.1
0.2
0.3
0.4
1
2
3
4 5
Profundidad de Relleno (H) (m)
6 7
8
0.1
0.2
0.3
0.4
1
2
Profundidad de Relleno (H) (m)
4-8
3
4 5
6 7
8
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
4.4.2. Clasificación de suelos.
La clasificación de suelos más usada desde el punto de vista de mecánica de suelos es el Sistema
Unificado de Clasificación de Suelos (SUCS) el cual asigna un símbolo para cada uno de los tipos de
suelo, ya sean orgánicos o inorgánicos. Sus principales parámetros de clasificación son: el Límite
Líquido (LL), el Límite Plástico (LP) y el tamaño de partículas (granulometría). Los cuales describen el
comportamiento mecánico del suelo (11). Las normas ASTM D-2487 y D-2488 muestran la
clasificación de suelos y el método visual-manual de clasificación respectivamente (ver referencia (17)).
La clasificación SUCS se muestra a continuación. (11) y (17). Además muestra la clasificación de la
Unibell Plastics Pipe Asociation en grupos de relleno.
Cuadro 4.4. Principales tipos de suelos (SUCS)
Símbolos del
Grupo
Usual
Usual
en
en
México EE.UU.
-
Clasif.
Unibell
Nombres típicos
Clase
I
Material granular, angular manufacturado , de 1/4 a 1 1/2" (6 a 40 mm),
incluyendo materiales representativos de la región como roca triturada, coral
picado, conchas trituradas,
Gp
GW
Clase
Gravas bien graduadas; mezclas de grava y arena; pocos o ningún finos.
Gm
GP
II
Gravas mal graduadas; mezclas de grava y arena; pocos o ningún finos.
GL
GM
Clase
Gravas limosas; mezclas de grava y limo mal graduadas.
GB
GC
III
Gravas arcillosas; mezclas de grava, arena y arcilla mal graduadas.
Ab
SW
Clase
Arenas bien graduadas; arenas gravosas; pocos o ningún finos.
Am
SP
II
Arenas mal graduadas; arenas gravosas; pocos o ningún finos.
AL
SM
Clase
Arenas limosas; mezclas de arena y limo mal graduados.
AB
SC
III
Arenas arcillosas; mezclas de arena y arcilla mal graduadas.
Lp
ML
Clase
Limos inorgánicos y arenas muy finas, polvo de roca; arenas finas limosas o
arcillas ligeramente plásticas
Bp
CL
IV
Arcillas inorgánicas de plasticidad baja a media; arcillas gravosas; arcillas
arenosas; arcillas limosas; arcillas pobres.
Op
OL
Clase V
Limos orgánicos y arcillas limosas orgánicas de baja plasticidad.
Lc
MH
Clase
Limos inorgánicos; suelos micáceos o diatomáceos arenosos finos o limosos,
limos elásticos.
Bc
CH
IV
Arcillas inorgánicas de alta plasticidad; arcillas francas muy comprensibles.
Oc
OH
Clase
Arcillas orgánicas de plasticidad media a alta muy compresibles.
T
PT
V
Turba y otros suelos altamente orgánicos en estado de descomposición.
No recomendable para usarse como relleno
Fuente: Ref. (17), (11) y (7)
La Unibell Plastic Pipe Association (Ref. (17)) hace una agrupación de los tipos de suelos los cuales
son mencionados en el cuadro 4.3. con fines de usarlos de relleno en las zanjas, los subdivide en
cinco clases tomando en cuenta sus propiedades mecánicas.
4-9
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
4.4.2.1. Módulo de reacción del suelo (E')
Muchas investigaciones han tratado de medir los valores de E' sin éxito. El método más usual es
medir las deflexiones en el tubo teniendo todas las demás variables conocidas resolviendo, en forma
inversa, la fórmula Iowa para determinar el valor correcto de E'. (17)
Amster K. Howard compiló valores de E' usando información de más de 100 laboratorios y pruebas de
campo para varios tipos y densidades de suelo, dichos valores se muestran en el cuadro 4.5.
Cuadro 4.5. Valores promedio del módulo de reacción del suelo (E') (Para la Deflexión
inicial en tubos flexibles)
E' según el grado de compactación del encamado
LIGERO,
Proctor <85%
TIPO DE SUELO PARA ENCAMADO DE TUBERIAS
(SISTEMA UNIFICADO DE CLASIFICACIÓN DE SUELOS SUCS-)
(1)
Densidad
relativa <40%
A VOLTEO
(2)
Suelos bien graduados (LL>50)b ,
Suelos con media a alta plasticidad,
CH, MH, CH-MH
Suelos bien graduados (LL<50),
Suelos con media a nula plasticidad CL, ML,
ML-CL, con menos de 25 % de partículas
gruesas.
Suelos bien graduados (LL<50),
Suelos con media a nula plasticidad CL, ML,
ML-CL, con más del 25 % de partículas gruesas
Suelos de partículas gruesas con finos
GM, GC, SM, SCc conteniendo más del 12 % de
finos
Suelos de partículas gruesas con pocos o sin finos
GW, GP, SW, SPc conteniendo menos del 12% de
finos
Roca triturada
Precisión en términos de porcentaje de deflexiónd
MODERADO,
Proctor
85% - 95 %
Densidad
relativa
40% - 70%
ALTO,
Proctor >95%
(4)
(5)
(3)
Densidad
relativa>70%
Use E' = 0
3.52 kg/cm2
50 PSI
0.35 MN/m2
14.06 kg/cm2
200 PSI
1.38 MN/m2
28.13 kg/cm2
400 PSI
2.76 MN/m2
70.32 kg/cm2
1000 PSI
6.90 MN/m2
7.03 kg/cm2
100 PSI
0.69 MN/m2
28.13 kg/cm2
400 PSI
2.76 MN/m2
70.32 kg/cm2
1000 PSI
6.90 MN/m2
140.65 kg/cm2
2000 PSI
13.80 MN/m2
14.06 kg/cm2
200 PSI
1.38 MN/m2
70.32 kg/cm2
1000 PSI
6.9 MN/m2
±2
70.32 kg/cm2
1000 PSI
6.90 MN/m2
210.97 kg/cm2
3000 PSI
20.70 MN/m2
±2
140.65 kg/cm2
2000 PSI
13.80 MN/m2
210.97 kg/cm2
3000 PSI
20.70 MN/m2
±1
210.97 kg/cm2
3000 PSI
20.70 MN/m2
210.97 kg/cm2
3000 PSI
20.70 MN/m2
± 0.5
Fuente : Ref (17)
a Norma ASTM D-2487
b LL = Límite líquido
c O cualquier suelo en el límite que comience con esos símbolos (p.ej. GM-GC, GC-SC)
d Para ± 1% de precisión y una deflexión predecida de 3%, la deflexión real estaría entre 2% y 4%
Nota: Estos valores son aplicables sólo para rellenos con profundidades menores de 15 m. La tabla no incluye ningún factor de seguridad. Para
uso solo en predicciones iniciales de deflexión, puede ser aplicado un factor de largo plazo (F') apropiado para deflexiones a largo plazo. Si el
encamado cae entre dos categorías de compactación, seleccione el menor valor de E' o el promedio de los dos valores. El porcentaje Proctor
basado en la máxima densidad en seco (peso volumétrico seco) de las normas de prueba usando aproximadamente 598,000 J/ m 3 (12,500 Pie
Lb/ Pie3 ) (ASTM D-698) (6.1 kg cm / cm3 )
4 - 10
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
El cuadro 4.6. presenta una guía aproximada para estimar el grado de compactación alcanzado
según el método utilizado y el cuadro 4.7. el módulo de reacción del suelo E' según la clase de suelo
y la compactación Proctor dada.
Cuadro 4.6. Guía aproximada para estimar el rango del grado de compactación vs la
clase y el método de relleno como porcentaje Proctor o de la Densidad
Relativa * ,para materiales granulares**
CLASE DE RELLENO
DESCRIPCION DEL MATERIAL
Contenido óptimo de humedad en
% de suelo seco
Método de compactación del suelo
Compactado con apizonador
mecánico
Compactado con vibrocompactador
portátil
Con pizón manual
A volteo
I
Material
granular
manufacturado
II
Suelos de
arena y grava
limpios
9-12
III
Suelos
mezclados
granulosos
9-18
IV
Suelos de
granos finos
6-30
Rango en % Proctor o Densidad Relativa (valores entre paréntesis)
95-100
95-100
95-100
90-100
(75-100)
(80-100)
80-95
80-95
80-95
75-90
(60-75)
(60-80)
60-80
60-80
60-75
(50-60)
60-80
60-80
60-80
60-75
(40-60)
(50-60)
Fuente: Ref. (17)
* La densidad relativa está anotada entre paréntesis.
** Esta tabla sirve como una guía aproximada para definir promedios de compactaciones Proctor conseguidos a través de
varios métodos de compactación de suelo en diferentes clases de suelo. La tabla tiene la intención de proveer una guía y no
se recomienda para su uso en diseño. Los valores reales de diseño deberán ser calculados por el ingeniero para suelos
específicos y con contenidos de humedad específicos.
Cuadro 4.7. Porcentaje Proctor y Módulo de reacción del suelo (E') para
las diferentes clases de suelo
Clase de relleno
( Clasificación UNIBELL )
I
II
III
IV
V
Rango de Densidad
Módulo de reacción del Suelo
Proctor %
(kg/cm2 , PSI y MN/m2)
210.97 - 3,000 - 20.70
85-95
140.65 - 2,000 - 13.80
75-85
70.32 - 1,000 - 6.90
65-75
14.06 - 200 - 1.38
85-95
70.32 - 1,000 - 6.90
75-85
28.13 - 400 - 2.76
65-75
7.03 - 100 - 0.69
85-95
28.13 - 400 - 2.76
75-85
14.06 - 200 - 1.38
65-75
3.52 - 50 - 0.69
CLASE DE SUELO
NO RECOMENDADA
Fuente: Ref (17)
4 - 11
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Nota: El porcentaje de la densidad Proctor de acuerdo a ASTM 698
4 - 12
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Ejemplo 4.1.
Se va ha instalar una tubería de alcantarillado de PVC Duradrén de 300 mm de diámetro (12") tipo 41
a 5 m de profundidad a lomo de tubo, se hizo el análisis granulométrico del que resultaron dos suelos
principales: Gravas bien graduadas, Gp (suelo 1) y Arenas limosas, AL (suelo 2). Las densidades
son respectivamente, 1700 kg/m3 y 1900 kg/m3 . ¿Cual será la deflexión que presentará el tubo para
un grado de compactación de 65 - 75 %, de 75 - 85% y de 85 - 95 % Proctor?
Solución.
Tomando el cuadro 4.4. de clasificación de suelos se observa que el suelo Gp es clase II y el
suelo AL corresponde a la clase III. Los valores de kµ' para esas clases según la figura 4.3.
son de 0.165 y 0.150 respectivamente.
El factor de impacto para 5 m de profundidad a lomo de la tubería para carreteras es de 1.0
(cuadro 4.3)
El ancho de zanja recomendado para tubería de 300 mm es de 0.70 m (cuadro 5.2., capítulo
5 - recomendados para tubería de PVC por el ITP-)
Cálculo de cargas muertas:
H/Bd = 5m / 0.70 m = 7.143
Entrando a la gráfica 4.3. con este valor resulta un coeficiente Cd1= 2.7 y Cd2= 2.9. las
cargas muertas serán para cada tipo de suelo de: (fórmula 4.4.)
Wc1 = (2.7) (1,700 kg/m3 ) (0.70 m) = 3,213 kg/m2 = 0.3213 kg/cm2
Wc2 = (2.9) (1,900 kg/m3 ) (0.70 m) = 3,857 kg/m2 = 0.3857 kg/cm2
Cálculo de cargas vivas:
Primeramente se calcula el valor del coeficiente Cs usando la figura 4.4. con 5 m de
profundidad de relleno y 300 mm de diámetro Duradrén S.I.
Cs = 0.0055
La carga concentrada por ruedas de un vehículo se asume de 0.07 MN que equivale a 7,135.6
kg, el diámetro externo para tubería de 300 mm se toma del promedio de los diámetros
máximo y mínimo del cuadro 1.1, siendo DE = 0.3175 m, por lo que, la carga viva resultará
igual a: (Fórmula 4.6)
Wsc = ( 0. 0055 )
( 7, 135. 6 kg) (1. 0)
= 135 .1 kg / m2
( 0. 9144 m)( 0. 3175 m)
Wsc = 0.0135 kg/cm2
4 - 13
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Cálculo de la deflexión de la tubería:
El cálculo de deflexión de la tubería se hace usando la fórmula 4.3. A continuación se
presenta el cálculo de deflexión para uno de los grados de compactación. En la tabla
siguiente se presentan los resultado para los demás grados de compactación para las dos
clases de suelo.
Suelo 1
Dl = 1.5
E' = 14.06 kg/cm2 para suelo clase II , 65-75 % proctor (cuadro 4.7.)
K = 0.1
∆y
( 1. 5)( 0.1)( 0.3213 kg / cm2 ) + ( 0.1)( 0. 0135 kg / cm2 )
1 % = 100
2 ( 28,129 .4 kg / cm2 )
D
+ 0. 061 (14.06 kg / cm 2 )
3 ( 41 − 1) 3
∆y/D1 = 4.31 %
Clase de Suelo
Clase II
Clase III
Densidad
Proctor (%)
65-75
75-85
85-95
65-75
75-85
85-95
E'
(kg/cm 2 )
14.06
70.32
140.65
7.03
28.13
70.32
∆y/D
(%)
4.31
1.10
0.57
8.32
2.99
1.31
Conclusión:
La tubería se comporta satisfactoriamente en ambos suelos, no se recomienda tener compactaciones
proctor menores a 75 % con suelo clase III. La deflexión máxima permisible es de 7.5 % (apartado
4.2.)
Ejemplo 4.2.
Tomando los datos del problema anterior, cambiando solamente el ancho de zanjas de 0.70 m a 0.85
m según la recomendación de la CNA (cuadro 5.2.)
Solución.
Cálculo de cargas muertas:
H/Bd = 5m / 0.85 m = 5.882
Cd1= 2.65
Cd2= 2.75
Wc1 = (2.65) (1,700 kg/m3 ) (0.85 m) = 3,829 kg/m2 = 0.3829 kg/cm2
Wc2 = (2.75) (1,900 kg/m3 ) (0.85 m) = 4,441 kg/m2 = 0.4441 kg/cm2
4 - 14
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Cálculo de cargas vivas:
Cs = 0.0055
Wsc = ( 0. 0055 )
( 7, 135. 6 kg) (1. 0)
= 135 .1 kg / m2
( 0. 9144 m)( 0. 3175 m)
Wsc = 0.0135 kg/cm2
Cálculo de la deflexión de la tubería:
Suelo 1
Dl = 1.5
E' = 14.06 kg/cm2 para suelo clase II , 65-75 % proctor (cuadro 4.7.)
K = 0.1
∆y
( 1.5)( 0.1)( 0.3829 kg / cm 2 ) + ( 0.1)( 0. 0135 kg / cm 2 )
1 % = 100
2 (28 ,129 .4 kg / cm 2 )
D
+ 0. 061 (14 .06 kg / cm 2 )
3 ( 41 − 1) 3
∆y/D1 = 5.11 %
Clase de Suelo
Clase II
Clase III
Densidad
Proctor (%)
65-75
75-85
85-95
65-75
75-85
85-95
E'
(kg/cm 2 )
14.06
70.32
140.65
7.03
28.13
70.32
∆y/D
(%)
5.11
1.28
0.66
9.42
3.38
1.48
Conclusión:
Como se puede observar en el cuadro anterior el ancho de zanja afecta significativamente a la
deflexión de la tubería por lo que se recomienda tener los anchos menores posibles, esto es aquellos
que permitan elaborar los trabajos de instalación (nivelación de plantillas, instalación de la tubería,
acostillado, relleno y compactación).
Nota Aclaratoria:
Las gráficas que se presentan en el Anexo A1, se hicieron tomando los anchos de zanja
recomendados por el ITP (Instituto de Tuberías Plásticas), por lo que para otros anchos se deben
tomar las precauciones necesarias.
4 - 15
Capítulo 5
Instalación y Mantenimiento
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
5.- INSTALACIÓN Y MANTENIMIENTO.
Debido a la relevancia que actualmente se le ha dando al aspecto ecológico, se buscan opciones
que reduzcan los riesgos de contaminación. La tubería de PVC por sus propiedades de hermeticidad,
estanquidad, resistencia a la corrosión y abrasión es actualmente una de las mejores opciones para
alcantarillados en el mercado.
La amplia experiencia en instalaciones hidráulicas nos proporciona bases sólidas para utilizar la
tubería de PVC con unión Anger (espiga - campana) en alcantarillados.
El presente capitulo trata sobre los métodos de limpieza recomendados para alcantarillados con
tubería de PVC usando la línea Duradrén y Durahol, además de las recomendaciones de transporte,
manejo, almacenamiento e instalación de la tubería.
5.1. Transporte, manejo y almacenamiento en obra.
5.1.1. Transporte.
Los tubos de PVC DURADREN y DURAHOL son fabricados en longitudes de 6 m. La cantidad de
tubos de los diferentes diámetros que puede transportar un camión tipo torton se muestran en la
siguiente tabla:
Cuadro 5.1 Capacidad de carga de tubería en un camión tipo torton
DN
mm ó cm
150 - 16.0
200 - 20.0
250 - 25.0*
300 - 31.5*
35.5
40
45
50
63
No de
tramos
200
120
77
48
42
35
30
20
12
Longitud
(m)
1200
720
462
288
252
210
180
120
72
*Valores aproximados
El transporte debe realizarse procurando que no se dañen los materiales. Los tubos deben colocarse
en superficies planas tal como se muestra en la figura 5.1. En el transporte la altura de la estiba no
debe exceder de 2.5 m. La colocación de los tubos debe hacerse tal como se muestra en el detalle
de la figura 5.1.
Al transportar los tubos, debe evitarse en lo posible, la carga mixta; pero si es inevitable, está debe
acomodarse de manera que no lastime a los tubos. Con el objeto de economizar el flete se pueden
"telescopiar" los tubos, introduciendo unos dentro de otros, siempre y cuando los diámetros lo
permitan.
Cuando el transporte se haga a grandes distancias y sobre todo en tiempo de calor, la carga debe
protegerse y dejar un espacio entre la cubierta y los tubos que permita la circulación de aire para
evitar deformaciones que pueden ocasionar el peso de los tubos y la temperatura a la que están
sometidos.
5-1
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Fig. 5.1. Transporte de la tubería
5.1.2. Carga, descarga y manejo.
Carga y descarga
Durante la carga y descarga de los tubos, estos no deben arrojarse al suelo, someterlos a peso
excesivo o golpearlos (Fig. 5.2. A y B) . Se recomienda que por lo menos dos hombres se encargen
de esta operación.
Cuando la carga o descarga se haga con grúas o montacargas, se deben utilizar elementos que no
dañen los tubos, tales como eslingas de nilón, fajas de lona, etc. Debe evitarse el uso de cadenas de
acero.
Manejo
Para evitar daño a los tubos, nunca se deben arrastrar, golpearlos contra el suelo o con herramientas
(Fig. 5.2. C). Se recomienda no desatarlos para su manejo (aquellos tubos que vengan en atados)
(figura 5.2. D).
5-2
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Fig. 5.2. Carga, descarga y manejo de la tubería
A temperaturas inferiores a 0º C la resistencia de los tubos a los golpes se reduce, por lo que hay
que tener mayor cuidado en el manejo.
5.1.3. Almacenamiento en obra
El lugar de almacenamiento debe situarse lo más cercano posible al sitio de la obra. Los tubos deben
de colocarse en un superficie plana, nivelada y libre de piedras, apoyando la primera línea de tubos
sobre polines, los cuales deben tener una separación no mayor a 1.5 m ( Fig. 5.3. A)
La figura 5.3. B, C y D, muestran la forma de estibar la tubería en campo. La estiba que más se
recomienda es la de camas perpendiculares (figura B), sobre todo si se cuenta con suficiente
espacio. La estiba de camas paralelas (figura C), es la más adecuada cuando se dispone de poco
espacio, y la estiba piramidal (figura D), es práctica únicamente cuando se carece de espacio
suficiente y se tienen pocos tubos.
5-3
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Fig. 5.3. Almacenamiento en obra.
Almacenamiento a la intemperie.
Cuando los tubos vayan a estar expuestos al sol por más de 30 días deben almacenarse bajo techo.
No deben cubrirse con lonas o polietileno, pues esto provoca un aumento de la temperatura que
puede causar deformaciones, por lo que se recomienda un techado que permita una buena ventilación
a los tubos (figura 5.4.)
Fig. 5.4. Almacenamiento a la intemperie.
5-4
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
5.2.1. Conexiones de la línea DURADREN.
FIGURA
PIEZA
DESCRIPCIÓN
Silleta c/desviación a 45 °
8” x 6”
10” x 6”
12” x 6”
35.5 cm x 6”
40 cm x 6”
45 cm x 6”
50 cm x 6”
63 cm x 6”
5.5.
20 cm x 16 cm
25 cm x 16 cm
31.5 cm x 16 cm
35.5 cm x 16 cm
40 cm x 16 cm
45 cm x 16 cm
50 cm x 16 cm
63 cm x 16 cm
CODO DE :
5.6.
45° x 6"
45° x 8"
45° x 16 cm
45° x 20 cm
CODO DE:
5.7.
90° x 6"
90° x 8"
90° x 16 cm
90° x 20 cm
COPLE REPARACIÓN DE:
5.8.
6", 8", 10", 12"
y
16, 20, 25, 31.5, 35.5, 40, 45, 50 y 63 cm
La tubería fue descrita en el apartado 1.4.1. del capitulo 1, figura 1.1
5-5
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
5.2.2. Acoplamiento de la tubería.
La instalación de los tubos de PVC consistente en la unión de los tramos de tubo, dentro o fuera de
la zanja se realiza de la siguiente forma: primero, se acarrean los tubos del lugar de almacenamiento
hasta ser depositados en el bordo de la zanja, después se bajan a esta, mediante cuerdas, para
tubos de diámetros entre 35.5 cm a 63 cm, o manualmente con tuberías de diámetros menores a
35.5 cm. La espiga del primer tramo a instalar se apoya sobre algún material duro (base de concreto,
roca, pared de la zanja o cualquier objeto fijo) y se procede a unir los dos tramos. La figura 5.8.
muestra la forma de acoplar la tubería de PVC con unión anger.
Para diámetros de 150 mm a 300 mm (6" a 12") Sistema Inglés y de 16 cm a 40 cm Sistema
Métrico, el acoplamiento puede hacerse manualmente o con barreta, con la que se hace palanca,
protegiendo adecuadamente la campana con un taquete de madera. (figura 5.9.)
Para diámetros de 45 cm a 63 cm Sistema Métrico, el acoplamiento se hace ayudándose con un
tecle de cadena de una tonelada de capacidad y dos estrobos de cable de acero, o dos tramos de
cadena de 3/8" x 3 m cada uno. (figura 5.9.)
Fig. 5.9. Acoplamiento de la tubería Duradrén.
A.- Limpiar la campana por dentro y la espiga
de los dos tramos de tubo a unir con limpiador
y un trapo limpio.
B.- Colocar el anillo empaque dentro del nicho
de la campana.
C.- Aplicar el lubricante en la espiga hasta la
marca tope.
D.- Unir los dos tramos de tal forma que la
espiga entre dentro de la campana hasta la
marca tope.
Los tubos DURADREN de Sistema Inglés y
DURAHOL vienen con el anillo empaque
colocado (integrado) de fabrica.
5-6
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Fig. 5.10. Forma de instalación de la tubería
La ventajas de la unión anger entre otras son: el movimiento relativo que existe entre la espiga y la
campana que permite acomodos del suelo; al seguir los lineamientos de instalación e introducir la
espiga dentro de la campana hasta la marca tope, deja dentro de la campana un espacio llamado,
cámara de dilatación, el cual le permite al tubo contraerse y dilatarse debido a la variación de la
temperatura; el anillo empaque permite que la unión sea hermética por lo que no permite
exfiltraciones que puedan contaminar los mantos acuíferos, ni infiltraciones que excedan la capacidad
de conducción de la tubería y de las plantas de tratamiento cuando existan, igualmente impide la
entrada a la red de sustancias nocivas. El anillo empaque se fabrica de material elastomérico según
Norma NMX-E-111. La figura 5.11. muestra la unión anger.
Fig. 5.11. Unión Anger utilizada en la tubería DURADRÉN mostrando
el anillo empaque (según Norma NMX-E-111)
5-7
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
5.2.3. Instalación en la zanja.
Relleno Compactado: El tubo de PVC debe ser instalado sobre una cama o plantilla apropiada que
proporcione un soporte longitudinal uniforme bajo el tubo. El material de relleno debe ser compactado
bajo los lados del tubo para tener un buen acostillado. El relleno inicial debe ser depositado a una
altura suficiente sobre el lomo del tubo como protección al impacto durante el relleno final (a volteo o
compactado según lo especifique el proyecto). Todo el material de relleno compactado debe ser
seleccionado y depositado cuidadosamente, evitando piedras y escombros, además no se
recomienda usar arcillas de alta plasticidad. Una apropiada compactación del material del acostillado,
que es la sección del relleno que va desde la parte baja del tubo hasta el eje del mismo, es
fundamental para obtener el peso volumétrico de suelo especificada por el Ingeniero de diseño. (figura
5.12.)
Fig. 5.12. Zanja tipo
RELLENO FINAL
A volteo o compactado, según
lo especifique el
proyecto
RELLENO
Relleno
Inicial
COMPACTADO
Acostillado
Plantilla
Ancho de Zanja (Bd)
La compactación del relleno es fundamental para el buen comportamiento mecánico del
tubo.
Relleno final (a volteo o compactado): Después de depositar y compactar los materiales de relleno
inicial, se hace el relleno final el cual puede ser depositado con máquina y puede contener piedras y
rocas no muy grandes y escombro; el relleno final puede ser a volteo o compactado según lo
especifique el proyecto.
Para consultar la clasificación de suelos (SUCS), los valores promedio del módulo de reacción del
suelo (E'), una guía aproximada del grado de compactación según el método de relleno, así como los
5-8
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
porcentajes proctor y módulo de reacción para diferentes clases de suelo, refiérase a los cuadros 4.4.
, 4.5., 4.6. y 4.7. respectivamente del capitulo 4.
5.2.4. Dimensiones de la zanja.
El siguiente cuadro muestra las dimensiones recomendadas de zanja para la tubería Duradrén tanto
en Sistema Inglés como en Sistema Métrico.
Cuadro 5.2. Dimensiones de zanja recomendadas.
Diámetro
Nominal
Inglés
Métrico
6"
8"
10"
12"
Ancho de Zanja (m)
Recomendado
por ITP para
tubos de PVC
Recomendado
por CNA
0.60
0.60
0.65
0.70
0.75
0.80
0.85
0.90
1.05
0.70
0.75
0.80
0.85
0.90
1.00
1.10
1.20
1.30
16 cm
20 cm
25 cm
31.5 cm
35.5 cm
40 cm
45 cm
50 cm
63 cm
ITP: Instituto de Tuberías Plásticas.
5.2.5. Rendimientos de instalación
El siguiente cuadro muestra los rendimientos de lubricante para instalar tubería anger.
Cuadro 5.3. Rendimiento de lubricante para
uniones anger
Diámetro
Nominal
(pulg ó cm)
4 ó 10
6 ó 15
8 ó 20
10 ó 25
12 ó 31.5
35.5
40
45
50
63
No de
uniones
por lata de
1000 gr.
180
81
54
46
38
31
31
23
15
8
Cantidad de
lubricante por
unión (gr.)
5.54
12.35
18.57
21.66
26.00
32.50
32.50
43.33
65.00
130.00
Nota: El número de uniones varia dependiendo de la
consistencia del lubricante y de la experiencia del instalador.
5-9
(5)
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
El rendimiento de instalación se muestra a continuación
(5):
Cuadro 5.4. Rendimiento de instalación
Diámetro
Nominal
(pulg ó cm)
4 ó 10
6 ó 15
8 ó 20
10 ó 25
12 ó 31.5
35.5
40
45
50
63
Tubos de 6 m que se instalan por
cuadrilla
en una jornada de
8 horas
175 (1050 m) a mano
160 (960 m) con barreta
120 (720 m) con barreta
100 (600 m) con barreta
90 (540 m) con barreta
80 (480 m) con barreta
70 (420 m) con barreta
65 (390 m) con tecle
60 (360 m) con tecle
55 (330 m) con tecle
No de operadores
por cuadrilla
Oficiales
1
1
1
1
2
2
2
2
2
2
Peones
3
3
3
3
3
3
3
3
4
4
Estos rendimientos no consideran el acarreo de la tubería del lugar de almacenamiento a la zanja,
solo el bajado de la tubería y su posterior unión dentro de la misma. Estos valores son promedio por
lo que pueden ser inferiores o superiores dependiendo de la experiencia y habilidad de los
instaladores, Además son para condiciones de zanja donde no exista nivel freático alto y considera
que el fondo de la zanja fue nivelado previamente según la pendiente de proyecto. Tampoco están
considerados los trabajos de relleno y compactación.
5 - 10
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
5.2.6. Instalación de la descarga domiciliaria.
Para la instalación de las descargas domiciliarias los elementos principales son: la silleta con
desviación a 45º, los codos de 90º ó 45º según la posición del albañal y la profundidad de la atarjea,
el limpiador y el cemento para PVC y las abrazadera de alambre "recocido" o acero inoxidable
(recomendable) para sujetar la silleta a la atarjea durante el secado de la unión cementada. La
siguiente figura muestra la forma de instalación, los pasos a seguir se muestran más abajo.
Figura 5.13. Instalación de la descarga domiciliaria
2
1
Presentar las piezas para determinar el lugar
exacto donde deberá colocar la silleta, ya que
su localización depende de la tubería de
descarga y del codo.
Marcar con la plantilla la guía para efectuar la
perforación en el tubo (atarjea) donde llegará la
descarga domiciliaria. Preparar abrazaderas de
acero o en su defecto de almabre recocido,
dos por silleta (dos hilos cada una)
4
3
Hacer los barrenos conforme a la plantilla, con
un taladro o un berbiquí utilizando broca para
madera de 5/8” ó 3/4” de diámetro
5
6
L
I MP IAD OR
CE ME NT O
Hacer la perforación en el tubo (atarjea) con
serrucho de punta o con caldora eléctrica,
siguiendo la guía interior marcada con la
plantilla
Con escofina o lima de media caña eliminar los
excesos y filos del material, en la perforación
8
7
Colocar la silleta sobre la parte marcada en el
tubo y checar que la perforación corresponda
con la descarga de la silleta. Apretar las
Dejar secar (fraguar) el pegamento durante
cuatro horas minímo para enseguida instalar el
codo de 45° o de 90° y el tubo de la descarga
5 - 11
Limpiar bien la base de la silleta y la superficie
del tubo (emplear limpiadorpara tubería de PVC
Duralón). Aplicar cemento para PVC Duralón
tanto en la silleta como en el tubo, formando
una película uniforme de un milímetro de
espesor (mínimo) en ambas superficies (usar
pegamento que forme película y de secado
lento)
9
Una vez aprobada la priueba de hermeticidad,
rellenar la zanja y compactar bien el terreno
Tubos Flexibles, S.A. de C.V.
abrazaderas de alambre, sobre la silleta y el
tubo.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
domiciliaria, para proceder a la prueba de
hermeticidad.
5.3. Pruebas de Hermeticidad en Sistema de Alcantarillado
La principal finalidad de las pruebas a las tuberías es para comprobar el buen funcionamiento de las
mismas, comprobar la hermeticidad, estanquidad y la resistencia a la presión a que es sometida. El
procedimiento para realizar las pruebas hidrostáticas se describe a continuación tomando como base
el que se sigue en líneas de conducción de agua potable, ya que existen relativamente pocas
experiencias al respecto. Por otro lado, para las pruebas neumáticas se describe el procedimiento
recomendado por Unibell (16). (norma UNI-B-6-90).
Las pruebas de los sistemas de alcantarillado son imprescindibles para garantizar el buen
funcionamiento y la inversión hecha.
5.3.1. Pruebas hidrostáticas.
El siguiente procedimiento es una adaptación de las pruebas que se hacen en tubería para
conducción de agua potable ampliamente probadas en México, se deben tener varias
consideraciones respecto a la manera de hacer la prueba.
Una vez instalado el tubo en la zanja se deben tapar los tramos de tubería solo dejando al
descubierto las uniones para verificar la hermeticidad. Es necesario poner tapas en la línea a probar.
La prueba se debe hacer de preferencia entre pozo y pozo de visita cuidando en atracar bien las
tapas.
•
Para facilitar la instalación de las tapas en los pozos de visita se recomienda dejar instalado el
tubo de tal forma que una longitud de aproximadamente 30 cm quede dentro del pozo, dicho
tramo de tubo puede ser cortado después de realizada la prueba.
•
Para la tubería Duradrén S.I. se recomienda poner un tapón campana y/o espiga según sea
requerido. Enseguida mediante el uso de taquetes de madera para evitar dañar el tubo y usando
polines también de madera, se debe atracar la tapa a las paredes del pozo de visita. En el pozo
de vista aguas abajo se recomienda hacer las adaptaciones necesarias para la instalación de
un manómetro, una válvula para purga y para la alimentación del agua. En el pozo de visita
aguas arriba se instalará una válvula de purga. Para los tubos Duradrén S.M. se recomienda
usar tapas ciegas de Fo.Fo. unidas a la tubería mediante una junta mecánica debido a que
piezas de este diámetro en PVC no se fabrican actualmente en México.
•
Se procede a llenar la tubería mediante una bomba centrífuga, durante este proceso las válvulas
de purga deben estar completamente abiertas con el fin de extraer el aire atrapado del tubo. La
presión de prueba se consigue, una vez que el tubo ha sido llenado de agua, usando ya sea la
misma bomba o una bomba de émbolo accionada a mano ("liebre" o "tijera").
•
Una vez lleno el tramo se procede a cerrar la válvula de purga del pozo aguas arriba bombear el
agua lentamente con la bomba de émbolo y con ayuda del manómetro. Se debe tener cuidado
en mantener la válvula de purga "ahorcada" de tal forma de permitir que la presión dentro de la
tubería se eleve lentamente. Una vez alcanzada la presión de prueba (0.75 kg/cm2) se procede a
cerrar la purga y la válvula de paso de la alimentación del tubo.
•
El tiempo de prueba recomendado es de media hora en el que la caída de presión en el
manómetro no debe ser significativa.
5 - 12
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
•
Durante la prueba se deben de hacer recorridos periódicos a lo largo de la línea para checar que
no existan de fugas.
•
Si se presentan fugas se procede a hacer la reparación de los tramos mal instalados. Se debe
drenar la tubería antes de realizar cualquier reparación. Una vez realizadas las reparaciones se
procede a probar la tubería nuevamente.
•
En caso de no existir fugas se retira el equipo de prueba y se cubren las partes de la tubería
que quedaron al descubierto. Se procede a probar otro tramo de tubería.
Con el fin de ahorrar tiempo se pueden probar primero todos los tramos de tubería, dejando indicados
los tramos que presentaron fuga para realizar las reparaciones al final. Los tramos reparados deben
volverse a probar.
La prueba se pueden hacer de aguas arriba hacia aguas abajo para facilidad de utilización del agua.
La prueba debe ser certificada por el Ingeniero residente del organismo operador correspondiente con
el fin de obtener la aprobación del sistema de alcantarillado instalado.
5.3.2. Pruebas neumáticas.
Las pruebas de hermeticidad con aire a baja presión son económicas y el equipo puede ser operado
rápida y fácilmente. La referencia (16) menciona que en EE. UU. a mediados de los 50's la tasa de
infiltración en los alcantarillados permitida era de 1000 galones por pulgada de diámetro por milla por
día ( 239.792 m3/m de diámetro/km/día), aunque algunas municipalidades permitian hasta 1500
galones / pulgada de diámetro/milla/día ( 359.689 m3/m de diámetro /km/día). Para los 60's la tasa de
infiltración permitida fue reducida a 500 galones/pulgada de diámetro/milla/día ( 119.896 m3/m de
diámetro/km/día). En los 70's la tasa permitida de infiltración siguió disminuyendo debido al uso de
materiales para tubería de mejor calidad y a mejores juntas con sello elastomérico.
En 1964 Roy Edwin Ramseier llevó a cabo las más notable e importante investigación acerca de
pruebas de aire a baja presión (16) recopilando información de 515 pruebas de aire y concluyó lo
siguiente: "Las especificaciones recomendadas consideran una línea de tubería aceptable si las
pérdidas de aire no exceden 0.0030 ft 3/min/ft 2 de superficie interna de tubo (9.144 × 10-4 m3/min/m2
de superficie interna de tubo), cuando se prueba a una presión de 3 PSI (0.211 kg/cm2 ) sobre el
promedio de la contrapresión de cualquier nivel freático en el cual el tubo puede estar sumergido.
Cuando cualquier sección de instalación, probada totalmente entre pozos de vista o estructuras de
limpieza, las pérdidas de aire en una tasa mayor a 0.0030 ft 3/min/plg2 de superficie interna de tubo,
pero la tasa total de pérdida de la sección bajo prueba no exceda 2.0 ft3/min (0.057 m3 /min), la línea
de tubería debe ser considerada libre de fugas significativas. Cuando esas tasas de fugas son
excesivas, una fractura en el tubo, fuga en la unión o fugas en las tapas estarán presentes, y las
reparaciones apropiadas deben ser hechas". Otro trabajo realizado por Ramseier en 1972 de un total
de 1,100 pruebas hechas en alcantarillados instalados, dieron como resultado que, en las líneas de
tubería probadas un "85% de las fugas eran inferiores a 0.0015 ft 3/min/ft 2 (4.572 × 10-4 m3/min/m2 )",
además encontró que"94 % de las tuberías probadas tuvieron una pérdida menor a 2.0 ft3/min (0.057
m3/min) y el 87 % tuvieron una pérdida menor a 1.0 ft3/min (0.028 m3/min)" ; como se puede observar
esta tasa de fugas es la mitad de la original, por lo que Ramseier concluye "0.015 puede ser usado
en una área donde los fabricantes de tubería y los contratistas hayan aceptado la prueba de aire". (16)
Del análisis extensivo, Ramseier concluyó que: " Una especificación basada solo en el promedio de
pérdidas por unidad de superficie puede ser uniformemente aplicado a todas las secciones que
tengan una área interna menor a 625 ft 2 (58.064 m2 ), pero conforme se incrementa el área del tubo la
posibilidad de no detectar una fuga en una tubería se incrementa. Una especificación basada solo en
las pérdidas totales permitirá un elevado promedio de pérdidas para secciones cortas".
5 - 13
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Ramseier llega a la siguiente conclusión: "Las secciones probadas no deben perder más que Q
ft3/min/ft 2 de superficie interna de tubo para cualquier porción conteniendo menos de 625 ft 2
(58.064 m2 ) de superficie interna del tubo. El total de fugas de cualquier sección no debe exceder
625Q ft3/min/ft 2 (58.064Q m3/min/m2 )".
A continuación se describe el método desarrollado por Unibell para pruebas de hermeticidad con aire
el cual toma como base los trabajos realizados por Roy Edwin Ramseier.
La prueba de aire a baja presión se basa tomando una tasa de fugas de 0.0015 ft 3/min/ft 2 (4.572 ×10-4
m3/min/m2 ) la cual es muy recomendable ya que dicha tasa produce un valor máximo total de fugas
de cerca de 1.0 ft3/min (0.028 m3/min). (16)
Nota: Es extremadamente importante que todos los tapones estén instalados y atracados, de
tal manera que se evite un reventamiento y la expulsión violenta de los tapones. Por dar un
ejemplo de los daños que puede causar esto, una tubería de 8" (200 mm) con una presión
interna de 5 PSI (0.352 kg/cm 2 ) desarrolla una fuerza de 250 lbs (113.4 kg), y una fuerza de
2250 lbs (1,020.6 kg) es ejercida sobre un tapón en un tubo de 24" (630 mm) con una presión
de 5 PSI (16). La presión máxima recomendable para evitar daños personales es de 9 PSI
(0.633 kg/cm 2 ) en la prueba de aire.
Para asegurar que la presión máxima de prueba no rebase los 9 PSI se recomienda utilizar
un regulador o una válvula de seguridad ajustada máximo a este valor.
Procedimiento de prueba
•
Preparación de la línea de prueba: Después de que la línea a probar entre pozos de visita,
fue debidamente cubierta por el relleno, se procede a colocar y atracar los tapones en los
extremos, colocando en primer término el tapón aguas arriba, para evitar que se introduzca agua
en el tubo, esto es importante sobre todo en lugares con nivel freático alto. Se recomienda hacer
una prueba de los tapones en un tramo de tubo fuera de la zanja a una presión de 9 PSI (0.633
kg/cm2 ) procurando que ninguna persona se encuentre en dirección del eje longitudinal del tubo
con el fin de evitar accidentes personales. Estos tapones se deben conservar en su lugar sin la
necesidad de atraques.
Los tapones pueden ser neumáticos o mecánicos.
•
Presurización: Se procede a introducir lentamente aire a baja presión en la línea sellada hasta
alcanzar una presión de 4 PSI (0.281 kg/cm2 ) por arriba del promedio de la contrapresión
generada por el nivel freático (cuando exista), pero nunca mayor a 9 PSI (0.633 kg/cm 2 ).
•
Estabilización de la presión: Una vez alcanzada los 4 PSI (0.281 kg/cm2 ) se debe estrangular
la línea de alimentación para mantener la presión durante al menos 2 minutos, este tiempo
permite que la temperatura del aire se estabilice con la temperatura de las paredes del tubo.
•
Tiempo de prueba: Se debe retirar la manguera de alimentación, una vez estabilizada la
temperatura. Un monitoreo continuo del medidor de presión se debe realizar mientras la presión
decrece a no menos de 3.5 PSI (0.246 kg/cm2 ) sobre la contrapresión del nivel freático. A partir
de este momento se debe comenzar a medir el tiempo de caída de presión, con un cronómetro o
cualquier otro aparato con un 99.8 % de precisión.
5 - 14
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
El criterio para la aceptación de las líneas, determina un tiempo predeterminado para una caída
de presión específica. Tradicionalmente la caída de presión es de 1 PSI (0.070 kg/cm2 ), sin
embargo pueden ser especificados otros valores de caída de presión. Si se especifica una caída
de presión de 0.5 PSI (0.035 kg/cm2 ) el tiempo requerido para esta caída de presión será la
mitad del requerido para 1 PSI.
•
Criterio de aceptación o rechazo de la línea: Si el tiempo mostrado en los cuadro 5.5. y 5.6
para caídas de presión de 1 PSI (0.070 kg/cm2 ) ó 0.5 PSI (0.035 kg/cm2 ) respec-tivamente,
transcurre sin alcanzar la caída de presión preestablecida la sección en prueba se acepta
considerándola libre de defectos. La prueba puede ser suspendida una vez que pasado el tiempo
la caída de presión no se ha presentado.
Si cae la presión antes del tiempo especificado en los cuadros, la tasa de pérdida de aire debe
ser considerada excesiva y por lo tanto se rechaza la línea. El contratista debe determinar con
sus propios recursos, la fuente o fuentes, de fuga y debe reparar y/o remplazar todos los
materiales defectuosos y/o la mano de obra a la satisfacción de el Ingeniero. El alcance y tipo
de reparaciones, así como los resultados, estarán sujetos a la aprobación del Ingeniero. La
instalación del tubo deberá entonces ser probada nuevamente.
•
Criterio de tiempo de prueba: El criterio de tiempo de Ramseier establece que ninguna
sección en prueba debe ser aceptada si sus pérdidas son mayores que Q ft3/min/ft 2 de superficie
interna de tubo (Q m3/min/m2 de superficie interna de tubo) para cualquier sección que contenga
menos de 625 ft 2 (58.064 m2 ) de superficie interna de tubo. La fuga total de cualquier sección en
prueba no debe exceder 625 Q ft3/min.
La siguiente relación es la establecida por Ramseier para calcular el tiempo de prueba.
TS I = 0. 085
DK
Q
(5.1)
Donde:
TSI
D
K
Q
L
= Tiempo mínimo, en segundos, permitido para que la presión de aire
"caiga" en 1.0 PSI (0.07032 kg/cm2 , 0.7032 m.c.a.)
= Diámetro nominal en pulgadas
= 0.000419 DL, pero no menor a 1.0
= 0.0015 pies cúbicos/minuto/pies cuadrados de superficie interno
(ft 3/min/ft 2 )
= Longitud de tubo bajo prueba en pies
Esta relación transformada para unidades métricas excepto el diámetro ( debido a que es diámetro
nominal) queda de la siguiente forma:
TSM = 0. 025908
DK
Q
(5.2)
Donde:
TSM
D
= Tiempo mínimo, en segundos, permitido para que la presión de aire
"caiga" en 1.0 PSI (0.07032 kg/cm2 , 0.7032 m.c.a.)
= Diámetro nominal en pulgadas
5 - 15
Tubos Flexibles, S.A. de C.V.
K
Q
L
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
= 0.0013747 DL, pero no menor a 1.0
= 0.000457 metros cúbicos/minuto/metros cuadrados de superficie interna
del tubo (m3/min/m2 )
= Longitud de tubo bajo prueba en metros
Cuadro 5.5. Tiempo mínimo requerido para una caída de presión de 1 PSI (0.070 kg/cm 2) en
función de la longitud de prueba para Q = 0.000457 m3/min/m2
Diámetro del tubo
plg
4
6
8
10
12
14
16
18
20
24
mm ó
cm
100
150
200
250
300
35.5
40.0
45.0
50.0
63.0
Tiempo
mínimo
min:seg
Long.
para
tiempo
mínimo
m
Tiempo
para
longitudes
largas
seg
3:46
5:40
7:34
9:26
11:20
13:13
15:07
17:00
18:53
22:40
182.0
121.3
90.8
72.8
60.7
52.0
45.5
40.5
36.3
30.2
0.805 L
2.803 L
5.000 L
7.775 L
11.203 L
15.250 L
19.934 L
25.111 L
31.212 L
45.033 L
Tiempo de especificado para longitud (L) en min:seg
25 m
50 m
75 m
3:46
5:40
7:34
9:26
11:20
13:13
15:07
17:00
18:53
22:40
3:46
5:40
7:34
9:26
11:20
13:13
16:36
20:55
26:00
37:31
3:46
5:40
7:34
9:43
14:00
19:03
24:55
31:23
39:00
56:17
100 m
125 m
150 m
3:46
5:40
8:20
12:57
18:40
25:25
33:13
41:51
52:00
75:03
3:46
5:50
10:25
16:12
23:20
31:46
41:31
52:19
65:00
93:49
3:46
7:00
12:30
19:26
28:00
38:07
49:50
62:46
78:00
112:35
Cuadro 5.6. Tiempo mínimo requerido para una caída de presión de 0.5 PSI (0.035 kg/cm 2)
en función de la longitud de prueba para Q = 0.000457 m3/min/m2
Diámetro del tubo
plg
4
6
8
10
12
14
16
18
20
24
mm ó
cm
100
150
200
250
300
35.5
40.0
45.0
50.0
63.0
Tiempo
mínimo
min:seg
Long.
para
tiempo
mínimo
m
Tiempo
para
longitudes
largas
seg
1:53
2:50
3:47
4:43
5:40
6:37
7:34
8:30
9:27
11:20
182.0
121.3
90.8
72.8
60.7
52.0
45.5
40.5
36.3
30.2
0.403 L
1.402 L
2.500 L
3.888 L
5.602 L
7.625 L
9.967 L
12.556 L
15.606 L
22.517 L
Tiempo especificado para longitud (L) en min:seg
25 m
50 m
75 m
1:53
2:50
3:47
4:43
5:40
6:37
7:34
8:30
9:27
11:20
1:53
2:50
3:47
4:43
5:40
6:37
8:18
10:28
13:00
18:46
1:53
2:50
3:47
4:52
7:00
8:32
12:28
15:42
19:30
28:09
100 m
125 m
150 m
1:53
2:50
4:10
6:29
9:20
12:43
16:37
20:56
26:00
37:32
1:53
2:55
5:13
8:06
11:40
15:53
20:46
26:09
32:30
46:55
1:53
3:30
6:15
8:43
14:00
19:04
24:55
31:23
39:00
56:18
Ejemplo 5.1.
A).- Se tiene una línea de 12" de diámetro con una longitud de 125 m entre pozo y pozo de visita, sin
descargas domiciliarias. ¿Cual es el tiempo de prueba requerido para una caída de presión de
0.5 PSI ?
Solución: El tiempo de prueba requerido puede ser leido directamente del cuadro 5.6. y es de
11 minutos, 40 segundos.
5 - 16
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
B).- ¿Cual será el tiempo de prueba requerido para una caída de presión de 1 PSI en una línea de 95
m de longitud entre pozo y pozo de visita, con un diámetro nominal de 8"?
Solución: De la tabla 5.5. para tubería de 8" el tiempo de prueba para longitudes largas es igual a,
5.000 L, sustituyendo la longitud resulta, 475 seg, (7 min, 55 seg)
5 - 17
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
5.4. Mantenimiento
Las tecnologías usadas actualmente para mantenimiento de las los sistemas de alcantarillado
(concreto, A-C, PVC, etc.) se resume como sigue: (15)
1.
Inspección periódica
Visualmente.
Equipos de video. (TV)
2. Mantenimiento preventivo ( Calendarizado )
Lavados
Limpieza a alta presión
Utilización de varillas
Utilización de cubetas o canjilones
3.
Mantenimiento de emergencia ( Fuera de calendario )
Limpieza a alta presión
Varillas: Desenraizadoras o cortadoras
Uso de cubetas o canjilones
Hoy en día, varios organismos operadores realizan mantenimiento de rutina en las tuberías de
alcantarillado de PVC con limpiadores de alta presión.
La economía de éste tipo de mantenimiento es obvia cuando se compara contra el costo efectivo de
la limpieza con varillas. Sin embargo la limpieza a alta presión, en ocasiones, no es adecuada para
el mantenimiento de algunos alcantarillados construidos con materiales muy susceptibles a la
intrusión de raíces. El alcantarillado de PVC no es vulnerable a la penetración de raíces y por esto no
requiere necesariamente de "varilleo".
Los alcantarillados de PVC prácticamente no requieren mantenimiento, sin embargo, no se le puede
considerar como la solución perfecta de todos los problemas de recolección de aguas residuales,
aunque las experiencias demuestran que puede resolver muchos problemas comunes de
mantenimiento.
Quizá algunos de los otros métodos de limpieza nunca sean utilizados en el mantenimiento de los
alcantarillados de PVC, aunque ninguna característica de éste material nos lleva a procedimientos de
limpieza imprácticos o antieconómicos. En general, el sentido común prevalece en la limpieza del
alcantarillado de PVC. Los procedimientos de mantenimiento, cuando requeridos, son obvios y
trabajan bien.
Ningún reporte documentado ha sido recibido por parte de un organismo operador que demuestre
problemas de costos excepcionales en el mantenimiento de alcantarillados de PVC.
Invariablemente, a largo plazo, el mantenimiento preventivo calendarizado prueba ser menos costoso
que el mantenimiento de emergencia.
El factor principal en el costo de mantenimiento de los alcantarillados se relaciona con la selección
del material - tubería - que no requiera mantenimiento excesivo o extensivo.
Muchos municipios están seleccionando materiales que aseguren costos de mantenimiento
razonables y aceptables; el PVC satisface dichos requerimientos.
5 - 18
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
5.4.1. Equipo Hidroneumático de Limpieza (limpieza a alta presión)
Como se vio en el apartado anterior existen variados métodos de limpieza para el mantenimiento de
las líneas de alcantarillado con PVC. El método más recomendado para la limpieza y desazolve de
las líneas con PVC es el equipo hidroneumático. Esto no significa que los equipos tradicionales no
funcionen con este tipo de alcantarillados sino que por las ventajas que presenta el equipo
hidroneumático tales como: extracción de lodos, limpieza con chorro a alta presión, su versatilidad y
por hacer la limpieza sin elementos cortantes que puedan dañar las paredes de la tubería, mejorara la
efectividad del mantenimiento en el alcantarillado. La siguiente figura muestra un camión de limpieza
a alta presión.
Fig. 5.14. Equipo de limpieza a Alta Presión (hidroneumático)
5 - 19
Capítulo 6
Bibliografía
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
6.- BIBLIOGRAFÍA.
(1)
Anteproyecto de Norma. " Industria del Plástico, Tubo y Conexiones - Tubos de Poli (Cloruro
de Vinilo), PVC sin plastificante, con Junta Hermética de Material Elastomérico; utilizados
para Sistemas de Alcantarillado.1993. Comite Consultivo Nacional de Normalización para la
Preservación y Uso Racional de los Recursos Hidráulicos.. Subcomite Nacional de Sistemas
de Agua Potable y Alcantarillado. México.
(2)
CNA. 1992. Lineamientos Técnicos para la elaboración de Estudios y Proyectos de Agua
Potable y Alcantarillado Sanitario. México.
(3)
Editors of Modern Plastics Encyclopedia. 1976. Guide to Plastics. EE. UU.
(4)
Gieck, Kurt. 1981. Manual de Fórmulas Técnicas. México.
(5)
ITP, 1991. Manual de construcción de sistemas para abastecimiento de agua potable con
tubería de PVC. Instituto de Tuberías Plásticas. México.
(6)
L.E., Janson y J. Molin. 1991. Design and Installation of Buried Plastics Pipes. Suecia
(7)
Lara G. Jorge Luis, 1991. Alcantarillado. Universidad Nacional Autónoma de México,
Facultad de Ingeniería, División de Ingeniería Civil, Topográfica y Geodésica. Departamento
de Ingeniería Sanitaria. México.
(8)
Olver B., Fernando. 1986. Estructuración de Vías Terrestres. México
(9)
Sotelo Avila, Gilberto. 1987. Hidráulica General, Volumen 1, Fundamentos. México.
(10) Sotelo Ávila, Gilberto. 1986. Apuntes de Hidráulica II. UNAM; Facultad de Ingeniería; División
de Ingeniería Civil, Topografía y Geodésica; Departamento de Hidráulica. México.
(11) SRH. 1961. Mecánica de Suelos, Instructivo para ensaye de suelos. Dirección de Estudios y
Proyectos. Departamento de Ingeniería Experimental. México.
(12) Trueba Coronel, Samuel. 1956. Hidráulica. México.
(13) Tubos Flexibles, 1984. Criterios de Diseño para Abastecimiento de agua Potable Empleando
Tubería de PVC Duralón Anger. México.
(14) UNAM. 1988. Normas de Proyecto para Obras de Alcantarillado Sanitario en Localidades
Urbanas de la República Mexicana. Facultad de Ingeniería. México.
(15) Unibell, 1981. Maintenance of PVC Sewer Pipe. Unibell Palstics Pipe Association. EE.UU.
(16) Unibell, 1990. Recommended Practice for Low-Pressure Air Testing of Installed Sewer Pipe.
Unibell Plastics Pipe Association. UNI-B-6-90. EE. UU.
(17) Unibell. 1982. Handbook of PVC Pipe, Design and Construction. Unibell Plastics Pipe
Association. EE. UU.
(18) Wavin, KLS, B.V. 1982. Plastics Sewers. Holanda.
(19) Wavin. Ultra-Rib Desing Manual. OSMA, Wavin. England.
6-1
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
(20) Webber, N.B. 1969. Mecánica de Fluidos para Ingenieros. Londres, Inglaterra.
6-2
Anexo A1
Cuadros de Deflexión de la
Tubería Duradrén
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
RELACIÓN
DE
GRÁFICAS
Página
Deflexión tubería Duradrén
Gráfica A1 - 1a.
Gráfica A1 - 1b.
Gráfica A1 - 2a.
Gráfica A1 - 2b.
Gráfica A1 - 3a.
Gráfica A1 - 3b.
Gráfica A1 - 4a.
Gráfica A1 - 4b.
Gráfica A1 - 5a.
Gráfica A1 - 5b.
Gráfica A1 - 6a.
Gráfica A1 - 6b.
Gráfica A1 - 7a.
Gráfica A1 - 7b.
Gráfica A1 - 8a.
Gráfica A1 - 8b.
Gráfica A1 - 9a.
Gráfica A1 - 9b.
Gráfica A1 - 10a.
Gráfica A1 - 10b.
Gráfica A1 - 11a.
Gráfica A1 - 11b.
Gráfica A1 - 12a.
Gráfica A1 - 12b.
Gráfica A1 - 13a.
Gráfica A1 - 13b.
Gráfica A1 - 14a.
Gráfica A1 - 14b.
Gráfica A1 - 15a.
Gráfica A1 - 15b.
Gráfica A1 - 16a.
Gráfica A1 - 16b.
Gráfica A1 - 17a.
Gráfica A1 - 17b.
Gráfica A1 - 18a.
Gráfica A1 - 18b.
Tipo 41, DN 150 mm
Tipo 41, DN 150 mm (continuación)
Tipo 51, DN 150 mm
Tipo 51, DN 150 mm (continuación)
Tipo 41, DN 200 mm
Tipo 41, DN 200 mm (continuación)
Tipo 51, DN 200 mm
Tipo 51, DN 200 mm (continuación)
Tipo 41, DN 250 mm
Tipo 41, DN 250 mm (continuación)
Tipo 51, DN 250 mm
Tipo 51, DN 250 mm (continuación)
Tipo 41, DN 300 mm
Tipo 41, DN 300 mm (continuación)
Tipo 51, DN 300 mm
Tipo 51, DN 300 mm (continuación)
Serie 20, DN 35.5 cm
Serie 20, DN 35.5 cm (continuación)
Serie 25, DN 35.5 cm
Serie 25, DN 35.5 cm (continuación)
Serie 20, DN 40 cm
Serie 20, DN 40 cm (continuación)
Serie 25, DN 40 cm
Serie 25, DN 40 cm (continuación)
Serie 20, DN 45 cm
Serie 20, DN 45 cm (continuación)
Serie 25, DN 45 cm
Serie 25, DN 45 cm (continuación)
Serie 20, DN 50 cm
Serie 20, DN 50 cm (continuación)
Serie 25, DN 50 cm
Serie 25, DN 50 cm (continuación)
Serie 20, DN 63 cm
Serie 20, DN 63 cm (continuación)
Serie 25, DN 63 cm
Serie 25, DN 63 cm (continuación)
A1-2
A1-2
A1-3
A1-3
A1-4
A1-4
A1-5
A1-5
A1-6
A1-6
A1-7
A1-7
A1-8
A1-8
A1-9
A1-9
A1-10
A1-10
A1-11
A1-11
A1-12
A1-12
A1-13
A1-13
A1-14
A1-14
A1-15
A1-15
A1-16
A1-16
A1-17
A1-17
A1-18
A1-18
A1-19
A1-19
Nota: Las leyendas de las gráficas se componen de un número romano que corresponde a
la clasificación de suelos especificada en el cuadro 4.4. del capítulo 4; el valor en
porcentaje corresponde a la densidad Proctor.
A1 - 1
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Gráfica A1-1a. Deflexión tubería Duradrén
Tipo 41, DN 150 mm
D
e
f
l
e
x
i
ó
n
10
1
%
0,1
0
1
2
3
4
5
6
7
8
Profundidad de enterramiento (m)
I - 95%
II - 90%
II - 80%
II - 70%
III - 90%
Gráfica A1-1b. Deflexión tubería Duradrén
Tipo 41, DN 150 mm
100
D
e
f
l
e
x
i
ó
n
10
%
1
0
1
2
3
4
5
6
7
Profundidad de enterramiento (m)
III - 80%
III - 70%
IV - 90%
A1 - 2
IV - 80%
IV - 70%
8
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Gráfica A1-2a. Deflexión tubería Duradrén
Tipo 51, DN 150 mm
D
e
f
l
e
x
i
ó
n
10
1
%
0,1
0
1
2
3
4
5
6
7
8
Profundidad de enterramiento (m)
I - 95%
II - 90%
II - 80%
II - 70%
III - 90%
Gráfica A1-2b. Deflexión tubería Duradrén
Tipo 51, DN 150 mm
100
D
e
f
l
e
x
i
¢
n
10
%
1
0
1
2
3
4
5
6
7
Profundidad de enterramiento (m)
III - 80%
III - 70%
IV - 90%
A1 - 3
IV - 80%
IV - 70%
8
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Gráfica A1-3a. Deflexión tubería Duradrén
Tipo 41, DN 200 mm
D
e
f
l
e
x
i
ó
n
10
1
%
0,1
0
1
2
3
4
5
6
7
8
Profundidad de enterramiento (m)
I - 95%
II - 90%
II - 80%
II - 70%
III - 90%
Gráfica A1-3b. Deflexión tubería Duradrén
Tipo 41, DN 200 mm
100
D
e
f
l
e
x
i
ó
n
10
%
1
0
1
2
3
4
5
6
7
Profundidad de enterramiento (m)
III - 80%
III - 70%
IV - 90%
A1 - 4
IV - 80%
IV - 70%
8
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Gráfica A1-4a. Deflexión tubería Duradrén
Tipo 51, DN 200 mm
D
e
f
l
e
x
i
ó
n
10
1
%
0,1
0
1
2
3
4
5
6
7
8
Profundidad de enterramiento (m)
I - 95%
II - 90%
II - 80%
II - 70%
III - 90%
Gráfica A1-4b. Deflexión tubería Duradrén
Tipo 51, DN 200 mm
100
D
e
f
l
e
x
i
ó
n
10
%
1
0
1
2
3
4
5
6
7
Profundidad de enterramiento (m)
III - 80%
III - 70%
IV - 90%
A1 - 5
IV - 80%
IV - 70%
8
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Gráfica A1-5a. Deflexión tubería Duradrén
Tipo 41, DN 250 mm
D
e
f
l
e
x
i
ó
n
10
1
%
0,1
0
1
2
3
4
5
6
7
8
Profundidad de enterramiento (m)
I - 95%
II - 90%
II - 80%
II - 70%
III - 90%
Gráfica A1-5b. Deflexión tubería Duradrén
Tipo 41, DN 250 mm
100
D
e
f
l
e
x
i
ó
n
10
%
1
0
1
2
3
4
5
6
7
Profundidad de enterramiento (m)
III - 80%
III - 70%
IV - 90%
A1 - 6
IV - 80%
IV - 70%
8
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Gráfica A1-6a. Deflexión tubería Duradén
Tipo 51, DN 250 mm
D
e
f
l
e
x
i
ó
n
10
1
%
0,1
0
1
2
3
4
5
6
7
8
Profundidad de enterramiento (m)
I - 95%
II - 90%
II - 80%
II - 70%
III - 90%
Gráfica A1-6b. Deflexión tubería Duradrén
Tipo 51, DN 250 mm
100
D
e
f
l
e
x
i
ó
n
10
%
1
0
1
2
3
4
5
6
7
Profundidad de enterramiento (m)
III - 80%
III - 70%
IV - 90%
A1 - 7
IV - 80%
IV - 70%
8
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Gráfica A1-7a. Deflexión tubería Duradrén
Tipo 41, DN 300 mm
D
e
f
l
e
x
i
ó
n
10
1
%
0,1
0
1
2
3
4
5
6
7
8
Profundidad de enterramiento (m)
I - 95%
II - 90%
II - 80%
II - 70%
III - 90%
Gráfica A1-7b Deflexión tubería Duradrén
Tipo 41, DN 300 mm
100
D
e
f
l
e
x
i
ó
n
10
%
1
0
1
III - 80%
2
3
4
5
Profundidad de enterramiento (m)
III - 70%
IV - 90%
A1 - 8
6
IV - 80%
7
IV - 70%
8
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Gráfica A1 - 8a. Deflexión tubería Duradrén
Tipo 51, DN 300 mm
D
e
f
l
e
x
i
ó
n
10
1
%
0,1
0
1
2
3
4
5
6
7
8
Profundidad de enterramiento (m)
I - 95%
II - 90%
II - 80%
II - 70%
III - 90%
Gráfica A1 - 8b. Deflexión tubería Duradrén
Tipo 51, DN 300 mm
100
D
e
f
l
e
x
i
ó
n
10
%
1
0
1
2
3
4
5
6
7
Profundidad de enterramiento (m)
III - 80%
III - 70%
IV - 90%
A1 - 9
IV - 80%
IV - 70%
8
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Gráfica A1 - 9a. Deflexión tubería Duradrén
Serie 20, DN 35.5 cm
D
e
f
l
e
x
i
ó
n
10
1
%
0,1
0
1
2
3
4
5
6
7
8
Profundidad de enterramiento (m)
I - 95%
II - 90%
II - 80%
II - 70%
III - 90%
Gráfica A1 - 9b. Deflexión tubería Duradrén
Serie 20, DN 35.5 cm
100
D
e
f
l
e
x
i
ó
n
10
%
1
0
1
2
3
4
5
6
7
Profundidad de enterramiento (m)
III - 80%
III - 70%
IV - 90%
A1 - 10
IV - 80%
IV - 70%
8
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Gráfica A1 - 10a. Deflexión tubería Duradrén
Serie 25, DN 35.5 cm
D
e
f
l
e
x
i
ó
n
10
1
%
0,1
0
1
2
3
4
5
6
7
8
Profundidad de enterramiento (m)
I - 95%
II - 90%
II - 80%
II - 70%
III - 90%
Gráfica A1 - 10b Deflexión tubería Duradén
Serie 25, DN 35.5 cm
100
D
e
f
l
e
x
i
ó
n
10
%
1
0
1
2
3
4
5
6
7
Profundidad de enterramiento (m)
III - 80%
III - 70%
IV - 90%
A1 - 11
IV - 80%
IV - 70%
8
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Gráfica A1 - 11a. Deflexión tubería Duradrén
Serie 20, DN 40 cm
D
e
f
l
e
x
i
ó
n
10
1
%
0,1
0
1
2
3
4
5
6
7
8
Profundidad de enterramiento (m)
I - 95%
II - 90%
II - 80%
II - 70%
III - 90%
Gráfica A1 - 11b. Deflexión tubería Duradrén
Serie 20, DN 40 cm
100
D
e
f
l
e
x
i
ó
n
10
%
1
0
1
2
3
4
5
6
7
Profundidad de enterramiento (m)
III - 80%
III - 70%
IV - 90%
A1 - 12
IV - 80%
IV - 70%
8
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Gráfica A1 - 12a. Deflexión tubería Duradrén
Serie 25, DN 40 cm
D
e
f
l
e
x
i
ó
n
10
1
%
0,1
0
1
2
3
4
5
6
7
8
Profundidad de enterramiento (m)
I - 95%
II - 90%
II - 80%
II - 70%
III - 90%
Gráfica A1 - 12b. Deflexión tubería Duradrén
Serie 25, DN 40 cm
100
D
e
f
l
e
x
i
ó
n
10
%
1
0
1
2
3
4
5
6
7
Profundidad de enterramiento (m)
III - 80%
III - 70%
IV - 90%
A1 - 13
IV - 80%
IV - 70%
8
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Gráfica A1 - 13a. Deflexión tubería Duradrén
Serie 20, DN 45 cm
D
e
f
l
e
x
i
ó
n
10
1
%
0,1
0
1
2
3
4
5
6
7
8
Profundidad de enterramiento (m)
I - 95%
II - 90%
II - 80%
II - 70%
III - 90%
Gráfica A1 - 13b. Deflexión tubería Duradrén
Serie 20, DN 45 cm
100
D
e
f
l
e
x
i
ó
n
10
%
1
0
1
2
3
4
5
6
7
Profundidad de enterramiento (m)
III - 80%
III - 70%
IV - 90%
A1 - 14
IV - 80%
IV - 70%
8
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Gráfica A1 - 14a. Deflexión tubería Duradrén
Serie 25, DN 45 cm
D
e
f
l
e
x
i
ó
n
10
1
%
0,1
0
1
2
3
4
5
6
7
8
Profundidad de enterramiento (m)
I - 95%
II - 90%
II - 80%
II - 70%
III - 90%
Gráfica A1 - 14b. Deflexión tubería Duradrén
Serie 25, DN 45 cm
100
D
e
f
l
e
x
i
ó
n
10
%
1
0
1
2
3
4
5
6
7
Profundidad de enterramiento (m)
III - 80%
III - 70%
IV - 90%
A1 - 15
IV - 80%
IV - 70%
8
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Gráfica A1 - 15a. Deflexión tubería Duradrén
Serie 20, DN 50 cm
D
e
f
l
e
x
i
ó
n
10
1
%
0,1
0
1
2
3
4
5
6
7
8
Profundidad de enterramiento (m)
I - 95%
II - 90%
II - 80%
II - 70%
III - 90%
Gráfica A1 - 15b. Deflexión tubería Duradrén
Serie 20, DN 50 cm
100
D
e
f
l
e
x
i
ó
n
10
%
1
0
1
2
3
4
5
6
7
Profundidad de enterramiento (m)
III - 80%
III - 70%
IV - 90%
A1 - 16
IV - 80%
IV - 70%
8
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Gráfica A1 - 16a. Deflexión tubería Duradrén
Serie 25, DN 50 cm
D
e
f
l
e
x
i
ó
n
10
1
%
0,1
0
1
2
3
4
5
6
7
8
Profundidad de enterramiento (m)
I - 95%
II - 90%
II - 80%
II - 70%
III - 90%
Gráfica A1 - 16b. Deflexión tubería Duradrén
Serie 25, DN 50 cm
100
D
e
f
l
e
x
i
ó
n
10
%
1
0
1
2
3
4
5
6
7
Profundidad de enterramiento (m)
III - 80%
III - 70%
IV - 90%
A1 - 17
IV - 80%
IV - 70%
8
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Gráfica A1 - 17a. Deflexión tubería Duradrén
Serie 20, DN 63 cm
D
e
f
l
e
x
i
ó
n
10
1
%
0,1
0
1
2
3
4
5
6
7
8
Profundidad de enterramiento (m)
I - 95%
II - 90%
II - 80%
II - 70%
III - 90%
Gráfica A1 - 17b. Deflexión tubería Duradrén
Serie 20, DN 63 cm
100
D
e
f
l
e
x
i
ó
n
10
%
1
0
1
2
3
4
5
6
7
Profundidad de enterramiento (m)
III - 80%
III - 70%
IV - 90%
A1 - 18
IV - 80%
IV - 70%
8
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Gráfica A1 - 18a. Deflexión tubería Duradrén
Serie 25, DN 63 cm
D
e
f
l
e
x
i
ó
n
10
1
%
0,1
0
1
2
3
4
5
6
7
8
Profundidad de enterramiento (m)
I - 95%
II - 90%
II - 80%
II - 70%
III - 90%
Gráfica A1 - 18b. Deflexión tubería Duradrén
Serie 25, DN 63 cm
100
D
e
f
l
e
x
i
ó
n
10
%
1
0
1
2
3
4
5
6
7
Profundidad de enterramiento (m)
III - 80%
III - 70%
IV - 90%
A1 - 19
IV - 80%
IV - 70%
8
Anexo A2
Resistencia Química del PVC 1114
Tubos Flexibles, S.A. de C.V.
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Anexo A2. Resistencia Química de la tubería de PVC 1114
(Fuente: Referencia (17) )
R = Resistente, C = Condicionado, N = No resistente
COMPUESTO QUÍMICO
Aceite de algodón
Aceite de castor
Aceite de coco
Aceite de linaza
Aceite de maíz
Aceite de máquinas
Aceite de oliva
Aceite de silicón
Aceite mineral
Aceite para corte de roscas
Aceite para motor
Aceite vegetal
Aceites y grasas
Aceites lubricantes
Acetamina
Acetato butílico
Acetato de metilo
Acetato de vinilo
Acetilaldehido
Acetilaldehido, aq 40%
Acetileno
Acetona
Ácido acético, glacial
Ácido acético, vapor
Ácido acético 20%
Ácido acético 80%
Ácido adípico
Ácido aril-sulfónico
Ácido arsénico 80 %
Ácido bencensulfónico
Ácido bencensulfónico 10%
Ácido benzóico
Ácido Bórico
Ácido bromhídrico, 20%
Ácido Brómico
Ácido butírico
Ácido cianhídrico
Ácido cítrico
Ácido cloracético
Ácido clorhídrico, 20%
Ácido clorhídrico
Ácido clorosulfónico
Ácido Crecílico, 50 %
Ácido crómico, 30 %
Ácido crómico, 40 %
Ácido crómico, 50 %
Ácido crómico, 10 %
Ácido diglicólico
Ácido esteárico
Ácido fluorbórico, 25%
Ácido fluorhídrico, 10%
Ácido fluorhídrico, 60%
Ácido fluorhídrico, 100%
Ácido fluorsilícico
Ácido fórmico
22.8ºC
R
R
R
R
R
R
C
R
R
R
R
R
R
R
-
60.0ºC
R
R
R
R
R
R
N
R
R
R
R
R
-
N
N
N
N
C
C
N
R
R
R
R
R
R
R
N
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
N
R
R
R
R
R
R
R
R
R
N
N
N
N
N
C
N
N
R
R
R
R
R
R
N
R
R
R
R
R
N
R
R
R
R
R
N
R
C
C
N
R
R
R
R
C
C
C
R
N
COMPUESTO QUÍMICO
Ácido láctico, 25%
Ácido láurico
Ácido linoléico
Ácido maléico
Ácido málico
Ácido metilsulfónico
Ácido nicotínico
Ácido nítrico, 0-50%
Ácido nítrico, 60 %
Ácido nítrico, 70 %
Ácido nítrico, 80 %
Ácido nítrico, 90 %
Ácido nítrico, 100 %
Ácido nítrico, vapores
Ácidos nítrico y sulfúrico,
mezclados
Ácido nitroso
Ácido oléico
Ácido oxálico
Ácido palmítico, 70 %
Ácido palmítico, 10 %
Ácido peracético, 40 %
Ácido perclórico, 10 %
Ácido perclórico, 70 %
Ácido pícrico
Ácido pirogálico
Ácido salicílico
Ácido selénico
Ácido silícico
Ácido sulfónico de antraquinona
Ácido sulfúrico, 70-90%
Ácido sulfúrico, 90-100%
Ácido sulfúrico, hasta 70%
Ácido sulfuroso
Ácido tánico
Ácido tartárico
Ácido tricloroacético
Ácidos grasos
Agua, normal
Agua de mar
Agua destilada
Agua mineral
Agua regia
Agua salada
Aguas residuales residenciales
Alcohol alílico
Alcohol benzílico
Alcohol butil (2-butanol)
Alcohol butil (n-butanol)
Alcohol etílico
Alcohol hexílico
Alcohol isopropil (2-propanol)
Alcohol Metílico
Alcohol Propil (1-propanol)
Alidas de etileno
Almidón
A2 - 1
22.8ºC
R
R
R
R
R
R
R
R
R
R
C
C
N
N
R
60.0ºC
R
R
R
R
R
R
R
C
C
C
C
N
N
N
R
R
R
R
R
R
R
R
R
N
C
R
R
R
R
R
C
R
C
R
R
R
R
R
R
R
R
C
R
R
R
N
R
R
R
R
R
R
R
N
R
C
R
R
N
R
N
C
N
N
C
R
R
R
R
C
N
R
N
R
R
R
R
R
R
R
R
N
R
R
R
N
N
R
R
R
R
R
R
N
R
Tubos Flexibles, S.A. de C.V.
Ácido fosfórico
Ácido ftálico
Ácido gálico
Ácido glicólico
Ácido hipocloroso
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
R
C
R
R
R
R
C
R
R
R
Alquil xantato de potasio
Alumbre
Amil acetato
Amil cloruro
Amonia , líquido
R
R
N
N
N
N
R
N
N
N
Anexo A2. Resistencia Química de la tubería de PVC 1114 (continuación)
(Fuente: Referencia (17) )
R = Resistente, C = Condicionado, N = No resistente
COMPUESTO QUÍMICO
Amonia, gas
Amonia, aq
Anhídrido acético
Anilina
Antraquinona
Azúcares, aq
Azufre
Benceno
Benzaldehido > 10 %
Benzaldehido 10%
Bisulfuro de carbono
Borax
Bromo, gas 25%
Bromo, aq
Bromo líquido
Bromuro de metileno
Bromuro de metilo
Butadina
Butanodiol
Butantetrol (eritritol)
Butileno
Butilfenol
Cal sulfurada
Caseina
Celosolve
Cerveza
Cetonas
Ciclohexáno
Ciclohexanol
Ciclohexanona
Cloramina
Clorato de sodio
Clorhidrato de anilina
Clorito de sodio
Cloro, gas, seco
Cloro, gas, húmedo
Cloro, líquido
Cloro Activo 12.5 %
Cloro Activo 5.5 %
Cloro acuoso
Cloro benceno
Cloroformo
Clorotionil
Cloruro ácido de anilina
Cloruro Alílico
Cloruro de clorobenzil
Cloruro de metileno
Cloruro de metilo
22.8ºC
R
R
N
N
R
R
R
N
N
R
N
R
R
R
N
N
N
R
R
R
R
R
R
R
R
R
N
N
N
N
R
R
N
R
C
N
N
R
R
R
N
N
N
N
N
N
N
N
60.0ºC
R
R
N
N
R
R
R
N
N
N
N
R
R
R
N
N
N
R
R
N
R
N
R
R
C
R
N
N
N
N
C
N
R
N
N
N
R
R
R
N
N
N
N
N
N
N
N
COMPUESTO QUÍMICO
Dimetil formamida
Dimetilamina
Dioctilftalato (DOP)
Dioxano-1,4
Dióxido de azufre, húmedo
Dióxido de azufre, seco
Dióxido de carbono
Dióxido de carbono, aq
Éteres
Etil alidas
Etil ester
Fenil carbinol
Fenil hidracina
Fenil hidracina, ácida
Fenol
Fluorina, gas seco
Fluorina, gas húmeda
Fluoruro de amonio, 25%
Formaldehido
Fosfato disódico
Fósforo, amarillo
Fósforo, rojo
Fosgeno, gas
Fosgeno, líquido
Freón, F21, F22
Freón, F11, F12, F113, F114
Gas de coque
Gas de hulla, Manuf.
Gas natural, metano
Gasolinas
Gelatina
Glicerina (glicerol)
Glicol de etileno
Glicoles
Grasa de cerdo
Heptano
Hexano
Hidracina
Hidrógeno
Hidroquinona
Hidróxido de calcio
Hipoclorito de calcio
Iodo alcalino
Iodo aq 10%
Iodo en KI, 3% aq
Ioduro de metileno
Jabones
Jabones metálicos, aq
A2 - 2
22.8ºC
N
R
N
N
R
R
R
R
N
N
N
N
N
C
C
C
C
R
R
R
R
R
R
N
N
R
R
N
R
C
R
R
R
R
R
R
R
N
R
R
R
R
N
N
C
N
R
R
60.0ºC
N
R
N
N
C
R
R
R
N
N
N
N
N
N
N
N
N
C
R
R
C
R
C
N
N
R
R
N
R
C
R
R
R
R
R
R
C
N
R
R
R
R
N
N
N
N
R
R
Tubos Flexibles, S.A. de C.V.
Cloruro estánnico
Cloruro estañoso
Combustible Jet, JP4, JP5
Combustibles Diesel
Cresol
Detergentes, aq
Dibutil sebacato
Dibutilftalato
Diclorobenceno
Dicloroetileno
Dicromáto de sodio, ácido
Dietil-amina
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
R
R
R
R
N
R
C
N
N
N
R
N
R
R
R
R
N
R
N
N
N
N
R
N
Jarabes
Keroseno
Lauril clorado
Lauril sulfatado
Leche
Licor de papel Kraft
Licor de remolacha
Licor de sulfito
Licor negro de papel
Licor verde de papel
Licores
Licores de caña de azúcar
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
Anexo A2. Resistencia Química de la tubería de PVC 1114 (continuación)
(Fuente: Referencia (17) )
R = Resistente, C = Condicionado, N = No resistente
COMPUESTO QUÍMICO
Licores de tanino
Melaza
Mercurio
Metano
Metil ciclohexano
Metil cloroformo
Metil metacrilato
Metil salicilato
Miel de maíz
Monoclorobenceno
Monoetanolamina
Monóxido de carbono
Nafta
Naftaleno
Nicotina
Nitrobenceno
Nitroglicerina
Nitroglicol
Nitropropano
Óleum
Orina
Óxido de etileno
Óxido de mesitilo
Óxido de propileno
Óxido nitroso, gas
Oxígeno, gas
Ozono, gas
Parafina
Pegamento de origen animal
Pentano
Pentóxido de fósforo
Percloroetileno
Permanganato de potasio, 25%
Peróxido de Hidrógeno, 50%
Peróxido de Hidrógeno, 90%
Petróleo
Petróleo, sulfuroso
Petróleo, refinado
Petróleo crudo
Piridina
22.8ºC
R
R
R
R
N
N
R
R
R
N
N
R
R
N
R
N
N
N
C
N
R
N
N
N
R
R
R
R
R
C
R
C
C
R
R
C
R
R
R
N
60.0ºC
R
R
R
R
N
N
R
R
N
N
R
R
N
R
N
N
N
C
N
R
N
N
N
C
R
C
R
R
C
C
C
C
R
R
N
R
R
R
N
COMPUESTO QUÍMICO
Sales de cobre, aq
Sales de litio
Sales de magnesio
Sales de mercurio
Sales de niquel
Sales de plata
Sales de plomo
Sales de potasio, aq
Sales de sodio, aq
Sales de zinc
Sales diazoicas
Sales férricas
Salicilaldehido
Soluciones platinadas
Sosa cáustica (hidróxido de sodio)
Sulfato Hidroxilamina
Sulfato de manganeso
Sulfato de metilo
Sulfuro de hidrógeno, aq
Sulfuro de hidrógeno, seco
Tall oil (Deriv. pulpa madera)
Terpiniol
Tetracloroetano
Tetracloruro de carbono
Tetracloruro de titanio
Tetraetilo de plomo
Tetrahidrofurano
Thiner para laqueado
Tintes de anilina
Tolueno
Trementina (aguarrás)
Tributil de citrato
Tributil de fosfato
Tricloroetileno
Tricloruro de antimonio
Tricloruro de fósforo
Tricresil fosfato
Trietanolamina
Trietilamina
Trifloruro de boro
A2 - 3
22.8ºC
R
R
R
R
R
R
R
R
R
R
R
R
C
R
R
R
R
R
R
R
R
C
C
R
C
R
N
C
N
N
R
R
N
N
R
N
N
R
R
R
60.0ºC
R
R
R
R
R
R
R
R
R
R
R
R
C
C
R
R
R
C
R
R
R
C
C
N
N
C
N
N
N
N
R
N
N
R
N
N
C
R
R
Tubos Flexibles, S.A. de C.V.
Potasa cáustica (hidróxido de
potasio)
Propano
Propileno diclorado
Propilglicol
Pulpas y jugos de frutas
Químicos fotográficos, aq
Sales de amonia, excepto fluoruro
Sales de Bario
Sales de calcio, aq
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
R
R
N
R
R
R
R
R
R
R
R
N
R
R
R
R
R
R
Trimetilpropano
R
C
Trióxido de Azufre, húmedo
Trióxido de azufre,gas,seco
Urea
Vaselina
Vinagre
Vinos
Whiskey
Xileno
R
R
R
N
R
R
R
N
C
R
R
N
R
R
R
N
Nota: Los datos de resistencia química se dan únicamente como referencia. La información está basada
principalmente en la inmersión de probetas en las diferentes sustancias y en menor grado en
experiencias de campo.
A2 - 4
Anexo A3
Tablas Complementarias
Tubos Flexibles, S.A. de C.V:
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Anexo A3.1. Tabla de datos para cálculos hidráulicos a tubo
lleno (Fórmula de Manning n=0.009 )
Diámetro
Nominal
(mm ó cm)
Tipo 35
150
200
250
300
Tipo 41
150
200
250
300
Tipo 51
150
200
250
300
Tipo 16.5
16.0
20.0
25.0
31.5
35.5
40.0
45.0
50.0
63.0
Serie 20
16.0
20.0
25.0
31.5
35.5
40.0
45.0
50.0
63.0
Serie 25
16.0
20.0
25.0
31.5
35.5
40.0
45.0
50.0
63.0
Diá
metro
Interno
Promedio
( mm )
Área
Hidráulica
(m2 )
Radio
Hidráulico
[Rh]
(m)
Rh2/3
K
Rh2/3 / n
(-)
(-)
149.54
200.39
250.54
298.19
0.01756
0.03153
0.04929
0.06983
0.03738
0.05009
0.06263
0.07454
0.11180
0.13588
0.15771
0.17712
12.42288
15.09819
17.52316
19.67964
151.01
202.28
252.85
301.13
0.01791
0.03214
0.05021
0.07122
0.03775
0.05057
0.06321
0.07528
0.11254
0.13675
0.15868
0.17829
12.50416
15.19449
17.63164
19.81011
152.69
204.38
255.58
304.28
0.01831
0.03281
0.05130
0.07272
0.03817
0.05110
0.06390
0.07607
0.11337
0.13770
0.15982
0.17953
12.59673
15.29947
17.75833
19.94802
150.15
187.70
234.90
295.95
333.55
375.80
422.90
469.85
592.15
0.01770
0.02767
0.04333
0.06879
0.08737
0.11091
0.14046
0.17338
0.27539
0.03754
0.04693
0.05873
0.07399
0.08339
0.09395
0.10573
0.11746
0.14804
0.11211
0.13010
0.15108
0.17624
0.19087
0.20666
0.22359
0.23985
0.27984
12.45664
14.45530
16.78699
19.58227
21.20760
22.96265
24.84330
26.64958
31.09367
151.65
189.80
237.20
299.05
337.05
379.80
427.40
474.75
598.45
0.01806
0.02829
0.04418
0.07023
0.08922
0.11329
0.14347
0.17702
0.28128
0.03791
0.04745
0.05930
0.07476
0.08426
0.09495
0.10685
0.11869
0.14961
0.11286
0.13107
0.15207
0.17747
0.19220
0.20813
0.22517
0.24151
0.28182
12.53947
14.56291
16.89639
19.71878
21.35570
23.12530
25.01922
26.83454
31.31382
153.35
191.90
239.90
302.25
340.65
384.00
431.90
479.95
604.65
0.01846
0.02892
0.04520
0.07175
0.09114
0.11581
0.14651
0.18092
0.28714
0.03834
0.04798
0.05998
0.07556
0.08516
0.09600
0.10797
0.11999
0.15116
0.11370
0.13203
0.15322
0.17873
0.19357
0.20966
0.22675
0.24327
0.28377
12.63301
14.67014
17.02437
19.85920
21.50749
23.29548
25.19453
27.03013
31.52973
A3-1
Tubos Flexibles, S.A. de C.V:
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
A3-2
Tubos Flexibles, S.A. de C.V:
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Anexo A3.2. Tabla de Pendientes (S 1/2 )
Pendiente [S]
mm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
%
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
m/m
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.010
0.011
0.012
0.013
0.014
0.015
0.016
0.017
0.018
0.019
0.020
0.021
0.022
0.023
0.024
0.025
0.026
0.027
0.028
0.029
0.030
S
1/2
0.03162
0.04472
0.05477
0.06325
0.07071
0.07746
0.08367
0.08944
0.09487
0.10000
0.10488
0.10954
0.11402
0.11832
0.12247
0.12649
0.13038
0.13416
0.13784
0.14142
0.14491
0.14832
0.15166
0.15492
0.15811
0.16125
0.16432
0.16733
0.17029
0.17321
mm
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
%
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.0
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.0
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
6.0
m/m
0.031
0.032
0.033
0.034
0.035
0.036
0.037
0.038
0.039
0.040
0.041
0.042
0.043
0.044
0.045
0.046
0.047
0.048
0.049
0.050
0.051
0.052
0.053
0.054
0.055
0.056
0.057
0.058
0.059
0.060
A3-3
S1/2
0.17607
0.17889
0.18166
0.18439
0.18708
0.18974
0.19235
0.19494
0.19748
0.20000
0.20248
0.20494
0.20736
0.20976
0.21213
0.21448
0.21679
0.21909
0.22136
0.22361
0.22583
0.22804
0.23022
0.23238
0.23452
0.23664
0.23875
0.24083
0.24290
0.24495
mm
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
%
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
7.0
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
8.0
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
9.0
m/m
0.061
0.062
0.063
0.064
0.065
0.066
0.067
0.068
0.069
0.070
0.071
0.072
0.073
0.074
0.075
0.076
0.077
0.078
0.079
0.080
0.081
0.082
0.083
0.084
0.085
0.086
0.087
0.088
0.089
0.090
S1/2
0.24698
0.24900
0.25100
0.25298
0.25495
0.25690
0.25884
0.26077
0.26268
0.26458
0.26646
0.26833
0.27019
0.27203
0.27386
0.27568
0.27749
0.27928
0.28107
0.28284
0.28460
0.28636
0.28810
0.28983
0.29155
0.29326
0.29496
0.29665
0.29833
0.30000
Tubos Flexibles, S.A. de C.V:
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Anexo A3.3. Relaciones para tuberías según el grado de llenado (d/D)
Llenado
Áreas
d/D
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.20
0.21
0.22
0.23
0.24
0.25
0.26
0.27
0.28
0.29
0.30
0.31
0.32
0.33
0.34
0.35
0.36
0.37
0.38
0.39
0.40
0.41
0.42
0.43
0.44
0.45
0.46
0.47
0.48
0.49
0.50
Ap/At
0.0017
0.0048
0.0087
0.0134
0.0187
0.0245
0.0308
0.0375
0.0446
0.0520
0.0598
0.0680
0.0764
0.0851
0.0941
0.1033
0.1127
0.1224
0.1323
0.1424
0.1527
0.1631
0.1738
0.1845
0.1955
0.2066
0.2178
0.2292
0.2407
0.2523
0.2640
0.2759
0.2878
0.2998
0.3119
0.3241
0.3364
0.3487
0.3611
0.3735
0.3860
0.3986
0.4112
0.4238
0.4364
0.4491
0.4618
0.4745
0.4873
0.5000
Radio
Velocidad
Hidráulico
Rhp/Rht
Vp/Vt
0.0265
0.0890
0.0528
0.1408
0.0789
0.1839
0.1047
0.2221
0.1302
0.2569
0.1555
0.2892
0.1805
0.3194
0.2053
0.3480
0.2298
0.3752
0.2541
0.4012
0.2781
0.4260
0.3018
0.4500
0.3253
0.4730
0.3485
0.4953
0.3715
0.5168
0.3942
0.5376
0.4166
0.5578
0.4388
0.5775
0.4607
0.5965
0.4824
0.6151
0.5037
0.6331
0.5248
0.6507
0.5457
0.6678
0.5662
0.6844
0.5865
0.7007
0.6065
0.7165
0.6262
0.7320
0.6457
0.7471
0.6649
0.7618
0.6838
0.7761
0.7024
0.7902
0.7207
0.8038
0.7387
0.8172
0.7565
0.8302
0.7740
0.8430
0.7911
0.8554
0.8080
0.8675
0.8246
0.8794
0.8409
0.8909
0.8569
0.9022
0.8726
0.9132
0.8880
0.9239
0.9031
0.9343
0.9179
0.9445
0.9323
0.9544
0.9465
0.9640
0.9604
0.9734
0.9739
0.9825
0.9871
0.9914
1.0000
1.0000
Gasto
Llenado
Áreas
Qp/Qt
0.0002
0.0007
0.0016
0.0030
0.0048
0.0071
0.0098
0.0130
0.0167
0.0209
0.0255
0.0306
0.0361
0.0421
0.0486
0.0555
0.0629
0.0707
0.0789
0.0876
0.0966
0.1061
0.1160
0.1263
0.1370
0.1480
0.1595
0.1712
0.1834
0.1958
0.2086
0.2218
0.2352
0.2489
0.2629
0.2772
0.2918
0.3066
0.3217
0.3370
0.3525
0.3682
0.3842
0.4003
0.4165
0.4330
0.4495
0.4662
0.4831
0.5000
d/D
0.51
0.52
0.53
0.54
0.55
0.56
0.57
0.58
0.59
0.60
0.61
0.62
0.63
0.64
0.65
0.66
0.67
0.68
0.69
0.70
0.71
0.72
0.73
0.74
0.75
0.76
0.77
0.78
0.79
0.80
0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89
0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00
Ap/At
0.5127
0.5255
0.5382
0.5509
0.5636
0.5762
0.5888
0.6014
0.6140
0.6265
0.6389
0.6513
0.6636
0.6759
0.6881
0.7002
0.7122
0.7241
0.7360
0.7477
0.7593
0.7708
0.7822
0.7934
0.8045
0.8155
0.8262
0.8369
0.8473
0.8576
0.8677
0.8776
0.8873
0.8967
0.9059
0.9149
0.9236
0.9320
0.9402
0.9480
0.9554
0.9625
0.9692
0.9755
0.9813
0.9866
0.9913
0.9952
0.9983
1.0000
A3-4
Radio
Velocidad
Hidráulico
Rhp/Rht
Vp/Vt
1.0126
1.0084
1.0248
1.0165
1.0367
1.0243
1.0483
1.0319
1.0595
1.0393
1.0704
1.0464
1.0810
1.0533
1.0912
1.0599
1.1011
1.0663
1.1106
1.0724
1.1197
1.0783
1.1285
1.0839
1.1369
1.0893
1.1449
1.0944
1.1526
1.0993
1.1599
1.1039
1.1667
1.1083
1.1732
1.1124
1.1793
1.1162
1.1849
1.1198
1.1902
1.1231
1.1950
1.1261
1.1994
1.1288
1.2033
1.1313
1.2067
1.1335
1.2097
1.1353
1.2123
1.1369
1.2143
1.1382
1.2158
1.1391
1.2168
1.1397
1.2172
1.1400
1.2171
1.1399
1.2164
1.1395
1.2150
1.1387
1.2131
1.1374
1.2104
1.1358
1.2071
1.1337
1.2029
1.1311
1.1980
1.1280
1.1921
1.1243
1.1853
1.1200
1.1775
1.1151
1.1684
1.1093
1.1579
1.1027
1.1458
1.0950
1.1316
1.0859
1.1148
1.0751
1.0941
1.0618
1.0663
1.0437
1.0000
1.0000
Gasto
Qp/Qt
0.5170
0.5341
0.5513
0.5685
0.5857
0.6030
0.6202
0.6375
0.6547
0.6718
0.6889
0.7060
0.7229
0.7397
0.7564
0.7729
0.7893
0.8055
0.8215
0.8372
0.8527
0.8680
0.8829
0.8976
0.9119
0.9258
0.9394
0.9525
0.9652
0.9775
0.9892
1.0004
1.0110
1.0211
1.0304
1.0391
1.0471
1.0542
1.0605
1.0658
1.0701
1.0733
1.0752
1.0757
1.0745
1.0714
1.0657
1.0567
1.0420
1.0000
Tubos Flexibles, S.A. de C.V:
Criterios de Diseño para Redes de Alcantarillado Empleando Tubería de PVC
Anexo A3.4. Tablas de conversiones
Unidades de Presión
Pa (= N/m2 )
1 Pa = 1 N/m2
1 N/mm2 =1 MPa
1 bar
1 kgf/cm2
1 Torr
1 PSI
1
106
105
98,100
133
6,897.134
N/mm2
(MPa)
10-6
1
0.1
9.81× 10-2
0.133× 10-3
6.897× 10-3
plg
1
12
36
0.03937
39.37
39,370
pie
0.08333
1
3
3,281× 10-6
3.281
3,281
plg2
1
144
1,296
0.155
15.5
1,550
pie2
1
9
0.1076
10.76
plg3
1
1,728
46,656
0.06102
61.02
61,023
pie3
1
27
3,531× 10-8
0.03531
3,531
dram
1
16
256
0.5644
564.4
564.4× 103
oz
0.0625
1
16
0.03527
35.27
35,270
bar
kgf/cm2
Torr
PSI
10-5
105
1
0.981
1.33× 10-3
6.897× 10-2
1.02× 10-5
10.2
1.02
1
1.36× 10-3
0.07031
0.0075
7.5× 103
750
736
1
51.746
1.45× 10-4
144.991
14.499
14.2233
0.019
1
mm
25.4
304.8
914.4
1
1,000
106
m
0.0254
0.3048
0.9144
0.001
1
1,000
km
10-6
0.001
1
cm2
6.452
929
8,361
1
100
10,000
dm2
0.06452
9.29
83.61
0.01
1
100
m2
64.5× 10-5
0.0929
0.8361
0.0001
0.01
1
cm3
16.39
28,320
765,400
1
1,000
106
dm3 (litros)
0.01639
28.32
0.001
1
1,000
m3
0.0283
10-6
0.001
1
g
1.772
28.35
453.6
1
1,000
106
kg
0.00177
0.02835
0.4536
0.001
1
1,000
Mg (ton)
10-6
0.001
1
Unidades de Longitud
1 plg (in)
1 pie (ft)
1 yd
1 mm
1m
1 km
yd
002778
0.333
1
1,094× 10-6
1.094
1,094
Unidades de Área
plg2
1
1 pie2
1 yd2
1 cm2
1 dm2
1 m2
yd2
0.1111
1
0.01196
1.196
Unidades de Volumen
plg3
1
1 pie3
1 yd3
1 cm3
1 dm3 (litros)
1 m3
yd3
0.037
1
1.31× 10-6
0.00131
130.7
Unidades de Masa
1 dram
1 oz
1 lb
1g
1 kg
1 Mg (ton)
lb
0.003906
0.0625
1
0.002205
2.205
2,205
Otras unidades:
1 milla terrestre = 1,609 m = 1.609 km
1 galón (EE.UU.) = 3.785 dm3 (litros)
1 LPS = 15.85 GPM
A3-5
Descargar