Matemáticas 2.º Bachillerato Matrices Matrices Cálculo yMatrices ydeterminantes de determinantes. primitivas • x2 ex dx = x2 ex – ex 2x dx = x2 ex – 2 x ex dx = u dv u dv u = x2 du = 2x dx dv = ex . dx v = ex u=x du = dx dv = ex . dx v = ex = x2 ex – 2[xex – ex dx ] = ex (x2 – 2x + 2) + C • sen(ln x) . dx = x . sen (ln x) – cos (ln x) . dx = u dv u dv u = sen (L x) du = cos(L x) . (1/x) . dx u = cos (L x) du = – sen(L x) . (1/x) . dx dv = dx v = x dv = dx v = x = x . sen(ln x) – x cos(ln x) – sen(ln x) . dx . Despejando la integral buscada queda: 1 sen(ln x) . dx = x [sen(ln x) – cos(ln x)] + C 2