Álgebra Lineal Ma1010 Mínimos Cuadrados Departamento de Matemáticas ITESM Mínimos Cuadrados Álgebra Lineal - p. 1/34 Introducción En esta sección veremos cómo se trabaja un sistema inconsistente. Esta situación es muy frecuente en el ajuste de datos a un modelo matemático: cuando se tiene un conjunto de datos y un modelo con parámetros a ajustar se conduce a un sistema de ecuaciones que Introducción Error Teorı́a Ejemplo Modelación Ejemplos rara vez tiene solución. Entonces, lo que procede es encontrar los valores de los parámetros que mejor ajustan el modelo a los datos. Primero veremos el concepto de error al asumir una sustitución como si fuera solución a un sistema de ecuaciones. Posteriormente veremos el procedimiento para encontrar la solución que minimiza el error cuadrático. Por último, veremos algunas aplicaciones del método de mínimos cuadrados a ajuste de modelos. Mínimos Cuadrados Álgebra Lineal - p. 2/34 Error Cuadrático Sea A x = b un sistema de ecuaciones (A m × n). Mínimos Cuadrados Introducción Error Teorı́a Ejemplo Modelación Ejemplos Álgebra Lineal - p. 3/34 Error Cuadrático Sea A x = b un sistema de ecuaciones (A m × n). El error cuadrático cometido al asumir la sustitución x = xo , simbolizado por k△kxo se define por k△kxo = kb − Axo k Mínimos Cuadrados Introducción Error Teorı́a Ejemplo Modelación Ejemplos Álgebra Lineal - p. 3/34 Error Cuadrático Sea A x = b un sistema de ecuaciones (A m × n). El error cuadrático cometido al asumir la sustitución x = xo , simbolizado por k△kxo se define por k△kxo = kb − Axo k Introducción Error Teorı́a Ejemplo Modelación Ejemplos Un vector x̃ se dice solución de mínimos cuadrados de Ax = b Mínimos Cuadrados Álgebra Lineal - p. 3/34 Error Cuadrático Sea A x = b un sistema de ecuaciones (A m × n). El error cuadrático cometido al asumir la sustitución x = xo , simbolizado por k△kxo se define por k△kxo = kb − Axo k Introducción Error Teorı́a Ejemplo Modelación Ejemplos Un vector x̃ se dice solución de mínimos cuadrados de Ax = b si x̃ es tal que minimiza el error cuadrático entre todos los vectores en Rn . Note que el error no se mide contra la solución que de momento no se tiene y que posiblemente no exista. Se mide en el efecto de si al sustituirla en la ecuación da b y qué tal lejos quedó de b. Mínimos Cuadrados Álgebra Lineal - p. 3/34 Ejemplo Determine el error de cuadrático cometido por x = xo = (1, 2)′ como solución del sistema: 1 2 1 x = 2 −1 2 3 3 −3 Mínimos Cuadrados Introducción Error Teorı́a Ejemplo Modelación Ejemplos Álgebra Lineal - p. 4/34 Ejemplo Introducción Error Teorı́a Ejemplo Modelación Ejemplos Determine el error de cuadrático cometido por x = xo = (1, 2)′ como solución del sistema: 1 2 1 x = 2 −1 2 3 3 −3 Solución Directo de la definción: k△kxo = = 1 1 2 1 1 2 − 2 −1 = 2 2 −3 −3 3 3 p √ 2 2 2 (−4) + (2) + (−12) = 2 41 Mínimos Cuadrados 5 − 0 9 Álgebra Lineal - p. 4/34 Las figuras 1 y 2 muestran loc cálculos realizados en la TI. Introducción Error Teorı́a Ejemplo Modelación Ejemplos Figura 1: Ejemplo 1: Captura de datos. Mínimos Cuadrados Álgebra Lineal - p. 5/34 Mínimos Cuadrados y Proyección Ortogonal El siguiente resultado indica que efectivamente existe solución al problema de mínimos cuadrados y lo que la solución representa. Teorema Para cualquier matriz A m × n y cualquier vector m b existe una solución x̃ de mínimos cuadrados para Introducción Error Teorı́a Ejemplo Modelación Ejemplos Ax = b. Además, si bpr es la proyección ortogonal de b sobre el espacio generado por las columnas de A, entonces A x̃ = bpr Mínimos Cuadrados Álgebra Lineal - p. 6/34 La figura 3 pretende ilustrar el teorema anterior. Bajo el supuesto de A x = b inconsistente, el vector b está fuera de C(A). La proyección de b sobre C(A) simbolizada por bpr es el elemento de C(A) lo más cercano posible a b. El vector b − bpr resulta perpendicular a todo C(A). Mínimos cuadrados no resuelve Ax = b, sino Ax = bpr . Claro, el problema ahora es calcular bpr . Introducción Error Teorı́a Ejemplo Modelación Ejemplos Figura 3: La proyección de b sobre C(A). Mínimos Cuadrados Álgebra Lineal - p. 7/34 El siguiente resultado indica lo que debe satisfacer la solución al problema de mínimos cuadrados y da el método para obtenerla. Teorema x̃ es una solución por mínimos cuadrados de Introducción Error Teorı́a Ejemplo Modelación Ejemplos Ax = b si y sólo si x̃ es una solución de las ecuaciones normales: AT A x̃ = AT b Mínimos Cuadrados Álgebra Lineal - p. 8/34 El sistema anterior, podría tener infinitas soluciones en algunos casos. El siguiente teorema indica las circunstancias en las cuales es única la solución al problema y cómo determinar la solución de mínimos cuadrados. Introducción Error Teorı́a Ejemplo Modelación Ejemplos Teorema A tendrá columnas linealmente independientes si y sólo si AT A es invertible. En este caso, la solución por mínimos cuadrados es única y puede calcularse con x̃ = (AT A)−1 AT b Mínimos Cuadrados Álgebra Lineal - p. 9/34 El siguiente resultado da el método que usan los profesionales para resolver el problema de mínimos cuadrados a partir una factorización QR de la matriz de coeficientes. Teorema Introducción Error Teorı́a Ejemplo Modelación Ejemplos Si A es una matriz de m × n con columnas linealmente independientes, y si A = Q R es una factorización QR, la única solución x̃ de A x = b por mínimos cuadrados se expresa teóricamente con x̃ = R−1 QT b y puede calcularse resolviendo el sistema R x̃ = QT b Mínimos Cuadrados Álgebra Lineal - p. 10/34 Ejemplo de Solución Ejemplo el siguiente problema de mínimos cuadrados y calcule el error de mínimos cuadrados para el sistema: # 1 1 " 2 x1 = 1 2 4 x2 1 3 3 Resuelva Mínimos Cuadrados Introducción Error Teorı́a Ejemplo Modelación Ejemplos Álgebra Lineal - p. 11/34 Solución Basta resolver las ecuaciones normales AT Ae x = AT b mutiplicando por AT por la izquierda ambos lados del sistema: 1 1 1 2 Mínimos Cuadrados 1 1 1 3 1 1 1 e x = 2 1 3 1 2 2 1 4 3 3 Introducción Error Teorı́a Ejemplo Modelación Ejemplos Álgebra Lineal - p. 12/34 Solución Basta resolver las ecuaciones normales AT Ae x = AT b mutiplicando por AT por la izquierda ambos lados del sistema: 1 1 1 2 1 1 1 3 1 1 1 e x = 2 1 3 1 2 2 1 4 3 3 Introducción Error Teorı́a Ejemplo Modelación Ejemplos quedando las ecuaciones normales 3 6 9 x e= 6 14 19 Mínimos Cuadrados Álgebra Lineal - p. 12/34 Solución Basta resolver las ecuaciones normales AT Ae x = AT b mutiplicando por AT por la izquierda ambos lados del sistema: 1 1 1 2 1 1 1 3 1 1 1 e x = 2 1 3 1 2 2 1 4 3 3 Introducción Error Teorı́a Ejemplo Modelación Ejemplos quedando las ecuaciones normales 3 6 9 x e= 6 14 19 formando la matriz aumentada y reduciendo: 1 0 3 6 9 2 → 6 14 19 0 1 1/2 Mínimos Cuadrados Álgebra Lineal - p. 12/34 La solución del sistema normal es la solución por mínimos cuadrados: e= x Mínimos Cuadrados 2 1 2 Introducción Error Teorı́a Ejemplo Modelación Ejemplos Álgebra Lineal - p. 13/34 La solución del sistema normal es la solución por mínimos cuadrados: e= x 2 1 2 cuyo error de mínimos cuadrados es: 2 1 k△k = kb − Ae xk = 4 − 1 3 1 −1 √ 2 = 6 = 1 2 −1 2 Mínimos Cuadrados Introducción Error Teorı́a Ejemplo Modelación Ejemplos 1 2 2 1 2 3 Álgebra Lineal - p. 13/34 Introducción Error Teorı́a Ejemplo Modelación Ejemplos Figura 4: Ejemplo 2: Captura de datos. Figura 5: Ejemplo 2: solución por mínimos cuadrados usando Mínimos Cuadrados Álgebra Lineal - p. 14/34 Aplicaciones de Mínimos Cuadrados Uno de los usos frecuentes de los mínimos cuadrados ocurre en el área de la modelación. Mínimos Cuadrados Introducción Error Teorı́a Ejemplo Modelación Ejemplos Álgebra Lineal - p. 15/34 Aplicaciones de Mínimos Cuadrados Uno de los usos frecuentes de los mínimos cuadrados ocurre en el área de la modelación. El problema en general consiste en ajustar un conjunto de datos a un cierto modelo matemático. Mínimos Cuadrados Introducción Error Teorı́a Ejemplo Modelación Ejemplos Álgebra Lineal - p. 15/34 Aplicaciones de Mínimos Cuadrados Uno de los usos frecuentes de los mínimos cuadrados ocurre en el área de la modelación. El problema en general consiste en ajustar un conjunto de datos a un cierto modelo matemático. El modelo contiene ciertos parámetros constantes que deben determinarse para que éste se ajuste lo más posible al conjunto de datos muestreados. Mínimos Cuadrados Introducción Error Teorı́a Ejemplo Modelación Ejemplos Álgebra Lineal - p. 15/34 Aplicaciones de Mínimos Cuadrados Uno de los usos frecuentes de los mínimos cuadrados ocurre en el área de la modelación. El problema en general consiste en ajustar un conjunto de datos a un cierto modelo matemático. El modelo contiene ciertos parámetros constantes que deben determinarse para que éste se ajuste lo más posible al conjunto de datos muestreados. En la práctica, el conjunto de datos es grande y variado y no existe un modelo matemático que se ajuste perfectamente a los datos encontrados Mínimos Cuadrados Introducción Error Teorı́a Ejemplo Modelación Ejemplos Álgebra Lineal - p. 15/34 Aplicaciones de Mínimos Cuadrados Uno de los usos frecuentes de los mínimos cuadrados ocurre en el área de la modelación. El problema en general consiste en ajustar un conjunto de datos a un cierto modelo matemático. El modelo contiene ciertos parámetros constantes que deben determinarse para que éste se ajuste lo más posible al conjunto de datos muestreados. En la práctica, el conjunto de datos es grande y variado y no existe un modelo matemático que se ajuste perfectamente a los datos encontrados y lo que se hace es determinar las constantes del modelo que minimizan el error cuadrático datos-modelo. Mínimos Cuadrados Introducción Error Teorı́a Ejemplo Modelación Ejemplos Álgebra Lineal - p. 15/34 Ejemplos modelado Ejemplo Determina la recta de mínimos cuadrados para el porcentaje de calificaciones por encima del 80 que ha reunido el profesor de álgebra lineal. Además, calcule el porcentaje esperado después del décimo semestre. Semestre 1 2 3 4 5 6 Porcentaje 0.20 0.25 0.20 0.35 0.45 0.40 b b b b e1 e2 b e4 e5 b Introducción Error Teorı́a Ejemplo Modelación Ejemplos e6 e3 -(0,0)(-0.1,-0.1)(7,0.5) Meta: Encontrar un modelo que minimice el error total Etotal = 6 X ei 2 i=1 Mínimos Cuadrados Álgebra Lineal - p. 16/34 En este caso se desea ajustar los puntos proporcionados a un modelo lineal que en general tiene la forma: y = mx + b Mínimos Cuadrados Introducción Error Teorı́a Ejemplo Modelación Ejemplos Álgebra Lineal - p. 17/34 En este caso se desea ajustar los puntos proporcionados a un modelo lineal que en general tiene la forma: y = mx + b Los parámetros constantes a determinar en este modelo son m y b. Mínimos Cuadrados Introducción Error Teorı́a Ejemplo Modelación Ejemplos Álgebra Lineal - p. 17/34 En este caso se desea ajustar los puntos proporcionados a un modelo lineal que en general tiene la forma: y = mx + b Los parámetros constantes a determinar en este modelo son m y b. Las variables en este modelo representan: x el semestre y y el porcentaje de calificaciones por encima del 80. Mínimos Cuadrados Introducción Error Teorı́a Ejemplo Modelación Ejemplos Álgebra Lineal - p. 17/34 En este caso se desea ajustar los puntos proporcionados a un modelo lineal que en general tiene la forma: y = mx + b Los parámetros constantes a determinar en este modelo son m y b. Las variables en este modelo representan: x el semestre y y el porcentaje de calificaciones por encima del 80. Es importante observar que nuestras incógitas son las constantes del modelo no las variables: las variables tomarán sus valores de los datos muestreados Mínimos Cuadrados Introducción Error Teorı́a Ejemplo Modelación Ejemplos Álgebra Lineal - p. 17/34 En este caso se desea ajustar los puntos proporcionados a un modelo lineal que en general tiene la forma: y = mx + b Los parámetros constantes a determinar en este modelo son m y b. Las variables en este modelo representan: x el semestre y y el porcentaje de calificaciones por encima del 80. Es importante observar que nuestras incógitas son las constantes del modelo no las variables: las variables tomarán sus valores de los datos muestreados Así, el primer dato (semestre=1, porcentaje de calificación=0.20) se convierte en la ecuación: Introducción Error Teorı́a Ejemplo Modelación Ejemplos m ∗ (semestre 1) + b = porcentaje 0.20 es decir b + m = 0.20 Mínimos Cuadrados Álgebra Lineal - p. 17/34 El segundo dato (semestre=2, porcentaje de calificación=0.25) se convierte en la ecuación: m (2) + b = 0.25, es decir: b + 2 m = 0.25 Mínimos Cuadrados Introducción Error Teorı́a Ejemplo Modelación Ejemplos Álgebra Lineal - p. 18/34 El segundo dato (semestre=2, porcentaje de calificación=0.25) se convierte en la ecuación: m (2) + b = 0.25, es decir: b + 2 m = 0.25 Introducción Error Teorı́a Ejemplo Modelación Ejemplos El tercer dato (semestre=3, porcentaje de calificación=0.20) se convierte en la ecuación: m (3) + b = 0.20, es decir: b + 3 m = 0.20 Mínimos Cuadrados Álgebra Lineal - p. 18/34 El segundo dato (semestre=2, porcentaje de calificación=0.25) se convierte en la ecuación: m (2) + b = 0.25, es decir: b + 2 m = 0.25 Introducción Error Teorı́a Ejemplo Modelación Ejemplos El tercer dato (semestre=3, porcentaje de calificación=0.20) se convierte en la ecuación: m (3) + b = 0.20, es decir: b + 3 m = 0.20 El cuarto dato (semestre=4, porcentaje de calificación=0.35) se convierte en la ecuación: m (4) + b = 0.35, es decir: b + 4 m = 0.35 Mínimos Cuadrados Álgebra Lineal - p. 18/34 Continuando con este proceso nos lleva el sistema de ecuaciones: b + 1m b + 2m b + 3m b + 4m b + 5m b + 6m Mínimos Cuadrados = = = = = = 0.20 0.25 0.20 0.35 0.45 0.40 Introducción Error Teorı́a Ejemplo Modelación Ejemplos Álgebra Lineal - p. 19/34 Continuando con este proceso nos lleva el sistema de ecuaciones: b + 1m b + 2m b + 3m b + 4m b + 5m b + 6m = = = = = = 0.20 0.25 0.20 0.35 0.45 0.40 Introducción Error Teorı́a Ejemplo Modelación Ejemplos Este sistema se escribe en la notación matricial " # b A =b m Mínimos Cuadrados Álgebra Lineal - p. 19/34 Siendo A = Mínimos Cuadrados 1 1 1 1 1 1 1 2 3 4 5 6 ,b = 0.20 0.25 0.20 0.35 0.45 0.40 Introducción Error Teorı́a Ejemplo Modelación Ejemplos Álgebra Lineal - p. 20/34 Por tanto, # " 1 1 1 1 1 1 T A A = 1 2 3 4 5 6 Mínimos Cuadrados 1 1 1 1 1 1 1 2 3 4 5 6 Introducción Error Teorı́a Ejemplo Modelación Ejemplos " # 6 21 = 21 91 Álgebra Lineal - p. 21/34 y # " 1 1 1 1 1 1 T A b = 1 2 3 4 5 6 Mínimos Cuadrados 0.20 0.25 0.20 0.35 0.45 0.40 " # = 1.85 7.35 Introducción Error Teorı́a Ejemplo Modelación Ejemplos Álgebra Lineal - p. 22/34 y # " 1 1 1 1 1 1 T A b = 1 2 3 4 5 6 0.20 0.25 0.20 0.35 0.45 0.40 " # = 1.85 7.35 Introducción Error Teorı́a Ejemplo Modelación Ejemplos Así, las ecuaciones normales son # # " #" " eb 1.85 6 21 = 7.35 m e 21 91 Mínimos Cuadrados Álgebra Lineal - p. 22/34 Resolviendo este sistema " # " # 1 0 0.13333 6 21 1.85 ∼ 21 91 7.35 0 1 0.05 Mínimos Cuadrados Introducción Error Teorı́a Ejemplo Modelación Ejemplos Álgebra Lineal - p. 23/34 Resolviendo este sistema " # " # 1 0 0.13333 6 21 1.85 ∼ 21 91 7.35 0 1 0.05 Introducción Error Teorı́a Ejemplo Modelación Ejemplos Por consiguiente, m e = 0.05 y eb = 0.13333. Mínimos Cuadrados Álgebra Lineal - p. 23/34 Resolviendo este sistema " # " # 1 0 0.13333 6 21 1.85 ∼ 21 91 7.35 0 1 0.05 Introducción Error Teorı́a Ejemplo Modelación Ejemplos Por consiguiente, m e = 0.05 y eb = 0.13333. De manera que la recta es y = 0.13333 + 0.05x Mínimos Cuadrados Álgebra Lineal - p. 23/34 Resolviendo este sistema " # " # 1 0 0.13333 6 21 1.85 ∼ 21 91 7.35 0 1 0.05 Introducción Error Teorı́a Ejemplo Modelación Ejemplos Por consiguiente, m e = 0.05 y eb = 0.13333. De manera que la recta es y = 0.13333 + 0.05x Para x = 10 se obtiene y = 0.13333 + 0.05 × 10 = 0.63333. Mínimos Cuadrados Álgebra Lineal - p. 23/34 Resolviendo este sistema " # " # 1 0 0.13333 6 21 1.85 ∼ 21 91 7.35 0 1 0.05 Introducción Error Teorı́a Ejemplo Modelación Ejemplos Por consiguiente, m e = 0.05 y eb = 0.13333. De manera que la recta es y = 0.13333 + 0.05x Para x = 10 se obtiene y = 0.13333 + 0.05 × 10 = 0.63333. Esto significa que más o menos esperaríamos 63.3 % de calificaciones estarían por encima del 80 en el décimo semestre, si continúa esta tendencia de calificaciones. Mínimos Cuadrados Álgebra Lineal - p. 23/34 Introducción Error Teorı́a Ejemplo Modelación Ejemplos Figura 6: Ejemplo 3: Captura de datos. Mínimos Cuadrados Álgebra Lineal - p. 24/34 Ejemplo Encuentre la ecuación de la recta y = m x + b que se ajusta mejor, en el sentido de mínimos cuadrados, a los datos de la siguiente tabla: x y Introducción Error Teorı́a Ejemplo Modelación Ejemplos 40 481 45 466 50 453 55 435 60 420 Hint: Forme el sistema para m y b sustituyendo los puntos en el modelo, por ejemplo al sustituir el primer punto queda la ecuación : 40m + b = 481 Mínimos Cuadrados Álgebra Lineal - p. 25/34 Solución Convirtiendo cada dato en ecuación, obtenemos el sistema: Mínimos Cuadrados 40 m + b = 481 45 m + b = 466 50 m + b = 453 55 m + b = 435 60 m + b = 420 Introducción Error Teorı́a Ejemplo Modelación Ejemplos Álgebra Lineal - p. 26/34 Solución Convirtiendo cada dato en ecuación, obtenemos el sistema: 40 m + b = 481 45 m + b = 466 50 m + b = 453 55 m + b = 435 60 m + b = 420 Así, el sistema queda A x = b con 40 1 45 1 A = 50 1 y b = 55 1 60 Mínimos Cuadrados 1 481 Introducción Error Teorı́a Ejemplo Modelación Ejemplos 466 453 435 420 Álgebra Lineal - p. 26/34 Así T A A= 12750 250 250 5 y AT b = 111985 2255 Por tanto, las ecuaciones normales quedan: 12750 250 111985 x̃ = AT Ax̃ = AT b → 250 5 2255 Al formar la aumentada y reducir obtenemos: 12750 250 111985 1 0 → 250 5 0 1 2255 −3.06 604.0 Introducción Error Teorı́a Ejemplo Modelación Ejemplos De donde m̃ = −3.06 y b̃ = 604.0. Por tanto, el modelo del mínimo error cuadrático es: y = −3.06 x + 604.0 Mínimos Cuadrados Álgebra Lineal - p. 27/34 Ejemplo Una población de conejos en una gran isla se estimó desde 1981 hasta 1984 y se obtuvieron los datos: año N 1981 2960 1982 4540 1983 8080 1984 17060 Introducción Error Teorı́a Ejemplo Modelación Ejemplos Se espera que los datos se ajusten a una función exponencial N (t) = No ek (t−1981) Use el método de mínimos cuadrados para hacer este ajuste. Usando esto determine la población en 1985. Hint: Tome logaritmos para convertir el ajuste a un modelo lineal. Mínimos Cuadrados Álgebra Lineal - p. 28/34 Solución Introducción Error Teorı́a Ejemplo Modelación Ejemplos Tomando logaritmo natural al modelo propuesto N (t) = No ek (t−1981) tenemos: ln (N ) = k (t − 1981) + ln (No ) Si y = ln (N ) y b = ln (No ) el modelo buscado es: y = k (t − 1981) + b siendo los parámetros incógnitas k y b. Al añadir a la tabla de datos la columna ln (N ) queda: Mínimos Cuadrados año N ln (N ) 1981 2960 7.992944547 1982 4540 8.420682291 1983 8080 8.997147152 1984 17060 9.744491821 Álgebra Lineal - p. 29/34 Al sustituir los datos en el modelo, obtenemos las ecuaciones: 0k + b = 7.992944547 1k + b = 8.420682291 2k + b = 8.997147152 3k + b = 9.744491821 Así, el sistema tiene la forma A x = b con 0 1 7.992944547 1 1 8.420682291 A= y b= 2 1 8.997147152 3 1 9.744491821 Mínimos Cuadrados Introducción Error Teorı́a Ejemplo Modelación Ejemplos Álgebra Lineal - p. 30/34 De donde: T A A= 14 6 6 4 y AT b = 55.64845205 35.15526581 Introducción Error Teorı́a Ejemplo Modelación Ejemplos Por tanto, la matriz aumentada de las ecuaciones normales y su reducción quedan 1 0 0.583110664 14 6 55.64845205 → 6 4 35.15526581 0 1 7.914150457 Concluimos que k = 0.583110664 y No = eb = e7.914150457 = 2735.72143 . Por tanto, el modelo que minimiza el error cuadrático bajo el logaritmo natural es: N (t) ≈ 2735.72143 e.583110664 (t−1981) Por tanto el estimado de la población para t = 1985 sería: N (1985) ≈ 2735.72143 e.583110664 (1985−1981) = 28186.35046 Mínimos Cuadrados Álgebra Lineal - p. 31/34 El problema puede hacerse también utilizando la factorización QR de A, estos cálculos se muestran en las figuras 8, 9 y 10. Introducción Error Teorı́a Ejemplo Modelación Ejemplos Figura 8: Ejemplo 5: Captura de datos. Mínimos Cuadrados Álgebra Lineal - p. 32/34 En la figura 9 se ilustra cómo tomar el logaritmo natural a un vector columna. Introducción Error Teorı́a Ejemplo Modelación Ejemplos Figura 9: Ejemplo 6: logaritmo de un vector y factorización QR. Mínimos Cuadrados Álgebra Lineal - p. 33/34 En la figura 10 se muestra la solución por mínimos cuadrados utilizando la factorización QR. Introducción Error Teorı́a Ejemplo Modelación Ejemplos Figura 10: Ejemplo 6: solución de mínimos cuadrados por QR. Mínimos Cuadrados Álgebra Lineal - p. 34/34