Ficha 4 de estudio MCM y MCD MCM es el máximo común múltiplo. Es decir, es el número más chico múltiplo de una serie de números MCD es el máximo común divisor Es decir, es el número más grande que divide a una serie de números Nos servirá saber primero las siguientes reglas de divisibilidad para ser más ágil en tu resolución del MCM y MCD: a) Se dividen entre dos todos los números con terminación 0,2,4,6 y 8 b) Se dividen entre 5 todos los números con terminación 0 o 5 c) Se dividen entre 3 todas las cifras que al sumar sus números resulte 3, 6 o 9 ejemplo: 22731 … se suman 2 +2 +7 +3 +1 = 15, se vuelven a sumar 1+5 = 6.. si termina en seis quiere decir que la cifra 22731 si tiene tercera. d) Se dividen en 11 todos las cifras que se componen de dos numeros iguales, es decir 11,22,33,44,55,66,77,88 y 99 e) Se dividen entre 10 todos los números que terminen en 0 f) Todos los números primos no se pueden dividir por otro número que no sea si mismo, es decir: 2,3, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, etc Podemos obtener el MCM y el MCD al mismo tiempo. Analiza el siguiente ejemplo resuelto: 36, 56, 84 se busca un número que divida de preferencia a los tres números si no existiera, basta con que divida a dos o a uno. En este caso es el dos. Los resultados de la división de cada elementos se irá acomodando debajo de cada uno. Quedaría así: 36, 56, 84 18, 28, 42 2 si el divisor encontrado pudo dividir a todos los números de la serie entonces se va marcando (. ) se vuelve a buscar un número que divida de preferencia a los tres número, si no existiera, basta con que divida a dos o a uno. En este caso es el dos. Los resultados de la división de cada elementos se irá nuevamente acomodando debajo de cada uno. Si el divisor dividiera a los tres también se maraca Quedaría así: 36, 56, 84 18, 28, 42 9, 14, 21 2 2 se continua el proceso. Si alguno de los numeros de la serie no puede ser dividido por el divisor elegido, entonces “bajará” igual Quedaría así: 36, 56, 84 18, 28, 42 9, 14, 21 9 , 7 , 21 2 2 2 este dos ya no se marcó porque no dividió al nueve. Seguimos avanzando Quedaría así: 36, 56, 84 18, 28, 42 9, 14, 21 9 , 7 , 21 9, 1, 3 2 2 2 7 se uso el 7 porque divide a dos elementos. Cuando el resultado es uno… ya no se continua con ese número Quedaría así: 36, 56, 84 18, 28, 42 9, 14, 21 9 , 7 , 21 9, 1, 3 3, 1 2 2 2 7 3 se uso el 3 porque divide a dos elementos. Cuando el resultado es uno… ya no se continua con ese número Quedaría así: 36, 56, 84 18, 28, 42 9, 14, 21 9 , 7 , 21 9, 1, 3 3, 1, 1 1, 1, 1 2 2 2 7 3 3 Ya que todos los números están en 1, se procede a obtener el MCD multiplicando los divisores que dividieron a todos los a) Números de la serie. Son los que están marcados, es decir: (2)(2) = 4 b) Se procede a obtener el MCM multiplicando todos los divisores Sin excepción, es decir (2)(2)(2)(7)(3)(3)= 504 Entonces, el MCM y el MCD de 36,56 y 84 es: MCD = 4 MCM = 504