Lesson 2 - Stability in Feedback Circuits [Modo de

Anuncio
(Analog) Electronics II
Lesson II
Stability of Feedback Amplifiers
Guillermo Carpintero – Universidad Carlos III de Madrid
Ideal Configuration of a Feedback Amplifier
With negative feedback
si
+
+
input
sε = si - sfb
error
so
A
sfb = β· so
β
feedback
A=
a
1+ a f
Guillermo Carpintero – Universidad Carlos III de Madrid
What happens with the frequency response?
a( s)
A( s ) =
1 + a( s) f ( s)
How can we explore the effect of feedback on the
frequency response of the amplifier?
Does feedback affect it anyway?
Guillermo Carpintero – Universidad Carlos III de Madrid
Why did we use feedback anyway?
At the cost of GAIN REDUCTION, we obtain
An amplifier closer to ideal characteristics:
• Insensitivity against active component
parameter dispersion.
• Linear Gain
• Input/Output Inpedances
However, the circuit has tendency toward . . . . .
OSCILLATION.
Guillermo Carpintero – Universidad Carlos III de Madrid
Oscillation ??????????
What frequency?
What amplitude?
Why?
jω
s plane
Impulse
input
1
s2 +as+b
s = σ ± jω
σ t
υ (t ) = e [e
output
v(t)
jω n t
+e
σ
− jω n t
σ t
=
2
e
cos(ω n t )
]
Guillermo Carpintero – Universidad Carlos III de Madrid
Feedback, Poles and Stability
1. One pole system
2. Two pole system
3. More than two poles
Guillermo Carpintero – Universidad Carlos III de Madrid
Feedback, Poles and Stability
Open Loop Gain
si
a
so
●
●
●
Open loop amplifiers are always STABLE systems
Guillermo Carpintero – Universidad Carlos III de Madrid
Feedback, Poles and Stability
Case 1. A(s) has one pole
Frequency Domain
Gray-Meyer
K
a( s) =
1 − ps1
Sedra-Smith
A0
a(s) =
1 + ωsP
Time Domain
vout + ω P
1
dvout
= A0 vin
dt
Guillermo Carpintero – Universidad Carlos III de Madrid
Frequency Domain
Time Domain
Guillermo Carpintero – Universidad Carlos III de Madrid
Feedback, Poles and Stability
K
A( s ) =
1 + Kf 1 −
(1+Aβ)p1
□
1
s
p1 (1 + Kf )
p1
●
unconditionally STABLE
Guillermo Carpintero – Universidad Carlos III de Madrid
Feedback, Poles and Stability
Gain x Bandwidth Product
Basic
A( s ) =
K
1+ K f 1−
1
1
p1 (1 + K f )
Feedback
GAIN
K
K
1+ K f
BW
p1
p1 (1 + K f )
Guillermo Carpintero – Universidad Carlos III de Madrid
Feedback, Poles and Stability
Guillermo Carpintero – Universidad Carlos III de Madrid
Feedback, Poles and Stability
Hints on what happens with higher order systems
Case 2. a(s) has two poles
K
jω
□
p2
p1
●
●
□
unconditionally STABLE
Guillermo Carpintero – Universidad Carlos III de Madrid
σ
Feedback, Poles and Stability
jω
Case 3. a(s) more than two poles
σ
System can become unstable,
depending on f strength.
Guillermo Carpintero – Universidad Carlos III de Madrid
Origin of the instability
Guillermo Carpintero – Universidad Carlos III de Madrid
Origin of the instability
IF feedback can turn our system unstable . . .
. . . . means that poles of a(s) are not the poles of A(s)
a( s)
A( s ) =
1 + a( s) f ( s)
1 + a(s)f = 0
characteristic
equation
L(s)
a ( jω )
A( jω ) =
1 + a ( jω ) f
1 + a(jω)f = 0
1 + | a(jω)f |ejφ(ω) = 0
Guillermo Carpintero – Universidad Carlos III de Madrid
Origin of the instability
¿What happens when φ = π?
| a(ωπ f | e j π = - | a(ωπ) f |
a ( jω )
A( jω ) =
1 − a ( jω ) f
What is significant here?
ωπ
Guillermo Carpintero – Universidad Carlos III de Madrid
Be careful
with it !!!!
Origin of the instability
Phase change in the loop gain Aβ has influence in the type of
feedback of the amplifier :
•β<1
• Aβ is always positive
+
A
+
-
180º
sε and sfb are in phase
β
. . . . . thus the comparator SUBSTRACTS
Guillermo Carpintero – Universidad Carlos III de Madrid
Origin of the instability
At ωπ :
• It is no longer true that Aβ es positive
+
-A
+
-
360º
β
POSITIVE feedback
Guillermo Carpintero – Universidad Carlos III de Madrid
Origin of the instability
• We have clear out the OSCILATION FREQUENCY.
• How about the conditions for oscillation,
. . . Why does it depend on f ?
Guillermo Carpintero – Universidad Carlos III de Madrid
Origin of the instability
a(ωπ) f < 1
-a
β
-a
β
a(ωπ) f > 1
Guillermo Carpintero – Universidad Carlos III de Madrid
Tools to analyze the stability
of feedback amplifiers
Guillermo Carpintero – Universidad Carlos III de Madrid
Tools to analyze the stability . . .
The secret is within the LOOP GAIN, a(s) f
a(jω) f
| a(jω) f | ejφ(ω)
ωπ
a(ωπ) f > 1
Guillermo Carpintero – Universidad Carlos III de Madrid
Tools to analyze the stability . . .
Starting point
. . . . The frequency response of the BASIC AMPLIFIER
Guillermo Carpintero – Universidad Carlos III de Madrid
Tools to analyze the stability . . .
Nyquist diagram
Polar representation of a(jω)f
Stable? . . .or
not?
Guillermo Carpintero – Universidad Carlos III de Madrid
Tools to analyze the stability . . .
Criteria for stability in the Nyquist diagram
|Aβ|=1
PM
180 – Φ0
GM
Guillermo Carpintero – Universidad Carlos III de Madrid
Tools to analyze the stability . . .
a(jω)f in the Bode plot
20 log10(a(jω)f ) = 20 log10 [a(jω)] + 20 log10 [ f ] =
= 20 log10 [a(jω)] - 20 log10 [ 1/ f ] =
= 20 log10 [a(jω)] - 20 log10( A )
(feedback network is resistive and presents a flat frequency response)
Guillermo Carpintero – Universidad Carlos III de Madrid
Tools to analyze the stability . . .
Two basic reference frequencies,
a(f)
Φ(f)
f0
a0
fπ
aπ
Φ0
Φπ
donde, a0
Φπ
PM = 180º + Φ0
GM = G - aπ
Guillermo Carpintero – Universidad Carlos III de Madrid
= A ( =1/f )
= -180
Tools to analyze the stability . . .
Guillermo Carpintero – Universidad Carlos III de Madrid
Tools to analyze the stability . . .
The importance of the Phase Margin,
For ω0
Af (jω0) =
a(jω0)
1+a(jω0) f
(1/ f ) e− jθ0
=
1 + e− jθ0
en las que
θ0 = 180 - PM
A f ( jω 0 ) =
(1 / f )
1 + e − jθ 0
Guillermo Carpintero – Universidad Carlos III de Madrid
Compensation
Guillermo Carpintero – Universidad Carlos III de Madrid
Compensation
Tools to control the gain/phase margins
Modify the BASIC AMPLIFIER freq. response a(s), by:
• DOMINANT POLE:
Place a new pole at LF
• POLE-ZERO:
Place a new pole at LF and cancel lowest frequency pole of basic
amplifier with a new zero.
AIM: Keep the phase change in the loop below -180º at all frequencies where the
loop gain is greater that unity (UNITY GAIN COMPENSATION)
Guillermo Carpintero – Universidad Carlos III de Madrid
Compensation
Modify the frequency response
of the Basic Amplifier
Guillermo Carpintero – Universidad Carlos III de Madrid
Compensation
OP AMP 741 before . . . .
ADC = 120 dB
Guillermo Carpintero – Universidad Carlos III de Madrid
Compensation
. . . . and after compensation
Guillermo Carpintero – Universidad Carlos III de Madrid
Compensation
Guillermo Carpintero – Universidad Carlos III de Madrid
Compensation
Guillermo Carpintero – Universidad Carlos III de Madrid
Descargar