Un claro ejemplo de la necesidad de indicadores de calidad, tanto edáfica como del ecosistema en su conjunto, se puede encontrar en el actual sistema de compensaciones utilizado para disminuir los efectos de la destrucción de un ecosistema por actividades mineras relacionadas a la extracción de materiales de empréstito (ejm., rocas). La extracción de estos materiales, no solo implica la extracción de la cubierta vegetal, sino también de todo el material edáfico preexistente. No obstante, las compensaciones consideran el monitoreo de las labores de forestación (prendimiento, crecimiento de la vegetación) en un periodo limitado de tiempo, no existiendo indicadores para el suelo, incluyendo los relacionados a cantidad y calidad del C almacenado. Esto implica que el recurso menos renovable, el suelo, sigue de manera continua en un proceso degradativo, muy difícil de revertir. REFERENCIAS ALEF K., P. NANNIPIERI. 1995. Methods in Applied Microbiology and Biochemistry. Academic Press, San Diego, CA. ANDERSON T. H., A. K. H. DOMSCH. 1993. The metabolic quotient for CO2 (q CO2) as a specific activity parameter to assess the effects of environmental conditions such as pH, on the microbial biomass of forest soils. Soil Biology &. Biochemistry 25: 393-395. ARP P.A., H.H. KRAUSE. 1984. The forest floor: lateral variability as revealed by systematic sampling. Canadian Journal of Soil Sciences 64: 423-437. BEAR M., P. LAVELLE. 1998. Regulation of Microbial Activity and Organic Matter Dynamics by Macroorganims: Integrating Biological Function in Soil. Symposium Nº9, World Congress of Soil Science, Montpellier - France, 4 p. BHATTI J.S., M.J. APPS, C. TARNOCAI. 2002. Estimates of soil organic carbon stocks in central Canada using three different approaches. Canadian Journal Forestry Research 32: 805-812. BERG B., A. VIRZO DE SANTO, F.A. RUTIGLIANO, A. FIERRO, G. EKBOHM. 2003. Limit values for plant litter decomposing in two contrasting soils-influence of litter elemental composition. Acta Oecologica 24: 295-302. BOLAN N., D. ADRIANO, M.L. MORA. 2004. Dynamics and environmental significance of dissolved organic matter in soil. SuperSoil 2004: 3rd Australian New Zealand Soils Conference, 5 – 9 December, University of Sydney, Australia. BUCHMANN N. 2000. Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biology &. Biochemistry 32:1625-1635. CALDENTEY J., M. IBARRA, J. HERNÁNDEZ. 2001. Litter fluxes and decomposition in Nothofagus pumilio stands in the region of Magallanes, Chile. Forest Ecolology Management 148: 145-157. CORBEELS M. 2001. Plant Litter and Decomposition: General concepts and model Approaches. pp: 124-129. In: Net Ecosystems Exchange. Workshop Proceedings for the Greenhouse Accounting: April 18-20, Canberra, Australia. COVINGTON W.W. 1981. Changes in forest floor organic matter and nutrient content following clear cutting in northern hardwoods. Ecology 62: 41-48. DELANEY M.T., I.J. FERNANDEZ, J.A. SIMMONS, R.D. BRIGGS. 1996. Red Maple and White Pine Litter Quality: Initial Changes with Decomposition. Technical Report Technical Bulletin No 162. Maine Agricultural and Forest Experiment Station. DIXON R.K., S.R. BROWN, A. HOUGHTON, A.M. SOLOMON, M. TREXLER, J. WISNIEWSKI. 1994. Carbon pools and flux of global forest ecosystems. Science 263: 185-190. DORAN J.W., T.B. PARKIN. 1994. Defining and Assessing Soil Quality. pp: 3-21. In: J.W. Doran, D.C. Coleman, D.F. Bezdicek, B.A. Stewart (eds.). Defining Soil Quality for a Sustainable Environment. Soil Science Society of America. Special Publication Nº 35, Madison, Wisconsin. DOU F., A.L. WRIGHT, F.M. HONS. 2008. Dissolved and Soil Organic Carbon after Long-Term Conventional and NoTillage Sorghum Cropping. Communications in Soil Science and Plant Analysis 39: 667-679. ELLIOTT L.F., J.M. LYNCH, R.I. PAPENDICK. 1996. The Microbial Component of Soil Quality. pp: 1-21. In: G. Stotzki & J.M. Bollag. (eds.). Soil Biochemistry. Vol. 9. Dekker, Inc., NY. ESWARAN H., E.V. DEN BERG, P. REICH. 1993. Organic carbon in soils of the world. Soil Science Society of American Journal 57: 192-194. GALLO M.E., R.L. SINSABAUGH, S.E. CABANISS. 2006. The role of ultraviolet radiation in litter decomposition in arid ecosystems. Applied Soil Ecology 34(1): 82-91. GARCÍA C., F. GIL-TORRES, T. HERNÁNDEZ, C. TRASAR-CEPEDA. 2003. Técnicas de análisis de parámetros bioquímicos en suelos: medida de actividades enzimáticas y biomasa microbiana. Mundi-Prensa, Madrid, 371 p. GOSZ J.R., G.E. LIKENS. 1973. Nutrient release from decomposing leaf and branch litter in the Hubbard Brook Forest, New Hampshire. Ecological Monographs 43: 173-191. HARMON M.E., B. MARKS. 2002. Effects of silvicultural practices carbon stores in Douglas-fir- western hemlock forests in the Pacific Northwest, U.S.A.: results from a simulation model. Canadian Journal Forestry Research 32: 863-877. HORWATH W.R., E.A. PAUL. 1994. Microbial biomass. pp: 753--773. In: R.W. Weaver (ed.). Methods of soil analysis. Part 2. Microbiological and Biochemical Properties. American Society of Agronomy, Madison, Wisconsin. KAVVADIAS V.A., D. ALIFRAGIS, A. TSIONTSIS, G. BROFAS, G. STAMATELOS. 2001. Litterfall, litter accumulation and litter decomposition rates in four forest ecosystems in northern Greece. Forest Ecolology Management 144: 113-127. KENNEDY A.C., R.I. PAPENDICK. 1995. Microbial characteristics of soil quality. Journal of Soil & Water Conservation 50: 243-248. MARTENS D.A. 2000. Plant residue biochemistry regulates soil carbon cycling and carbon sequestration. Soil Biolology &. Biochemistry 32: 361-369. 91