1. 1.1. Interpolación e Integración Numérica Interpolación “Dados n + 1 puntos en el plano: (x0 , y0 ), (x1 , y1 ), . . . (xn+1 , yn+1 ) con xi 6= xj si i 6= j; existe un único polinomio de grado n, pn (x) tal que pn (xi ) = yi para i = 1, . . . , n + 1” Muchas veces, una función viene dada por una tabla de valores (obtenidos experimentalmente) aunque se pueda conocer de antemano que se trata de una función con buenas propiedades de derivabilidad, etc. En estos casos se pueden usar los polinomios interpoladores para tener aproximaciones de los valores de la función en puntos no recogidos en esas tablas. Caso n=1 (Interpolación lineal) Contents First Last Prev Next Back Close Quit Por dos puntos (x0 , y0 ), (x1 , y1 ) del plano pasa una única recta que es la gráfica del polinomio p1 (x) = y0 + (x − x0 ) x − x1 x − x0 y1 − y0 = y0 + y1 . x1 − x0 x0 − x1 x1 − x0 Antes de que estuviese generalizado el uso de calculadoras cientı́ficas, se usaban unos libros que contenı́an tabulaciones de las funciones elementales, y se interpolaban los valores que allı́ se encontraban para evaluar esas funciones. Por ejemplo: Ejemplo 1 Consideremos y = ex y que queremos evaluar e0.832 . Al mirar en las tablas encontramos los valores (x0 , y0 ) = (0.80, 2.2255) y (x1 , y1 ) = (0.84, 2.3164) si interpolamos linealmente podemos aproximar 2.3164 − 2.2255 e0.832 ≈ p1 (0.832) = 2.2255 + 0.032 = 2.2982 0.04 Contents First Last Prev Next Back Close Quit El valor de e0.832 con cuatro cifras exactas es 2.2979, por lo que la aproximación que se ha hecho con la interpolación lineal es del orden de 3 diezmilésimas. Caso n=2 (Interpolación cuadrática) Dados tres puntos (x0 , y0 ), (x1 , y1 ), (x2 , y2 ) la parábola que pasa por ellos es la gráfica del polinomio p2 (x) = y0 (x − x1 )(x − x2 ) (x − x0 )(x − x2 ) (x − x0 )(x − x1 ) +y1 +y2 (x0 − x1 )(x0 − x2 ) (x1 − x0 )(x1 − x2 ) (x2 − x0 )(x2 − x1 ) (x−x1 )(x−x2 ) (x0 −x1 )(x0 −x2 ) Los factores se conocen como fórmulas de Lagrange. Son polinomios de segundo grado que toman el valor 1 en un punto (x0 ) y el valor 0 en los otros dos puntos (x1 y x2 ). Ejemplo 2 Volviendo al ejemplo 1, si para evaluar e0.832 hacemos interpolación cuadrática tomando tres valores en las tablas de expoContents First Last Prev Next Back Close Quit nencial: (x0 , y0 ) = (0.80, 2.225541), (x1 , y1 ) = (0.84, 2.316367), y (x2 , y2 ) = (0.88, 2.410900) e0.832 ≈ p1 (0.832) = y0 0.12 + y1 0.96 − y2 0.08 = 2.297905 El valor de e0.832 con seis cifras exactas es 2.297910, por lo que la aproximación que se ha hecho con la interpolación cuadrática es del orden de 5 diezmillonésimas. n arbitrario Método de interpolación de Newton Para construir el polinomio interpolador (de grado n) que pasa por los (n + 1) puntos (x0 , y0 ), (x1 , y1 ), . . . (xn+1 , yn+1 ) Contents First Last Prev Next Back Close Quit se pueden construir las fórmulas de Lagrange correspondientes de la misma forma que hemos hecho con la interpolación cuadrática. Otra forma de construir el polinomio interpolador es el proceso conocido como método de Newton de diferencias divididas. Consiste en ir construyendo la sucesión de diferencias divididas: −y0 f [x0 , x1 ] = xy11 −x 0 f [x1 ,x2 ]−f [x0 ,x1 ] x2 −x0 [x0 ,x1 ,...,xk−1 ] f [x0 , x1 , x2 , . . . , xk ] = f [x1 ,x2 ,...,xkx]−f −x k 0 f [x0 , x1 , x2 ] = ... Con los términos de esta sucesión se describen los polinomios in- Contents First Last Prev Next Back Close Quit terpoladores p1 (x) = y0 + (x − x0 )f [x0 , x1 ] p2 (x) = y0 + (x − x0 )f [x0 , x1 ] + (x − x0 )(x − x1 )f [x0 , x1 , x2 ] p3 (x) = y0 + (x − x0 )f [x0 , x1 ] + (x − x0 )(x − x1 )f [x0 , x1 , x2 ] + (x − x0 )(x − x1 )(x − x2 )f [x0 , x1 , x2 , x3 ] ... Contents First Last Prev Next Back Close Quit En general, pk (x) = y0 + (x − x0 )f [x0 , x1 ] + (x − x0 )(x − x1 )f [x0 , x1 , x2 ] + (x − x0 )(x − x1 )(x − x2 )f [x0 , x1 , x2 , x3 ] ... + (x − x0 )(x − x1 ) · · · (x − xk−1 )f [x0 , x1 , . . . , xk ] Cuando yk = f (xk ) para una función f suficientemente derivable se pueden dar estimaciones de las aproximaciones f (x) − pn (x) y comprobar que éstas pueden afinarse tanto como se quiera. Más concretamente, si a = x0 < x1 < · · · < xn+1 = b, para cada x ∈ (a, b) se puede encontrar un punto c ∈ (a, b) tal que f (n+1)(c) f (x) − pn (x) = (x − x0 ) · · · (x − xn ). (n + 1)! Contents First Last Prev Next Back Close Quit Esta igualdad puede usarse para estimar los errores en los métodos de integración numérica. Existen más métodos numéricos para aproximar funciones por polinomios, aunque no vamos a estudiarlos aquı́. Cuando las funciones tienen muchos extremos relativos en un intervalo para tener buenas aproximaciones se requieren polinomios de grado alto. En estos casos otra opción es aproximar por los llamados “splines”, que consiste en dividir el intervalo en subintervalos más pequenos y aproximar en cada uno de los subintervalos por polinomios de grado pequeno de forma que vayan coincidiendo las derivadas en los extremos de estos subintervalos. Contents First Last Prev Next Back Close Quit 1.2. Integración numérica Los métodos de integración numérica consisten en obtener aproximaciones del valor de la integral Z b f (x) dx. a Son necesarios esencialmente en los dos casos siguientes: • Cuando f viene dada por una tabla de números (obtenida experimentalmente), • Cuando no es posible encontrar una primitiva de f expresada en términos Rde una cantidad finita de funciones elementales (por 2 2 ejemplo, en 0 e−x dx). Los métodos numéricos más sencillos consisten en sustituir la función f por funciones diferentes que puedan ser integradas sin dificulContents First Last Prev Next Back Close Quit tad, manteniendo un control sobre los posibles errores que se comenten con esa sustitución. Al sustituir la función f por polinomios de interpolación en los subintervalos de una partición se obtiene una familia de métodos de integración númerica, llamados “fórmulas de cuadratura de NewtonCotes”. Los más sencillos se obtienen aproximando por polinomios de grado 1 y de grado 2, llamados “regla de los trapecios” y “método de Simpson”, respectivamente. Contents First Last Prev Next Back Close Quit