“LÓGICA II” PRÁCTICA 4 DEDUCCIÓN NATURAL (3): CUANTIFICACIÓN MÚLTIPLE 2.57 ∀x∀y∀z Fxyz ├ ∀z∀y∀x Fxyz 2.58 ∀x∃y∀z Fxyz ├ ∀x∀z∃y Fxyz 2.59 ∃x∃y∀z Fxyz ├ ∀z∃y∃x Fxyz 2.60 ∃x (Fx ∧ ∀y (Gy → Jxy)), ∀x (Fx → ¬∃y (Hy ∧ Jxy)) ├ ∀x (Gx → ¬Hx) 2.61 ∃x (Fx ∧ Gx), ∃x (Fx ∧ ¬∃y (Gy ∧ Hxy)) ├ ∃x (Fx ∧ ¬∀y (Fy → Hyx)) 2.62 ∀x (Fx → ∀y (Hy ∧ Jy → Gxy)), ∃x (Fx ∧ ¬Gxa), Ha ├ ¬Ja 2.63 ∀x (Fx → Gx), ∃x (Hx ∧ ¬∃y (Gy ∧ Jxy)) ├ ∃x (Hx ∧ ¬∃y (Fy ∧ Jxy)) 2.64 ∀x (Fx → ∀y (Hy → Gxy)), ∃x (Hx ∧ Gxa), Fa ├ ∃x (Gax ∧ Gxa) 2.65 ∀x (Fx → Gx), ∃x (Hx ∧ Fx), ∀x (Hx → ∃y Jyx) ├ ∃x (∃y (Hy ∧ Jxy) ∧ ∃y (Gy ∧ Jxy)) 1