Formulario: Señales y sistemas

Anuncio
EIE
Escuela de
Ingeniería Eléctrica
IE0305 – Matemática Superior
I – 2016
Formulario: Señales y sistemas
y(t)
x(t)
t
h(t)
x(t)
y(t)
t
x(t) → y(t)
δ(t) → h(t)
Cuadro 1. Algunas propiedades de señales.
Propiedad
Detalles
Definición
Consideraciones
x(t + nT ) = x(t)
Periodicidad
Z t2
Energía
Ex,∆t =
en ∆t
Z
Ex =
total
Potencia
Px,∆t
en ∆t
|x(t)|2 dt
∆t = t2 − t1
t1
∞
|x(t)|2 dt
−∞
1
=
t2 − t1
Z t2
|x(t)|2 dt
∆t = t2 − t1
t1
L
1
Px = lı́m
|x(t)|2 dt
L→∞ 2L −L
Z
1
Px =
|x(t)|2 dt
T <T >
Z
promedio
Simetría
Relativas a δ(t)
par
x(−t) = x(t)
impar
x(−t) = −x(t)
muestreo
x(t) periódica
x(t)δ(t − t0 ) = x(t0 )δ(t − t0 )
Z t2
desplazamiento
x(t)δ(t − t0 ) dt = x(t0 )
t1 < t0 < t2
t1
|x(t)|2 = [x(t)]2
Valor absoluto
t0 , t1 , t2 , T, L ∈ R ,
T >0,
x(t) ∈ R
n∈Z.
1 de 3
IE0305 – Matemática Superior
I – 2016
Formulario: Señales y sistemas
Cuadro 2. Algunas propiedades de sistemas.
Propiedad
Definición
Consideraciones
Linealidad
αx1 (t) + βx2 (t) → αy1 (t) + βy2 (t)
Invarianza con el tiempo
x(t − t0 ) → y(t − t0 )
Sin memoria
y(t) = F (x(t))
Causalidad
y1 (t) = y2 (t) t < t0
Inverso
y(t) → x(t)
Estabilidad
|y(t)| < C < ∞
|x(t)| < B < ∞
Convolución
y(t) = x(t) ∗ h(t)
LTI
x1 (t) = x2 (t) t < t0
α, β, t0 , B, C ∈ R .
Convolución:
u(t) ∗ v(t) =
Z ∞
u(τ )v(t − τ ) dτ
−∞
2 de 3
IE0305 – Matemática Superior
I – 2016
Formulario: Señales y sistemas
Cuadro 3. Algunas señales fundamentales.
Nombre
Función
Impulso
δ(t)
Definición
Gráfica
Z t2
x(t)δ(t) dt = x(0) t1 < 0 < t2
δ(t)
t1
δ(0) → ∞
t
si t 6= 0
δ(t) = 0
u(t)
(
Escalón
u(t)
1 si t ≥ 0
0 sino
u(t) =
1
t
r(t)
(
Rampa
r(t)
r(t) =
t si t ≥ 0
0 sino
1
t
1
(
Rectangular
rect(t), Π(t)
rect(t) =
1 si |t| ≤
0 sino
1
2
Π(t)
1
t
−0,5
Signo
sgn(t)



1
si t > 0
sgn(t) = 0
si t = 0


−1 si t < 0
0,5
sgn(t)
1
t
−1
Sa(t)
Muestreo
Sa(t)
sen t
Sa(t) =
t
1
t
sinc(t)
Sinc
sinc(t)
sen πt
sinc(t) =
πt
1
t
t1 , t 2 ∈ R .
3 de 3
Descargar