Teoria estadistica de la decision / , / Esquema del capitulo 21 .1 . La toma de decisiones en condiciones de incertidumbre 21.2. Soluciones que no implican la especificacion de probabilidades: criterio maximin, criterio de la perdida de oportunidades minimax Criterio maximin Criterio de la perdida de oportunidades minimax 21.3. Valor monetario esperado; TreePlan Arboles de decision La utilizacion de TreePlan para resolver un arbol de decision Analisis de sensibilidad 21.4. Informacion muestral : anal isis y valor bayesianos Utilizacion del teorema de Bayes EI valor de la informacion muestral EI valor de la informacion muestral visto por medio de arboles de decision 21.5. Introduccion del riesgo: analisis de la utilidad EI concepto de utilidad Criterio de la utilidad esperada para tomar decisiones Introducci6n Pod ria decirse que el tema de este capitulo recoge la esencia de los problemas de gesti6n que se plantean en cualquier organizaci6n. De hecho, su aplicabilidad va mucho mas alia, ya que afecta a muchos aspectos de nuestra vida diaria. Analizaremos situ aciones en las que una persona, un grupo 0 una empresa tienen varios cursos de acci6n posibles y deben elegir uno de ellos en un mundo en el que hay incertidumbre sobre la futura conducta de los facto res que determinan las consecuencias del curso de acci6n que se elija. En este capitulo analizamos cuatro criterios para tomar decisiones. EI criterio maximin y el criterio de la perdida de oportunidades minimax son criterios no probabiifsticos para tomar decisiones. Es decir, estos criterios «no tienen en cuenta la probabilidad de los resultados de cada alternativa; centran meramente la atenci6n en el valor monetario de los resultados» (vease la referencia bibliografica 4) . Dos criterios para tomar decisiones que incluyen informaci6n sobre las probabilidades de que se prod uzca cada resultado son el criterio del valor monetario esperado y el criterio de la utilidad esperada. 856 Estadfstica para administracion y economfa 21.1. La toma de decisiones en condiciones de incertidumbre Todos nos vemos obligados a actuar en un entomo cuyo rumbo futuro es incierto. Por ejemplo, podemos estar considerando la posibilidad de ir a un partido de fUtbol, pero dudamos porque existe la posibilidad de que llueva. Si supieramos que no va allover, irfamos al partido; si estuvieramos seguros de que va a llover durante varias horas, no irfamos. Pero no podemos predecir con absoluta seguridad el tiempo que va a hacer, por 10 que debemos tomar la decision contemplando un incierto futuro. Por poner otro ejemplo, en algun momenta al final de los estudios universitarios, el estudiante tiene que decidir que va a hacer cuando se gradue. Es po sible que ya tenga varias ofertas de empleo. Racer el doctorado tambien es una posibilidad. La decision es claramente importante. Recabani, desde luego, informacion sobre las opciones. Sabra que sueldos de partida se ofrecen y se habra enterado de cuales son las actividades de las empresas entre las que puede elegir y de como encaja en esas actividades. Sin embargo, nadie tiene una idea muy clara de donde estara dentro de uno 0 dos afios si acepta una determinada oferta. Esta importante decision se toma, pues, en condiciones de incertidumbre sobre el futuro. En el mundo empresarial, a menu do existen circunstancias de este tipo, como muestran los siguientes ejemplos: 1. En una recesion, una empresa debe decidir si despide 0 no a algunos trabajadores. Si la recesion economica va a ser breve, puede ser preferible quedarse con estos trabaj adores , que pueden ser diffciles de sustituir cuando mejore la demanda. Sin embargo, si se prolonga la recesion, conservarlos serfa caro. Desgraciadamente, el arte de la prediccion economica no ha llegado a la fase en la que es po sible predecir con un alto grado de certeza la duracion 0 la gravedad de una recesion. 2. Un inversor puede creer que los tipos de interes han alcanzado un maximo. En ese caso, los bonos a largo plazo parecerfan muy atractivos. Sin embargo, es imposible estar segura de como evolucionaran en el futuro, y si continuaran subiendo, la decision de invertir en bonos a largo plazo serfa sub6ptima. 3. Los contratistas a menudo deben hacer ofertas para conseguir la adjudicacion de un proyecto. Tienen que decidir la cuantfa de la oferta. En este caso, hay dos cuestiones inciertas. En primer lugar, el contratista no sabe de que cuantfa tiene que ser la oferta para conseguir el contrato. En segundo lugar, no puede estar seguro de cuanto Ie costara cumplir el contrato. De nuevo, a pesar de la incertidumbre, debe tomar alguna decision. 4. El coste de hacer prospecciones petroleras en alta mar es enorme y, a pesar de contar con excelente asesoramiento geologico, las compafifas petroleras no saben, antes de hacer las prospecciones, si se descubrira una cantidad comercialmente viable. La decision de hacer 0 no prospecciones petroleras debe tomarse en un entomo incierto. Nuestro objetivo es estudiar los metodos para abordar el tipo de problemas de toma de decisiones que acabamos de describir. Una persona que tiene que tamar una decision se enfrenta a un numero finito, K, de acciones posibles, que llamaremos a j , ab ... , aK . En el momento en que tiene que elegir una accion, no sabe como evolucionara en el futuro un factor que determinara las consecuencias de la accion elegida. Se supone que un numero finito, H, de estados de la naturaleza posibles puede caracterizar las posibilidades de este factor. Estos se representan por medio de Sl' S2, .. . , SH' Por ultimo, se supone que la persona que tiene que tomar la decision es capaz de especificar la recompensa monetaria 0 ren- Capitulo 2 1. Teoria estadistica de la decision 857 dim iento de cada combinacion accion-estado de la naturaleza. Sea Mij el rendimiento de la accion Q j en el supuesto de que ocurra el estado de la naturaleza Sj. Las acciones, los estados de la naturaleza, los rendimientos monetari os y las tablas de rendimientos forman parte del marco general para analizar cualquier problema de toma de decisiones. Marco para analizar los problemas de toma de decisiones La persona que tiene que tomar una decisi6n tiene K cursos de acci6n posibles: 8 1 , 8 2 , .. . , 8 K . Las acciones a veces se IIaman alternativas. 2. Hay H estados de la naturaleza inciertos posibles: 51' 52' ... , 5 H . Los estados de la naturaleza son los resultados posibles que el que toma la decisi6n no controla. A veces se IIaman sucesos. 3. Cada combinacion posible accion-estado de la naturaleza tiene un resultado que representa un beneficia 0 una perdida, IIamado rendimiento monetario, Mi' que corresponde a la acci6n 8 j y al estado de la naturaleza 5 .. La tabla de todos los resLltados de un problema de decisi6n se llama tabla de rendimie'ntos. 1. La Tabla 21.1 muestra la forma general de una tabla de rendimientos. Tabla 21.1. Tabla de rendimientos de un problema de decision en el que hay K acciones posibles y H estados de la naturaleza posibles. Estado de la naturaleza Accion S1 S2 ... al Mi l MI2 ... Cl2 J'v!21 M22 ... M 2H ClK MKI MK2 .. . MKH aJsi SH Mu/ Cuando una persona que tiene que tomar una decision se encuentra ante distintos cursos de accion, la eleccion correcta depended en gran medida de los objetivos. Es posible describir varias lfneas de ataque que se han empleado en la solucion de problemas de toma de decisiones empresariales. Sin embargo, debe tenerse presente que cada problema tiene sus propias caracterfsticas y que los objetivos de los que toman las decisiones pueden variar considerablemente y ser, de hecho, bastante complejos. Se plantea un a situacion de este tipo cuando se observa la posicion de un directivo intermedio de una gran empresa. En la pnktica, sus objetivos pueden ser algo distintos de los de la empresa. AI tomar decisiones, es muy probable que sea consciente de su propia posicion, as! como del bien general de la empresa. A pesar del cankter individual de los problemas de toma de deci siones, es posible eliminar algunas acciones que no se consideranin en ningun caso. Acciones admisibles e inadmisibles Si el rendimiento de una acci6n 8 . es al menos tan alto como el de 8 j , cualquiera que sea el estado de la naturaleza, y si el rerl'dimiento de 8 . es mayor que el de 8 j al menos en un estado de la naturaleza, se dice que la accion 8 . domi~8 a la acci6n 8j' Se dice que cualquier acci6n que es dominada de esta forma es inadinisible. Las acciones inadmisibles se eliminan de la fista de posibifidades antes de seguir anafizando un problema de toma de decisiones. Se dice que cualquier acci6n que no es dominada por alguna otra y que, por 10 tanto, no es inadmisible es admisible. 858 Estadfstica para administraci6n y economfa En este capItulo nos basaremos en el ejemplo siguiente. EJEMPLO 21.1. Un fabricante de teh~fonos m6viles (acciones admisibles) Consideremos un fabricante que planea introducir un nuevo telefono movil. Puede elegir entre cuatro procesos de produccion, A, B, C Y D, que van desde una modificacion relativamente pequefia de las instalaciones existentes hasta una gran ampliacion de la planta. La decision sobre el curso de accion debe tomarse en un momenta en el que no se conoce la demanda posible del producto. Por comodidad, decimos que esta demanda potencial puede ser «baja», «moderada» 0 «alta» . Tambien se supone que el fabricante puede calcular para cada proceso de produccion el beneficio durante la vida de la inversion correspondiente a cada uno de los tres niveles de demanda. La Tabla 21.2 muestra estos niveles de beneficios (en dol ares) para cada combinacion proceso de produccionnivel de demanda. Averigiie si hay alguna accion inadmisible. Tabla 21.2. Beneficios estimados de un fabricante de telefonos m6viles correspondientes a diferentes combinaciones de proceso-demanda. Accion Estado de la naturaleza Proceso de produccion Demanda baja Demanda moderada Demanda alta A B C D 70.000 80.000 100.000 100.000 120.000 120.000 125.000 120.000 200.000 180.000 160.000 150.000 Solucion En este ejemplo, hay cuatro acciones posibles que corresponden a los cuatro procesos de produccion posibles y tres estados de la naturaleza posibles que corresponden a los tres niveles de demand a del producto posibles. Consideremos el proceso de produccion D de la Tabla 21.2. El rendimiento de este proceso sera exactamente igual que el de C si hay un bajo nivel de demanda y mas bajo que el del proceso C si el nivel de demanda es moderado 0 alto. Por 10 tanto, no tiene senti do elegir la opcion D, ya que hay otra opcion con la que los rendimientos no pueden ser menores y podrfan ser mayores. Dado que la accion C es necesariamente al menos tan rentable como la D y posiblemente mas, se dice que la accion C domina a la D. Dado que el proceso de produccion D es dominado por otra alternativa, el proceso de produccion C, se dice que el D es inadmisible. Esta accion no debe seguir considerandose, ya que serfa suboptimo adoptarla. Por 10 tanto, se eIiminani y, en el amilisis posterior del problema, solo se considerani la posibilidad de adoptar el proceso A, el B 0 el C. El problema de toma de decisiones esbozado es esencialmente de caracter discreto. Es decir, solo hay un numero finito de alternativas y un numero finito de estados de la naturaleza posibles. Sin embargo, muchos problemas practicos son continuos. Por ejemplo, es posible que sea mejor medir el estado de la naturaleza en un continuo que describirlo por medio de una serie de posibilidades discretas. En el ejemplo del fabricante de telefonos moviles, es posible preyer un intervale de niveles posibles de demanda en Iugar de especificar simplemente tres niveles. En algunos problemas, como mejor se re- Capftulo 21. Teorfa estadfstica de la decision 859 presentan las acciones posibles es en un continuo; por ejemplo, en el caso en el que un contratista debe decidir la cuantfa de la oferta para conseguir la adjudicacion de un contrato. En el resto de este capitulo centramos la atencion en el caso discreto. Los principios que implica el analisis del caso continuo no son diferentes. Sin embargo, los detalies de ese analisis se basan en el ca1culo y no se examinan mas aquf. EJERCICIOS Ejercicios basicos 21.1. Un inversor esta considerando tres alternativas -un certificado de dep6sito, un fondo de acciones de bajo riesgo y un fonda de acciones de alto riesgo- para una inversi6n de 20.000 $. Considera tres estados de la naturaleza posibles: S j: mercado de val ores fuerte S2: mercado de valores moderado S3: mercado de valores d6bil La tabla de rendimientos (en d61ares) es la siguiente: Accion Estado de la naturaleza Alternativas de inversion posibles Certificado de dep6sito Fondo de acciones de bajo riesgo Fondo de acciones de alto riesgo S2 1.200 4.300 6.600 1.200 1.200 800 1.200 -600 - 1.500 21.2. Un fabricante de desodorantes esta a punto de ampliar la capacidad de producci6n para fabricar un nuevo producto. Tiene cuatro procesos de produccion alternativos. La tabla adjunta muestra los beneficios estimados, en d61ares, de estos procesos correspondientes a tres niveles de demanda del producto posibles. Accion Estado de la naturaleza Proceso de produccion Demanda baja Demanda moderada Demanda alta A 100.000 150.000 250.000 250.000 350.000 400.000 400.000 400.000 900.000 700.000 600.000 550.000 B C D i,Es inadmisible alguna de estas acciones? i,Es inadmisible alguna de estas acciones? 21.2. Soluciones que no implican la especificacion de probabilidaes: criterio maximin, criterio de la perdida de 0 ortunidades minimax Antes de elegir el proceso de produccion, es probable que nuestro fabricante de telefonos moviles se pregunte cuales son las probabilidades de que se materialice realmente cada uno de estos niveles de demanda. Este capitulo se ocupa en su mayor parte de analizar las soluciones a un problema de toma de decisiones que requiere la especificaci6n de las probabilidades de los resultados correspondientes a los diversos estados de la naturaleza. Sin embargo, en este apartado se presentan dos criterios de decision que no se basan en esas probabilidades y que, en realidad, no tienen ningun contenido probabilfstico. Estos enfoques (y otros del mismo tipo) solo dependen, mas bien, de la estructura de la tabla de rendimientos. Los dos metodos examinados en este apart ado se Haman criteria maximin y criteria de la perdida de aportunidades minimax. Se examinan en relacion con la tabla de rendimientos del fabric ante de telefonos moviles del ejemplo 21.1 dejando de lado la estrategia inad- 860 Estadfstica para administraci6n y economfa misible de elegir el proceso de producci6n D. El fabricante debe elegir, pues, entre las tres acciones posibles, enfrentandose a tres estados de la naturaleza posibles. Criterio maximin Consideremos el peor resultado posible de cada acci6n, cualquiera que sea el estado de la naturaleza que se materialice. El pear resultada es simplemente el menor rendimiento que es razonable pensar que podrfa obtenerse. El criterio maximin selecciona la acci6n que tiene el rendimiento minimo, es decir, maximizamas el rendimiento minima. En el caso del problema del fabricante de telefonos m6viles, el men or rendimiento, cualquiera que sea el proceso de producci6n que se emplee, se obtiene cuando el nivel de demanda es bajo. Es evidente que, como muestra la Tabla 21.3, el valor maximo de estos rendimientos minimos es 100.000 $. Se obtiene si se utiliza el proceso de producci6n C. Por 10 tanto, el criterio maximin selecciona el proceso de producci6n C. Tabla 21.3. Accion Aplicacion del criterio maximin al ejemplo 21.1. Estado de la naturaleza Rendimiento minimo Proceso de produccion Demanda baja Demanda moderada Demanda alta Rendimiento minimo de cada proceso A B C 70.000 80.000 100.000 120.000 120.000 125.000 200.000 180.000 160.000 70.000 80.000 100.000 (maximo) Dado que el valor maximo del rendimiento minima de cada proceso de producci6n es 100.000 $, se deduce que con el criterio maximin se selecciona el proceso de producci6n C como curso de acci6n. EJEMPLO 21.2. Oportunidad de inversion (maximin) Un inversor quiere elegir entre invertir 10.000 $ durante un ano a un tipo de in teres garantizado del 12 por ciento e invertir la misma cantidad durante ese periodo en una cartera de acciones ordinarias. Si eJige el tipo de interes fijo, tendni con seguridad un rendimiento de 1.200 $. Si elige la cartera de acciones, el rendimiento dependera del comportamiento del mere ado durante el ano. Si el mere ado esta boyante, se espera un beneficia de 2.500 $; si el mercado se mantiene estable, el beneficio esperado es de 500 $; Y si esta deprimido, se espera una perdida de 1.000 $, Elabore la tabla de rendimientos de este inversor y halle la elecci6n de la acci6n mediante el criterio maximin. Solucion La Tabla 21.4 muestra los rendimientos (en d6Iares); un rendimiento negativo indica una perdida. El rendimiento minimo de la inversi6n a un tipo de in teres fijo es de 1.200 $, ya que este es el rendimiento que se obtendni independientemente de 10 que ocurra en la bolsa de valores. EI rendimiento minimo de la cartera de acciones es una perdida de 1.000 $, o sea, un rendimiento de - 1.000 $, que se produce cuando el mercado esta deprimido. Dado que el mayor rendimiento minimo es el de la inversion a un tipo de interes fijo, se deduce que se selecciona el tipo de interes fijo como curso de acci6n mediante el criterio maximin. Capftulo 21. Tabla 21.4. Accion Opcion de inversion Tipo de interes fijo Cartera de acciones Teorfa estadfstica de la decision 861 Aplicaci6n del criterio maximin al ejemplo 21.2. Estado de la naturaleza Rendimiento minimo Estado boyante Estado estable Estado deprimido Rendimiento minimo de cada opcion de inversion 1.200 2.500 1.200 500 1.200 -1.000 1.200 (maximo) -1.000 En estos ejemplos, se observa claramente la forma general de la regia de decision basada en el criterio maximin. EI objetivo del criterio maximin es maximizar el rendimiento mznima. Regia de decision basad a en el criterio maximin Supongamos que una persona que tiene que tomar una decisi6n tiene que elegir entre K acciones admisibles 8 1, 8 2, ... , 8K' dados H estados de la naturaleza posibles 51' 52' ... , 5H" Sea M;- el rendimiento correspondiente a la i-esima acci6n y el j-esimo estado de la naturaleza. D~be buscarse el menor rendimiento posible de cada acci6n . Por ejemplo, en el caso de la acci6n 8 1 , este es el menor de M 11 , M 12 , ... , M1H" Sea este minimo M1*' don de En terminos mas generales, el menor rendimiento posible de la acci6n EI criterio maximin selecciona la acci6n miento minimo es mayor) . 8j 8j viene dado por cuyo M; es mayor (es decir, la acci6n cuyo rendi- La caracterfstica positiva del criterio maximin para tomar decisiones es que genera el mayor rendimiento po sible que puede garantizarse. Si se utiliza el proceso de producci6n C, el fabricante de te16fonos m6viles tiene asegurada un rendimiento de al menos 100.000 $, cualquiera que sea al final el nivel de demanda. Asimismo, en el caso del inversor del ejemplo 21.2, la eleccion del tipo de interes fijo genera un beneficio seguro de 1.200 $. En ninguno de los dos ejemplos, ninguna accion alternativa puede garantizar tanto. Sin embargo, es precisamente dentro de esta garantfa donde surgen las reservas sobre el criterio maximin, ya que a menudo debe pagarse un precio por esa garantfa. EI precio es aquf la perdida de la oportunidad de percibir un rendimiento mayor, eligiendo alguna otra accion, par muy improbable que parezca que es la peor situacion posible. Asf, por ejemplo, el fabric ante de telefonos moviles puede estar casi seguro de que la demanda sera alta, en cuyo caso el proceso de produccion C serfa una mala elecci6n, ya que genera el menor rendimiento con este nivel de demanda. Puede considerarse, pues, que el criterio maximin es una estrategia muy cauta para elegir entre distintas acciones alternativas. Esa estrategia puede ser adecuada en algunas circunstancias, pero solo un pesimista extremo la utilizarfa invariablemente. Por este motivo. a veces se llama criteria del pesimisma. «EI criterio maximin se utiliza frecuentemente en situaciones en las que el planificador piensa que no puede permitirse equivocarse (Ia planificacion militar podrfa ser un ejemplo, al igual que la inversi6n de los ahorros de toda nuestra vida). EI planificador elige una decision que obtenga los mejores resultados posibles en el peor caso po sible (mas pesimista)>> (vease la referencia bibliografica 1). 862 Estadfstica para administraci6n y economfa Criterio de la perdida de oportunidades minimax La persona que tiene que tomar decisiones y quiere utilizar el criterio de la perdida de oportunidades minimax debe imaginar que se encuentra en una situacion en la que ha elegido una accion y se ha producido uno de los estados de la naturaleza. Puede mirar la decision tom ada con satisfaccion 0 con decepcion porque, tal como se han desarrollado las cosas, habria sido preferible una accion alternativa. La persona que toma decisiones determina entonces el <<pesar» 0 perdida de oportunidades de no tomar la mejor decision, dado el estado de la naturaleza, y elabora una tabla de perdidas. Tabla de perdidas de oportunidades Supongamos que elaboramos una tabla de rendimientos de forma rectangular, en la que las filas corresponden a las acciones y las columnas a los estados de la naturaleza. Si se resta cad a rendimiento de la tabla del rendimiento mayor de su columna, la tabla resultante se llama tabla de perdidas de oportunidades. Considerando la diferencia entre el rendimiento monetario efectivo de una decision y el rendimiento optimo correspondiente al mismo estado de la naturaleza, la persona que toma decisiones puede seleccionar la accion que minimiza la maxima perdida. Regia de decision basada en el criterio criterio de la perdida de oportunidades minimax Dada la tabla de perdidas, las acciones dictadas por el criterio de la perdida de oportunidades minimax se encuentran de la forma siguiente: 1. 2. Se halla en cad a fila (acci6n), la maxima perdida. Se elige la acci6n correspondiente al minimo de estas perdidas maximas. EI criterio de la perdida de oportunidades minimax selecciona la acci6n cuya perdida maxima es menor; es decir, el criterio de la perdida de oportunidades minimax produce la menor perdida de oportunidades posible que puede garantizarse. Consideremos de nuevo el caso del fabricante de de teletonos moviles del ejemplo 21.1. Mostraremos que se selecciona el proceso B mediante el criterio de la perdida de oportunidades minimax. Supongamos que el nivel de demanda del nuevo producto es bajo. En ese caso, la mejor eleccion de una accion habrfa sido el proceso de produccion C, que generaba un rendimiento de 100.000 $. Si se hubiera elegido esa accion, el fabricante habrfa tenido una perdida de O. Si se hubiera elegido el proceso A, el beneficio resultante habrfa sido de 70.000 $ solamente. El grado de perdida del fabricante, en este caso, es la diferencia entre el mejor rendimiento que podrfa haberse obtenido (100.000 $) y el rendi miento de 10 que final mente fue una peor elecci6n. Por 10 tanto, la perdida serfa igual a 100.000 $ - 70.000 $ = 30.000 $. Asirnismo, dada una baja demand a, si se hubiera elegido el proceso B, la perdida serfa 100.000 $ - 80.000 $ = 20.000 $ Continuando de esta forma, se calculan las perdidas que implican el nivel moderado de demanda y el nivel alto de demanda. En cada caso, la perdida es igual a 0 en el caso de la mejor elecci6n de la acci6n (el proceso C en el caso de la demand a moderada y el A en el Capitulo 21. Teoria estadistica de la decisi6n 863 de la demanda alta). Estas perdidas de oportunidades por no tomar la mejor decision, dado un estado de la naturaleza, se muestran en la Tabla 21.5, cuya ultima columna indica la maxima perdida de un proceso dado. Es evidente que el criterio de la perdida de oportunidades minimax selecciona el proceso de produccion B, ya que la perdida maxima de este proceso es la men or de los procesos A, B y C. Ni el criterio maximin ni el criterio de la perdida de oportunidades minimax permiten a la persona que toma las decisiones introducir en el proceso de toma de decisiones sus opiniones personales como la probabilidad de que se produzcan los estados de la naturaleza. Dado que la mayorfa de los problemas empresariales practicos se producen en un entorno con el que esta al menos algo familiarizado el responsable de to mar las decisiones, eso representa un despilfarro de pericia. En el siguiente apartado analizamos las probabilidades de los resultados de cada accion alternativa. Tabla 21.5. Aplicaci6n del criterio de la perdida de oportunidades minimax al ejemplo 21.1. Accion Estado de la naturaleza Perdida Proceso de produccion Demanda baja Demanda moderada Demanda alta Perdida maxima de cada proceso A B 30.000 20.000 0 5.000 5.000 0 0 20.000 40.000 30.000 20.000 (minimo) 40.000 C EJERCICIOS Ejercicios basicos 21.3. Considere el ejercicio 21.1, en el que un inversor esta considerando tres alternativas -un certificado de dep6sito, un fondo de acciones de bajo riesgo y un fondo de acciones de alto riesgopara hacer una inversi6n de 20.000 $. Considera tres estados de la naturaleza posibles: SI: mercado de val ores fuerte S2: mercado de val ores moderado 53: mercado de valores debil La tabla de rendimientos (en d61ares) es la siguiente: Accion Estado de la naturaleza Alternativas de inversion posibles Certiticado de deposito Fondo de acciones de bajo riesgo Fondo de acciones de alto riesgo 1.200 4.300 6.600 1.200 1.200 800 1.200 -600 - 1.500 a) l,Que acci6n se selecciona mediante el criterio maximin? b) l,Que acci6n se selecciona mediante el criterio de la perdida de oportunidades minimax? 21.4. Considere el fabricante de desodorantes del ejercicio 21.2 que esta a pun to de ampliar la capacidad de producci6n para fabricar un nuevo producto. Tiene cuatro procesos de producci6n alternativos . La tabla adjunta muestra los benefi cios estimados, en d61ares, de estos procesos correspondientes a tres niveles de demanda del producto posibles. Acdon Estado de la naturaleza Proceso de produccion Demanda baja Demanda moderada Demanda alta A B C D 100.000 150.000 250.000 250.000 350.000 400.000 400.000 400.000 900.000 700.000 600.000 550.000 a) l,Que acci6n se selecciona mediante el criterio maximin? b) l,Que acci6n se selecciona mediante el criterio de la perdida de oportunidades minimax? 21.5. Gtro criterio para seleccionar una decisi6n es el criterio maximax, llamado a veces criterio del 864 Estadfstica para administracion y economfa optimismo. Este criterio elige la accion que tiene el mayor rendimiento posible. a) i,Que accion elegirfa el fabricante de telefonos moviles con los rendimientos de la Tabla 21.2 segun este criterio? b) i,Y el inversor del ejemplo 21.2? Ejercicios aplicados 21.6. EI fabricante de telefonos moviles del ejemplo 21.1 tiene tres acciones admisibles: [os procesos A, B Y C. Cuando se consideran conjuntamente, se elige el proceso B segun el criterio de la perdida de oportunidades minimax. Suponga ahora que hay una cuarta alternativa admisible, el proceso de produccion E. Los rendimientos estimados de esta accion son 60.000 $ en el caso en el que la demanda es baja, 115.000 $ en el que es moderada y 220.000 $ en el que es alta. Demuestre que cuando se consideran conjuntamente los procesos A, B, C Y E, se elige el A seglll1 el criteria de la perdida de oportunidades minimax. Por 10 tanto, aunque la introduccion del proceso E entre las acciones no lleva a elegir ese proceso, sf !leva a elegir una accion diferente a la que se habrfa elegido. Comente el atractivo intuitivo del criterio de la perdida de oportunidades minimax a la luz de este ejemplo. 21.7. Considere un problema de decision que tiene dos acciones posibles y dos estados de la naturaleza. a) Ponga un ejemplo de una tabla de rendimientos en la que amhas acciones son admisibles y se elige la misma accion tanto segun el criterio maximin como segun e[ criterio de la perdida de oportunidades minimax. b) Ponga un ejemplode una tabla de rendimientos segun la cual se eligen diferentes acciones segun el criterio maXlmll1 y segun el criterio de la perdida de oportunidades minimax. 21.8. Considere un problema de decision que tiene dos acciones admisibles y dos estados de la naturaleza posibles. Describa la forma que debe tener la tabla de rendimientos para que se elija la misma accion con el criterio maximin que con el criterio de la perdida de oportunidades minimax. 21.9. Un empresario tiene la pasibilidad de abrir una zapaterfa en centro comercial consolidado y de ex ito. Pero tam bien puede abrirla con un coste mas bajo en un nuevo centro, que acaba de inaugurarse. Si resulta que el nuevo centro tiene mucho exito, se espera que los beneficios anuales que obtenga la zapaterfa por estar en ese centro sean de 130.000 $. Si el centro solo tiene un exito moderado, los beneficios anuales serfan de 60.000 $. Si no tiene exita, la perdida anual serfa de 10.000 $. Los beneficios que se espera obtener abriendo la zapaterfa en el centro comercial consolidado tambien dependen en alguna medida del grado de exito del nuevo, ya que los clientes podrfan sentirse atrafdos por e1. Si el nuevo centro no tuviera exito, los beneficios esperados de la zapaterfa situada en el centro consolidado serfan de 90.000 $. Sin embargo, si el nuevo centro tuviera un exito moderado, los beneficios esperados serfan de 70.000 $, mientras que si tuviera mucho exito serfan de 30.000 $. a) Elabore la tabla de rendimientos del problema de toma de decisiones del dueiio de esta 7.apaterfa. b) i,Que accion se elige segun el criterio maximin? c) i,Que accion se elige segun el criterio de la perdida de oportunidades minimax? 21.3. ,,-alor monetario es erado; TreePlan Un importante ingrediente del amilisis de muchos problemas de toma de decisiones empresari ales probablemente sea la valoracion que hace el responsable de tomarlas de la probabilidad de que se produzcan los distintos estados de 1a natura1eza relevantes en la determinacion del rendimiento final. Los criterios analizados en el apartado 21.2 no permiten incorporar este tipo de valoracion al proceso de toma de decisiones. Sin embargo, un directivo casi siempre tendn'i una buena impresion del entorno en el que se toma la decision y quemi tenerlo en cuenta antes de decidir un curso de accion. EI analisis de este apartado supone que cada estado de 1a naturaleza tiene una probabilidad de ocurrencia y demostrara como se emplean estas probabilidades para tomar una decision. Capftulo 21. 865 Teorfa estadfstica de la decisi6n Generalmente, cuando hay H estados de la naturaleza posibles, debe asignarse una probabilidad a cada uno. Estas probabilidades se representan por medio de PI' P 2' ... , PH' por 10 que la probabilidad Pj corresponde al estado de la naturaleza Sj. La Tabla 21.6 muestra el planteamiento general de este problema de toma de decisiones. Tabla 21.6. Rendimientos con probabilidades de los estados de la naturaleza. Acdon Estado de la naturaleza a/si S1(P\) S2(P 2) ... M2fl MKN Cll Mil MI2 Cl2 M21 M22 ... ... ClK MKI MK2 ... SH(PH) MIN Dado que debe ocurrir uno y solo uno de los estados de la naturaleza, estas probabilidades suman necesariamente 1, por 10 que Cuando la persona que toma la decision elige una accion, vera que cada eleccion tiene una probabilidad especffica de recibir el rendimiento correspondiente y, por 10 tanto, podra calcular el rendimiento esperado de cada accion. EI rendimiento esperado de esta accion es, pues, la suma de los rendimientos individuales, ponderados por sus probabilidades. Estos rendimientos esperados a menudo se Uaman valores monetarios esperados de las acciones. Criterio del valor moneta rio esperado (VME) Supongamos que una persona que tiene que tomar una decision tiene K acciones posibles, ai' a2 , ... , a K y se enfrenta a H estados de la naturaleza. Sea Mr el rendimiento correspond iente a la i-esima accion y el j -esimo estado y P la probabilidad de que ocurra el j-esimo estado de la H naturaleza, cumpliendose que I J Pj = 1. EI valor monetario esperado de la acci6n ai' VME(a), es H VME(a) = P1Mi/ + P 2M i2 + ... + PHMiH = L PjMij (21.1 ) j= l EI criterio del valor monetario esperado adopta la accion que tiene el mayor valor moneta rio esperado; es decir, dada una eleccion entre acciones alternativas, el criterio del VME dicta la eleccion de la accion cuyo VME es mayor. Volvamos al fabricante de telefonos moviles del ejemplo 21.1 y caIculemos el VME de cada uno de los procesos de produccion. EI fabricante probablemente tendra alguna experiencia en el mercado de su producto y, basandose en esa experiencia, podrfa hacerse una idea de la probabilidad de que la demanda sea baja, moderada 0 alta. Supongamos que sabe que el 10 por ciento de todas las veces que se ha introducido antes este tipo de producto 866 Estadfstica para administracion y economfa tuvo una baja demanda, el 50 pOl' ciento tuvo una demanda moderada y el 40 por ciento tuvo una demanda alta. A falta de mas informacion, es razonable postular, en el caso de la introduccion de este nuevo tipo de telefono movil , las siguientes probabilidades de los estados de la naturaleza: = pes ]) = probabilidad de que la demanda sea baja = 0,1 P 2 = P(S2) = probabilidad de que la demand a sea moderada = 0,5 p] P 3 = P(S3) = probabilidad de que la demand a sea alta = 0,4 Dado que debe ocurrir uno y solo uno de los estados de la naturaleza, estas probabilidades suman necesariamente 1; es decir, los estados de la naturaleza son mutuamente excluyentes y colectivamente exhaustivos. Estas probabilidades se afiaden a la tabla de rendimientos (Tabla 21.2) y dan la Tabla 21.7. Tabla 21.7. Rendimientos y probabilidades de los estados de la naturaleza correspondientes al ejemplo 21.1 del fabricante de telefonos m6viles. Accion Estado de la naturaleza Proceso de produccion Demanda baja A 70.000 80.000 100.000 B C (P = 0,10) Demanda moderada (P = 0,50) 120.000 120.000 125.000 Demanda alta (P = 0,40) 200.000 180.000 160.000 Si el fabricante de telefonos moviles adopta el proceso de produccion A, recibira un rendimiento de 70.000 $ con una probabilidad de 0,1, 120.000 $ con una probabilidad de 0,5 y 200.000 $ con una probabilidad de 0,4. En el caso del fabric ante de telefonos moviles, los valores monetarios esperados de las tres acciones admisibles son: + (0,5)(120.000) + (0,4)(200.000) = 147.000 $ (Proceso B) = (0,1)(80.000) + (0,5)(120.000) + (0,4)(180.000) = 140.000 $ (Proceso C) = (0,1)(100.000) + (0,5)(125.000) + (0,4)(160.000) = 136.500 $ VME (Proceso A) = (0,1)(70.000) VME VME El fabricante de telefonos moviles elegirfa el proceso de produccion A. Es interesante sefialar que ni el criterio maximin ni el criterio de la perdida de oportunidades minimax llevan a esta eleccion. Sin embargo, se ha afiadido la informacion de que parece que hay muchas mas probabilidades de que el nivel de demanda sea alto que de que sea bajo, por 10 que el proceso A es una opcion relativamente atractiva. Arboles de decision EI analisis de un problema de decision por medio del criterio del valor monetario esperado puede representarse graficamente mediante un mecanismo llamado arbol de decision. Cuando se analizan decisiones en condiciones de riesgo, el diagrama del arbol es un instrumento grafico que obliga a la persona que toma las decisiones a «examinar todos los resultados posibles, incluidos los desfavorables. Tambien la obliga a tomar decisiones de una manera logica y consecutiva» (v ease la referencia bibliografica 4). Los arboles de decision son especialmente titiles cuando debe tomarse una sucesion de decisiones. Todos contienen Capftulo 21. Teorfa estadfstica de la decisi6n 867 D Nodos de decision (0 de accion). Estos cuadrados indican que debe tomarse una decision y a veces se Haman nodos cuadrados. o Nodos de sucesos (estados de la naturaleza). Estos empalmes circulares, de los que salen ramas, representan un estado de la naturaleza posible, al que se asigna la probabilidad correspondiente. Estos nodos a veces se Haman nodos circulares. Nodos terminales. Una barra vertical representa el final de la rama decision-suceso. Originalmente, se utilizaba un triangulo para representar este punto. A veces no se representa de ninguna forma. Despues de definir rigurosamente un problema, la persona que toma la decision traza el arbol de decision, asigna probabilidades a los sucesos (estados de la naturaleza) posibles y estima el rendimiento de cada combinacion decision-suceso posible (cada combinacion de accion y estado de la naturaleza). Ahora el responsable de tomar la decision esta preparado para encontrar la decision optima. Ese proceso se llama «resolver el arbol» (v ease la referencia bibliografica 1). Para resolver un arbol de decision, hay que trabajar hacia atras (lo que se llama plegar el arbol). Calculemos el valor monetario esperado (VME) de cada estado de la naturaleza comenzando por la parte situada mas a la derecha del arbol de decision y retrocediendo hasta los nodos de decision situados a la izquierda. La Figura 21.1 muestra un diagrama de arbol del fabricante de telefonos moviles. Se dan los siguientes pasos para elegir la accion que tiene el mayor VME: 1. Comenzando por el lado izquierdo de la figura, vemos que salen ramas del nodo de decision (indicado con un cuadrado) que representan las tres acciones posibles: proceso A, proceso B y proceso C. A continuacion, salen los nodos de sucesos (representados por un circulo), de los que salen ramas que representan los estados de la naturaleza (los niveles de demanda) posibles. Figura 21 .1. Acciones Arbol de decision del fabricante de telefonos moviles (*Ia accion que tiene el maximo VME = 147.000 $ VME). Baja (0,1) Rendimientos 70.000 $ Moderada (0,5) *Proceso A ~ Estados de la naturaleza (probabilidades) 120.000 $ Alta (0,4) 200.000 $ VME = 140.000 $ VME = 147.000 $ Baja (0,1) 80.000 $ Proceso B Moderada (0,5) 120.000 $ Alta (0,4) 180.000 $ VME = 136.500 $ Proceso C Baja (0,1) Moderada (0,5) Alta (0,4) 100.000 $ 125.000 $ 160.000 $ 868 Estadfstica para administraci6n y economfa 2. 3. 4. 5. Se asigna la probabilidad correspondiente a cada estado de la naturaleza (baja, moderada, alta). En la parte situada mas a la derecha se insertan los rendimientos correspondientes a las combinaciones accion-estado de la naturaleza. Los calculos se realizan de derecha a izquierda, comenzando por estos rendimientos. Se calcula en cada empalme circular la sum a de las probabilidades de las distintas ramas multiplicadas por su rendimiento. De esa manera, se obtiene el VME de cada accion. La decision optima es la que tiene el VME mas alto y se indica en el punto en el que hay un cuadrado. Por 10 tanto, se elige el proceso A mediante el criterio del valor monetario esperado. La eleccion de esta accion da como resultado un valor monetario esperado 0 beneficio esperado de 147.000 $ para el fabricante de telefonos moviles. La utilizacion de TreePlan para resolver un arbol de decision TreePlan, desarrollado por Michael Middleton (vease la referencia bibliografica 3) e incluido en este libro, es un complemento de Excel que puede utilizarse para trazar arboles de decision. Calcula el VME e indica la decision optima. Entre en la pagina web www.treeplan.com para la documentacion y los detalles que permitiran continuar utilizando este complemento una vez concluido este curso (vease la referencia bibliografica 5). EJEMPLO 21.3. Oportunidad de inversion (criterio del VME) El inversor del ejemplo 21.2 tenia que decidir entre una inversion a un tipo de interes fijo y una CaItera de acciones. Supongamos que este inversor es, de hecho, muy optimista sobre la futura evolucion del mercado de valores y cree que la probabilidad de que el mercado este boyante es 0,6, mientras que la probabilidad de cada uno de los otros dos estados es 0,2. La tabla adjunta muestra los rendimientos y las probabilidades de los estados de la naturaleza: Acdon Estado de la naturaleza Inversion Estado boyante Estado estable Estado deprimido (P = 0,60) (P = 0,20) (P = 0,20) 1.200 2.500 1.200 500 1.200 - 1.000 Tipo de interes fijo Cartera de acciones ~Que inversion debe elegir segun el criterio del valor monetario esperado? Soluci6n Dado que el rendimiento de la inversion a un tipo de interes fijo es de 1.200 $, independientemente de 10 que ocurra en la bolsa de valores, el valor monetario esperado de esta inversion es 1.200 $. El VME de la cartera de acciones es VME (Cartera de acciones) = (0,6)(2.500) + (0,2)(500) + (0,2)( - 1.000) = 1.400 $ Capitulo 21 . Teoria estadistica de la decision 869 Dado que este es el valor monetario esperado mas alto, el inversor elegira la cartera de acciones ordinarias, segun el criteria del valor monetario esperado. Resolvamos ahora este ejemplo con el TreePlan. Una vez instalado el TreePlan, la forma mas faci! de acceder a el es abrir una nueva hoja de dlculo Excel y pulsar Ctrl-t (el arbol comenzara donde aparezca el cursor; asegurese de que tiene suficiente espacio para la tabla de decisi6n y para el arbol). Pulse en «New Tree» y aparecen'i el arbol con dos nodos de decisi6n (Figura 21.2). El arbol de decisi6n completo se encuentra en la Figura 21.3. A continuaci6n, analizamos un problema que requiere una sucesion de decisiones. r--_--'"'A:..-_-t _____~______L ___C__________Q. __ JilLI_JL--l-___Ii_____E L_.__.L__l Events 2~ Action Buoyant Steady Depressed 3 (prob =0.6) (prob=0 .2) (prob=0.2) _:~. Fixed Interest 1,200 1,200 1,200 5 IStock Portfolio 2,500 500 -1 ,000 1 6 7 'if' --9 io_- r ------- - - ---~ --- - --- ~ --- ---- ----- ----- l ! 11 12 , '~! Decision 1 01 . 13 14 15 16 !, : ~:J 0 0 !, 0 : ! . I Decision 2 ! I 1 i~ 01 ! 0 0 1______ - - - - - -- - - - - - - -- - - - - - - - - - - - - - - -- - - , 1 Figura 21.2. I \ i A B Ie: 0 : Inicio del programa TreePlan. E ' G: H I F I : J 'K' L J]---.------ ~=-~~~~==~~~~===~::::=~~=:::~~~===~~==~=~~~~~~~~=:==~~==~-=~=~-~~-~~~~~=_===_,--- 1..1 : l.J ! ~J I __~__! ! 6 1 j iJ 8 -I "9 EMV(Fi xed) : I 1400 ! ! Stock Portfolio is ,: Optimal Decision Stock Portfolio 15 1 I EMV(Stock) 17 18 19 20 i ' I : i 0.6 i Buoyant: 2,500i 2500 :I ..1..2~ 13 I ' ! 1,200 I I : 1 ~1 1200 : ~ 1_1 :~I ---1 ---------------------- !Action 2 is chosen 10 --I Payoffs ! Fixed Interest 0.2 Steady 1400 500 0.2 Depressed i '" 500: i ' i I -1,000 : !_____________________________________________ ~ _______________~!QQ9__________ J 41Figura 21.3. Arbol de decisi6n del ejemplo 21 .3 elaborado utilizando TreePlan; decisi6n 6ptima: seleccionar la cartera de acciones. 870 Estadfstica para administracion y economfa EJEMPLO 21.4. Fabricante de medicamentos (criterio del VME) Un fabricante de medicamentos tiene los derechos de patente de una nueva formula que reduce los niveles de coiesterol. EI fabricante puede vender la patente por 50.000 $ 0 realizar pruebas intensivas sobre la eficacia del medicamento. El coste de realizar estas pruebas es de 10.000 $. Si se observa que el medicamento es ineficaz, no se comerciaJizani y el coste de las pruebas se considerara una perdida. Hasta ahora, las pruebas realizadas con medicamentos de este tipo han sido eficaces en un 60 por ciento e ineficaces en un 40 por ciento. Si las pruebas revelaran ahora que el medicamento es eficaz, el fabricante tiene de nuevo dos opciones. Puede vender los derechos de patente y los resultados de las pruebas por 120.000 $ 0 puede comercializar el mismo el medicamento. Si 10 comercializa, se estima que los beneficios generados por las ventas (excluidos los costes de las pruebas) ascendenin a 180.000 $ si la campana de ventas tiene mucho ex ito, pero solo a 90.000 $ si tiene un exito moderado. Se estima que estos dos niveles de penetracion en el mercado son igual de probables. Segun el criterio del valor monetario esperado, i,que debe hacer el fabricante del medicamento? Solucion Lo mejor es abordar el problema construyendo un arbol de decisi6n. La Figura 21.4 muestra el arbol completo. i------- ------ ---------- --------:----------- -------- ------------------- ------------- o~5 -----------pay-offs -l I I I High Success 170,000 1 I Market 1I I 170000 I 1Optimal Decision: Retain Patent EMV of Action 1 is $71,000 I I 125000 0.6 Effective I 0.5 Moderate Success I $80,000 I 80000 II I I I II 125000 I I I I Sell Patent & Test Results 1 I ---------------------- II i I I I l 110,000! II 110000 1 0.4 Ineffective • --- .. ----- ------- -------. ------- .. -------- ---. ·10.000 iI I I II ·10000 I I I Sell Patent ----. ------------------- . ---- . ---- .. ------. ------••• ---- --. ------ •• ---- 50 ,000 1I l _______________________s.!!.~QQ_________________________________________________________________________ Figura 21.4. J Arbol de decisi6n del ejemplo 21.4; decisi6n 6ptima: conservar la patente y, si las pruebas demuestran que el medicamento es eficaz, comercializarlo (VME = 71.000 $). EI fabricante puede decidir vender la patente, en cuyo caso no tiene que hacer nada mas, 0 quedarsela y realizar pruebas sobre la eficacia del medicamento. Hay dos estados de la naturaleza posibles: el medicamento es eficaz (con una probabilidad de 0,6) 0 es ineficaz (con una probabilidad de 0,4). En el segundo caso, ahf termina todo. Sin embargo, si el medicamento demuestra ser eficaz, hay que tomar una segunda decision: comercializarlo 0 vender los derechos de patente y los resultados de las pruebas. Si se Capftulo 21. Teorfa estadfstica de la decision 8 71 adopta la primera opcion, el nivel de exito de la comercializacion determin a el resultado final, que puede ser moderado 0 alto (cada uno con una probabilidad de 0,5). A continuacion, se examinan los rendimientos de todas las combinaciones accionestado de la naturaleza. Comencemos por la parte inferior del arbol de decision . Si la decision inicial del fabricante es vender la patente, recibe 50.000 $. Si se queda con ella, pero el medicamento resulta ineficaz, el fabricante tiene una perdida de 10.000 $, que es el coste de las pruebas. Esta perdida se muestra como un rendimiento negativo de esa cuantfa. Si se observa que el medicamento es eficaz y se vende la patente y los resultados de las pruebas, el fabricante recibe 120.000 $, de los que debe restarse el coste de las pruebas, por 10 que queda un rendimiento de 110.000 $. Por Ultimo, si se comercializa el medicamento, los rendimientos en los casos de exito moderado y grande son 90.000 $ y 180.000 $, respectivamente, menos el coste de las pruebas, por 10 que quedan 80.000 $ y 170.000 $, respectivamente. Una vez lIegados a este punto, el problema de decision se resuelve yendo hacia atras de derecha a izquierda. Este paso es necesario, ya que no puede saberse cwi! es la accion que debe elegirse en el primer punto de decision hasta que se conoce el valor monetario esperado de la mejor opcion en el segundo punto de decision. Comencemos, pues, suponiendo que inicialmente se conserva la patente y que las pruebas demuestran que el medicamento es eficaz. Si se vende la patente y los resultados de las pruebas, se obtiene un beneficio de 110.000 $. EI valor monetario esperado de la comercializacion del medicamento es VME = (0,5)(170.000) + (0,5)(80.000) = 125.000 $ Dado que es de mas de 110.000 $, la mejor opcion en esta fase, segun el criterio del valor monetario esperado, es comercializar el medicamento. Esta cantidad se introduce, pues, en el nodo cuadrado del segundo punto de decision y se considera que es el rendimiento que obtiene el fabric ante si su decision inicial es conservar la patente y las pruebas indican que el medicamento es eficaz. Aquf mostramos la tabla de rendimientos correspondiente a la decision inicial con las probabilidades de los estados de la naturaleza. EI valor monetario esperado de la venta de la patente son los 50.000 $ seguros, mientras que el valor monetario esperado de conservar la patente es (0,6)(125.000) + + (0,4)( - 10.000) = 71.000 $. En ese caso, segun el criterio del valor monetario esperado, debe conservarse la patente. Estado de la naturaleza Accion Conservar la patente Vender la patente Medicamento eficaz (P 125.000 50.000 = 0,60) Medicamento ineficaz (P = 0,40) -10.000 50.000 Si el objetivo del fabricante es maximizar el valor monetario esperado (es decir, el beneficio esperado), debe conservar la patente. Si las pruebas demuestran que el medicamento es eficaz, el fabricante debe comercializarlo. Esta estrategia genera un beneficio esperado de 71.000 $. En la Figura 21.4 se obtiene el mismo resultado utilizando el TreePlan. 872 Estadfstica para admin istracion y economfa Amllisis de sensibilidad En el caso del fabricante de telefonos moviles, este ha seleccionado el proceso de produccion A utilizando el criterio del valor monetario esperado. Esta decision se basa en el rendimiento estimado de cada combinacion accion-estado de la naturaleza y en la probabilidad estimada de que ocurra cada estado de la naturaleza. Sin embargo, a menudo la persona que tiene que tomar una decision no esta segura de esas estimaciones, por 10 que es util preguntarse en que intervalo de especificaciones de un problema de decision es optima una determinada accion segun el criterio del valor monetario esperado. El amilisis de sensibilidad trata de responder a esas preguntas y el caso mas sencillo es aquel en el que se permite que varfe una unica especificacion del problema. Para ilustrarlo, supongamos que el fabric ante de telefonos moviIes esta de acuerdo con que la probabilidad de que la demanda sea alta es de 0,4, pero esta menos segura en el caso de los otros dos estados de la naturaleza. Sea P la probabilidad de que la demanda sea baja, por 10 que la probabilidad de que sea moderada debe ser (0,6 - P). Segun el criterio del valor monetario esperado, Len que intervalo de valores de P serfa optima la adopcion del proceso A? Utilizando los rendimientos de la Tabla 2l.7, los valores monetarios esperados son VME(B) = = VME(C) = (P)(lOO.OOO) + (0,6 - VME(A) (P)(70.000) (P)(80.000) + (0,6 + (0,6 - P)(120.000) P)(l20.000) + (0,4)(200.000) = 152.000 + (0,4)(180.000) = 144.000 - P)(125.000) + (0,4)(160.000) = 139.000 - 50.000P 40.000P 25.000P La eleccion del proceso A seguira siendo optima siempre que el VME correspondiente sea mayor que el de cada uno de los otros dos procesos. Por 10 tanto, para que se prefiera el proceso A al proceso B, debe cumplirse que 152.000 - 50.000P ~ 144.000 - 40.000P o sea 8.000 ~ lO.OOOP por 10 que ~ P 0,8 Este resultado debe cumplirse, ya que, segun nuestros supuestos, la probabilidad de que la demanda sea baja no puede ser de mas de 0,6. Asimismo, para que se prefiera el proceso A al proceso B, 152.000 - 50.000P ~ 139.000 - 25.000P o sea 13.000 ~ 25.000P por 10 que P ~ 0,52 Si los rendimientos son los que indica la Tabla 2l.7 y la probabilidad de que la demanda sea alta es 0,4, entonces la mejor eleccion segun el criterio del valor monetario esperado es el proceso de produccion A, siempre que la probabilidad de que la demanda sea baja no sea de mas de 0,52. Capitulo 21. Teoria estadistica de la decision 873 Supongamos ahora que el fabricante de telefonos moviles no esta segura del rendimiento estimado de 200.000 $ si elige el proceso A y la demanda es alta. Veamos en que intervalo de rendimientos el proceso A sera la eleccion optima, cuando se mantienen todas las demas especificaciones del problema en sus niveles iniciales, mostrados en la Tabla 21.7. Si M es el rendimiento del proceso A cuando la demanda es alta, el valor monetario esperado de este proceso es VME(A) = (0,1)(70.000) + (0,5)(120.000) + O,4M = 67.000 + O,4M Los val ores monetarios esperados de los procesos Bye son, al iguaJ que antes, de 140.000 $ Y 136.500 $. Por 10 tanto, el proceso A sera la mejor eleccion segun el criterio del valor monetario esperado, siempre que 67.000 + U,4M ~ 140.000 o sea O,4M ~ 73.000 o sea M ~ 182.500 Si todas las demas especificaciones siguen siendo las que muestra la Tabla 21.7, se seleccionara el proceso de produccion A segun el criterio del valor monetario esperado, siempre que el rendimiento del proceso A cuando la demanda es alta sea al menos de 182.500 $. EJERCICIOS Ejercicios aplicados 21.10. Un estudiante ya tiene ofertas de trabajo. Ahora debe decidir si va a otra entrevista en otra empresa. Considera que el tiempo y el esfuerzo de acudir a otra entrevista tienen un coste de 500 $, en los que incurrini independientemente de que acepte el trabajo que ofrece esa empresa. Si el empresario ofrece un puesto preferible a sus demas alternativas, se considerarfa que es un beneficio que vale 5.000 $ (de los que debe restarse el coste de 500 $). De 10 contrario, habrfa despilfarrado el tiempo y el esfuerzo. a) Elabore la tabla de rendimientos del problema de decision del estudiante. b) Suponga que el estudiante cree que la probabilidad de que este empresario Ie ofrezca un trabajo preferible a otras alternativas es de 0,05. Segiin el criterio del valor monetario esperado, i,debe ir a vel' a este empresario? 21.11. Un directivo tiene que elegir entre dos acciones, a1 Y a2· Hay dos estados de la naturaleza posibles, SI y S2 . La tabla adjunta muestra los rendi- mientos. Si el directivo cree que los dos estados de la naturaleza son igual de probables, i,que accion debe elegir, segun el criterio del valor monetario esperado? Estado de la naturaleza Accioll 72.000 78.000 51 .000 47.000 21.12. EI inversor del ejercicio 21.1 cree que la probabilidad de que la bolsa de valores este fuerte es de 0,2, la probabilidad de que este moderada es de 0,5 y la probabilidad de que este debil es 0,3. a) i,Que accion debe elegir segiin el criterio del valor monetario esperado? b) Construya el arbol de decision del problema del inversor. 21.13. EI fabricante de desodorantes del ejercicio 21.2 sabe que historicamente el 30 pOI' ciento de los nuevos productos de este tipo ha tenido una elevada tlemanda, el 40 por ciento ha tenido una 874 Estadfstica para administracion yeconomfa demanda moderada y el 30 por ciento ha tenido una demanda baj a. criterio del valor monetario esperado la elecci6n de la acci6n del ejercicio 21.12? a) Segun el criterio del valor monetario esperado, l.que proceso de producci6n debe utili zarse? b) Construya el arbol de decisi6n del problema de este fabricante. 21.18. Vuelva al problema del fabric ante de desodorantes de los ejercicios 2l.2, 21.4 Y 21.13. 21.14. Considere un problema de decisi6n con dos acciones admisibles y dos estados de la naturaleza posibles, que tienen ambos la misma probabilidad de ocurrir. a) A verigiie si es verdadera 0 falsa cada una de las siguientes afirmaciones en un problema de ese tipo. i. La acci6n elegida segun el criterio del valor monetario esperado siempre sera igual que la acci6n elegida segun el criterio maximin. ii. La acci6n elegida segun el criterio del valor monetario esperado siempre sera igual que la acci6n elegida segun el criterio de la perdida de oportunidades minimax . iii. La acci6n elegida segun el criterio del valor moneta rio esperado siempre sera aquella que tenga el mayor rendimiento medio posible. b) l.Seria su respuesta sobre la afirmaci6n (iii) del apartado (a) la misma si los dos estados de la naturaleza no tuvieran la misma probabilidad de ocurrir? 21.15. Un problema de decisi6n tiene K acciones posibles y H estados de la naturaleza posibles. Si una de estas acciones es inadmisible, demuestre que no puede elegirse segun el criterio del valor monetario esperado. 21.16. El empresario del ejercicio 2l.9 cree que la probabilidad de que el nuevo centro comercial tenga mucho exito es de 0,4, que la probabilidad de que tenga un exito moderado es de 0,4 y que la probabilidad de que no tenga exito es de 0,2. a) Segun el criterio del valor monetario esperado, l.d6nde debe abrir la zapateria? b) Construya el arbol de decisi6n. 21.17. Vuelva al problema de decisi6n de los ejercicios 21.1 , 2l.3 Y 2l.12. Este inversor esta de acuerdo con la valoraci6n de que la probabilidad de que el mercado este fuerte es de 0,2. Sin embargo, esta menos segura de las valoraciones de la probabilidad de los otros dos estados de la naturaleza. l.En que intervalo de probabilidades de que el mercado de valores este debil da el a) El fabricante esta de acuerdo con la valoraci6n de que la probabilidad de que la demanda sea baj a es de 0,3, pero est a menos segura de las probabilidades de los otros dos niveles de demanda. l.En que intervalo de probabilidades de que la demanda sea moderada generara el criterio del valor monetario esperado la elecci6n de la acci6n del ejercicio 21.13? b) Considere dado el resto de las especificaciones del problema de los ejercicios 2l.2 y 21.13. l.En que intervalo de beneficios de una demanda alta cuando se utiliza el proceso A dara el cliterio del valor monetario esperado la elecci6n de la acci6n del ejercicio 21.13? 21.19. Vuelva al problema del empresario de los ejercicios 2l.9 y 21.16. a) El duefio de la zapateria esta contento con la valoraci6n de que la probabilidad de que el nuevo centro comercial no tenga exito es de 0,2, pero esta menos seguro de las valoraciones de la probabilidad de los otros dos estados de la naturaleza. l.En que intervalo de probabilidades de que el nuevo centro comercial tenga mucho exito lIevani el criterio del valor monetario esperado a la elecci6n de la acci6n del ejercicio 21.16? b) Suponiendo que las demas especificaciones del problema son las de los ejercicios 2l.9 y 21.16, l.en que intervalo de niveles de beneficios correspondientes a la instalaci6n en el nuevo centro si resulta que tiene mucho exito llevara el criterio del valor monetario esperado a la elecci6n de la acci6n del ejercicio 21.16? 21.20. Un fabricante recibe habitualmente contratos para entregar grandes pedidos de piezas a la industria automovilfstica. EI proceso de producci6n del fabricante es tal que cuando funciona correctamente, el 10 por ciento de todas las piezas producidas no satisface las especificaciones de la industria. Sin embargo, es propenso a tener un determinado fallo, cuya presencia puede comprobarse al comienzo de una serie de producci6n. Cuando el proceso funciona con este fallo , el 30 por ciento de las piezas producidas no satisface las especificaciones de la industria. El fabric ante ofrece piezas para un contrato por el que obtendra un beneficio de 20.000 $ si s610 Capitulo 21 . Teoria estadistica de la decisi6n es defectuoso el 10 por cie nto de las piezas y un beneficio de 12.000 $ si es defectuoso el 30 por ciento de las piezas. El coste de comprobar el fallo es de 1.000 $ y, si se observa que es necesaJia una reparaci6n, esta cuesta otros 2.000 $. Si se incurre en estos costes, deben restarse del beneficio. Hist6ricamente, se ha observado que el proceso de producci6n funciona COlTectamente el 80 pOl' ciento del tiempo. El fabricante debe decidir si comprueba el proceso al comienzo de una serie de producci6n. a) Segun el criterio del valor monetario esperado, i,cmil es la decisi6n 6ptima? b) Construya el arbol de decisi6n. c) Suponga que no se sabe cual es la proporci6n de ocasiones en las que el proceso de producci6n funciona correctamente. i,En que intervalo de val ores de esta proporci6n serfa 6ptima la decisi6n seleccionada en el apartado (a) segun el criterio del valor monetario esperado? 21.21. Un contratista tiene que decidir si presenta una oferta para la adjudicaci6n de un proyecto de construcci6n. EI coste de la preparaci6n de la oferta es de 16.000 $. Incurrira en este coste independientemente de que se Ie adjudique 0 no el contrato. EI contratista pretende hacer una oferta que generara 110.000 $ de beneficios (menos el coste de la preparaci6n de la oferta). Sabe que el 20 por ciento de las ofertas preparadas de esta forma ha tenido exito. a) Elabore la tabla de rendimientos. b) i,Debe prepararse y presentarse una ofelta segun el criterio del valor monetario esperado? c) i,En que intervalo de probabilidades de que la oferta tenga exito debe prepararse y presentarse una oferta segun el criterio del valor monetario esperado? 21.22. El jueves por la tarde, el jefe de una pequefia sucursal de una agencia de alquiler de coches observa que tiene seis coches para alquilar al dfa siguiente. Sin embargo, puede pedir que Ie envfen mas coches de la central con un coste de 20 $ cada uno. Cada coche que se alquila genera un beneficio esperado de 40 $ (el coste de envfo del coche debe restarse de este beneficio). Cada c1iente que pidc un coche cuando no hay ninguno disponible se cuenta como una perdida de 10 $ de fondo de comercio. Revisando los datos de los viernes anteriores, el jefe observa que el numero de coches solicitados ha ido de 6 a 10; los porcentajes se muestran en la tabla adjunta. EI jefe debe decidir si pide coches a la central y, en caso afirmativo, cuantos . 875 Numero de pedidos 6 7 8 9 10 Porcentaje 10 30 30 20 10 a) Elabore la tabla de rendimientos. b) Si se utiliza el criterio del valor monetario esperado, i,cuantos coches deben pedirse? 21.23. Un contratista ha decidido presentar una oferta para la adjudicaci6n de un proyecto. Las ofertas deben presentarse en multiplos de 20.000 $. Se estima que la probabilidad de que se consiga el contrato con una oferta de 240.000 $ es de 0,3, la probabilidad de que se consiga con una oferta de 220.000 $ es de 0,3 y la probabilidad de que se acepte una oferta de 200.000 $ es de 0,5. Se piensa que cualquier oferta de menos de 200.000 $ tendra exito con toda seguridad y que cualquier oferta de mas de 240.000 $ fracasara con toda seguridad. Si el fabricante consigue el contrato, debe resolver un problema de disefio con dos opciones posibles en esta fase. Puede contratar consultores externos, que Ie garantizaran una soluci6n satisfactoria, por un precio de 80.000 $. 0 puede invertir 30.000 $ de sus propios recursos en un intento de resolver el problema internamente; si fracasa este intento, debe contratar a los consultores. Se estima que la probabilidad de resolver con exito el problema internamente es de 0,6. Una vez que ha resuelto este problema, el coste adicional de cumplir el contrato es de 140.000 $. a) Este contratista tiene potencialmente dos decisiones que tomar. i,Cuales son? b) Construya el arbol de decisi6n. c) i,Cual es el curso de acci6n 6ptimo segtm el criterio del valor monetario esperado? 21.24. Considere un problema de decisi6n con dos acciones, a 1 y a2, Y dos estados de la naturaleza, 51 y 52' Sea Mij el rendimiento correspondiente a la acci6n a i Y el estado de la naturaleza 5j. Suponga que la probabilidad de que OCUlTa el estado de la naturaleza SI es P, por 10 que la probabilidad de que ocurra el estado S2 es (l - P). a) Demuestre que se selecciona la acci6n a 1 segun el criterio del VME si b) Demuestre, pues, que si al es una acci6n admisible, existe una probabilidad, P, de que se elija. Sin embargo, si a ] no es admisible, no puede elegirse, cualquiera que sea el valor de P. 876 Estadfstica para administraci6n y economfa Las decisiones que se toman en el mundo de la empresa pueden suponer a menudo una cantidad considerable de dinero y el coste de tomar una decision suboptima puede ser elevado. Esa es la razon por la que puede muy bien compensarle a la persona que tiene que tomar una decision hacer un esfuerzo para conseguir la mayor informacion relevante posible antes de tomar la decision. En concreto, quemi informarse 10 mas posible sobre las probabilidades de que ocurran los distintos estados de la naturaleza que determinan el rendimiento final. Esta caracteristica del examen detenido de un problema de decision no ha sido evidente hasta ahora en nuestro analisis. El fabricante de telefonos moviles del apartado 2l.3 valoraha las probabilidades de que la demanda del nuevo telefono movil fuera baja, moderada yalta en 0,1, 0,5 Y 0,4, respectivamente. Sin embargo, esta valoracion no reflejaba mas que las proporciones historicas logradas por otros productos anteriores. En la practica, podria muy bien querer realizar algun estudio de mercado sobre las perspectivas del nuevo producto. Con ese estudio, estas probabilidades a priori 0 iniciales de los tres niveles de demanda pueden modificarse y general' nuevas probabilidades, llamadas probabilidades a posteriori. La informacion (en este caso, los resultados del estudio de mercado) que lleva a modificar las probabilidades de los estados de la naturaleza se llama informacion muestral. Utilizaci6n del teorema de Bayes En el Capitulo 4 explicamos el mecanisme para modificar las probabilidades a priori para obtener probabilidades a posteriori. Eso se hace pOl' medio del teorema de Bayes, que reformulamos por comodidad en el marco de nuestro problema de decision. Teorema de Bayes Sean S1' S2' .. ., SH H sucesos mutuamente excluyentes y colectivamente exhaustivos, que corresponden a los H estados de la naturaleza de un problema de decisi6n. Sea A algun otro suceso. Sea la probabilidad condicionada de que ocurra S1' dado que ocurre A, P(SjIA) y la probabilidad de A, dado Sj' P(Als). EI teorema de Bayes establece que la probabilidad condicionada de si' dado A, puede expresarse de la forma siguiente: pes IA) _ _P(_A-,-Is,--;)P_(s--,---;) i peA) P(Als)P(s) (21.2) En la terminologfa de este apartado, P(s) es la probabilidad a priori de Sj y se transforma en la probabilidad a posteriori, P(SjIA), dada la informacion muestral de que ha ocurrido el suceso A. Supongamos ahora que el fabricante de telefonos moviles contrata a una empresa de estudios de mercado para predecir el nivel de demanda de su nuevo producto. Naturalmente, la empresa Ie cobrara el estudio. Mas adelante en este capitulo, veremos si el rendimiento justifica el coste. La empresa afirma que las perspectivas son «malas», «regulares» o «buenas» en funcion de su estudio. EI analisis del historial de la empresa de estudios de mercado revela la calidad de sus predicciones anteriores en este campo. La Tabla 21.8 Capitulo 21. Tabla 21.B. Teoria estadistica de la decision 877 Proporcion de los distintos tipos de perspectivas segun la empresa de estudios de mercado correspondientes a los distintos niveles de la demanda. Estado de la naturaleza Accion Valoracion Demanda baja (s 1) Demanda moderada (S2) Demanda alta (S3) 0,6 0,2 0,2 0,3 0,4 0,3 0,1 0,2 0,7 Malas Regulares Buenas muestra la proporcion de veces que la empresa dijo que las perspectivas eran malas, regulares 0 buenas correspondiente a cada nivel efectivo de demanda. Por ejemplo, el 10 por ciento de las veces en que la demanda fue alta, la empresa dijo que las perspectivas eran «malas». Por 10 tanto, en la notaci6n de la probabilidad condicionada, representando la demanda baja, moderada yalta por medio de Sj, S2 Y S3, respectivamente, se deduce que P(malas ls j) = 0,6 P(malas ls2) = 0,3 P(malasl s3) = 0,1 Es s610 una casualidad que la suma de P(malasls j) = 0,6, P(malas ls2) = 0,3 y P(malas IS3) = 0,1 sea 1,0. Estas probabilidades condicionadas no tienen que sumar 1. Tomemos, por ejemplo, el caso de «regulares»; observese que la suma de P(regulares ls j) = 0,2, P(regulares ls2) = 0,4 y P(regulares ls3) = 0,2 s610 es 0,8 y no 1,0. Supongamos ahora que se consulta a la empresa de estudios de mercado y esta dice que las perspectivas del telefono m6vil son «malas». Dada esta nueva informaci6n, las probabilidades a priori de los tres niveles de demanda pueden modificarse utilizando el teorema de Bayes. En el caso de un bajo nivel de demanda, la probabilidad a posteriori es P(malas ISj)P(sj) P(s j lmalas) = - - - - - - - -- - -- - - - - - -- P(malas IS j)P(s j) + P(malas IS2)P(S2) + P(malas IS3)P(S3) - -- (0,6)(0,1) 0,06 -------- = - (0,6)(0,1) + (0,3)(0,5) + (0,1)(0,4) 0,25 = 024 ' Asimismo, en el caso de los otros dos niveles de demanda las probabilidades a posteriori son P(s21 malas) = P(s3Imalas) = (0,3)(0,5) 0,25 (0,1)(0,4) 0,25 = 0,6 = 0,16 A continuaci6n, pueden utilizarse las probabilidades a posteriori para caIcu!ar los valores monetarios esperados. La Tabla 21.9 muestra los rendimientos (sin el coste del estudio), junto con las probabilidades a posteriori de los tres niveles de demanda. Esta tabla es simpie mente una modificaci6n de la 21.7, en la que se han sustituido las probabilidades a priori por las probabilidades a posteriori. 878 Estadfstica para administraci6n y economfa Tabla 21.9. Rendimientos del fabricante de telefonos m6viles y probabilidades a posteriori de los estados de la naturaleza, cuando la empresa de estudios de mercado dice que las perspectivas son «malas» . Aecion Estado de la naturaleza Proeeso de produecion Demanda baja A B C 70.000 80.000 100.000 * (P = 0,24)* Demanda moderada (P = 0,60)* 120.000 120.000 1250.000 Demanda alta (P = 0,16)* 200.000 180.000 160.000 Probabilidades a. posteriori. Los valores monetarios esperados de los tres procesos de producci6n pueden hallarse exactamente de la misma forma que antes. Son los siguientes: VME (Proceso A) = (0,24)(70.000) + (0,60)(120.000) + (0,16)(200.000) = 120.800 $ VME (Proceso B) = (0,24)(80.000) + (0,60)(120.000) + (0,16)(180.000) = 120.000 $ VME (Proceso C) = (0,24)(100.000) + (0,60)(125.000) + (0,16)(160.000) = 124.600 $ Si la empresa de estudios de mercado considera que las perspectivas son «malas», entonces, segun el criterio del valor monetario esperado, debe utilizarse el proceso de produccion C. Segun la valoracion de la empresa de estudios de mercado, la demanda baja es mucho mas probable y la demanda alta es considerablemente men os probable que antes. Este cambio de opinion sobre las perspectivas de mercado es suficiente para inducir al fabricante de telefonos moviles a cambiar su preferencia por el proceso A (basada en las probabilidades a priori) por el proceso C. Siguiendo el mismo razonamiento, es posib\e saber que decisiones se tomarfan si las perspectivas de exito del mercado del telefono movil se consideraran «regulares» 0 «buenas». De nuevo , es posible hallar las probabilidades a posteriori de los tres niveles de demanda por medio del teorema de Bayes. Si se considera que las perspectivas son «regulares», son 1 P(sll regulares) = 15 P(s2Iregulares) = 10 15 4 P(s3Iregulares) = 15 Si se considera que son «buenas», 2 P(sllbuenas) = 45 15 P(s2 Ibuenas) = 45 28 P(s3Ibuenas) = 45 Utilizando estas probabilidades a posteriori, calculamos par medio del programa Excel los val ores monetarios esperados de cada uno de los procesos de produccion correspondientes a cada valoracion. La Tabla 21.10 contiene estos valores monetarios esperados. Podrfan variar dependiendo del numero de decimales utilizados para expresar las probabilidades a posteriori. Como hemos mostrado antes, si la empresa de estudios de mercado afirma que las perspectivas son «malas», se prefiere el proceso C segun el criterio del valor monetario esperado. Si hace otra prediccion, se elegini el proceso A, segun este criterio. Capitulo 21 . Teoria estadistica de la decision 879 Tabla 21.10. Valores monetarios esperados del fabricante de telefonos m6viles correspondientes a tres predicciones posibles realizadas por la empresa de estudios de mercado. Accion Estado de la naturaleza (perspectivas) Proceso de produccion Malas Regulares Buenas A B 120.800 120.000 124.600 138 .000 L33.333 132.667 167.556 155.556 145.667 C Recuerdese que en el problema del fabric ante de telefonos m6viles, cuando se utilizaban las probabilidades a priori de los niveles de demanda, la decision optima segLin el criterio del valor monetario esperado era utilizar el proceso A. Puede ocurrir (si la empresa de estudios de mercado dice que las perspectivas son «malas») que se tome una decision diferente cuando la informacion muestral lleva a modificar estas probabilidades a priori. Por 10 tanto, resulta que al fabricante Ie interesarfa consultar a la empresa de estudios de mercado. Naturalmente, si la eleccion del proceso A hubiera resultado optima, cualquiera que hubiera sido la prediccion, la informacion muestral posiblemente no tendria ningLin valor. EJEMPLO 21.5. Reconsideraci6n del problema del fabricante de medicamentos (valor monetario esperado) En el ejemplo, 2l.4, un fabricante de medicamentos tenia que decidir si vendia la patente de una formula que reducfa el colesterol antes de someter el medicamento a una prueba (despues, si conservaba la patente y se observaba que el medicamento era eficaz, tambien tenia que tomar otra decision, que era comercializar el medicamento 0 vender la patente y los resultados de la prueba). En el caso de la decision inicial, los dos estados de la naturaleza eran Sl: el medicamento es eficaz, y S2: el medicamento es ineficaz. Las probabilidades a priori cOITespondientes, calculadas basandose en la experiencia anterior, son El fabric ante de medicamentos tiene la opcion de realizar con un coste moderado una prueba inicial antes de tomar la primera decision. La prueba no es infalible. En el caSa de medicamentos que despues han resultado eficaces, el 60 por ciento de las veces el resultado de la prueba preliminar fue positivo y el resto fue negativo. En el caso de medicamentos ineficaces, el 30 por ciento de las veces el resultado de la prueba preliminar fue positivo y el resto fue negativo. Dados los resultados de la prueba preliminar, l,que debe hacer el fabricante? Suponga que sigue siendo posible vender la patente por 50.000 $ si el resultado de la prueba preliminar es negativo. Solucion Observese, en primer lugar, que si se conserva la patente y las pruebas exhaustivas demuestran que el medicamento es eficaz, entonces en ausencia de informacion muestral sobre la situacion del mercado, la decision optima en esta fase es, al igual que en el ejemplo 21.4, comercializar el medicamento. La informacion suministrada por la prueba preliminar es iITelevante para tomar esa decision. Sin embargo, podrfa influir en la decision inicial de vender 0 no la patente. Por 10 tanto, solo se considera esta decision. 880 Estadfstica para administraci6n y economfa Las probabilidades condicionadas de los resultados muestrales, dados los estados de la naturaleza, son P(positivo!s,) = 0,6 P(negativo!s,) = 0,4 P(positivo! S2) = 0,3 P(negativo!s2) = 0,7 Si el resultado de la prueba preliminar es positivo, entonces la probabilidad a posteriori del estado s[ (eficaz), dada esta informacion, es .. P(positivo!s,)P(s,) pes, !pOSltlVO) = .. . P(pOSItlVO! s,)P(s,) + P(posltivo !S2)P(S2) (0,6)(0,6) (0,6)(0,6) + (0,3)(0,4) = 0,75 Ademas, como las dos probabilidades a posteriori deben sumar 1, entonces P(s2!positiyo) = 0,25. La tabla de rendimientos adjunta es igual que la del ejempl0 21.4, con la adicion de estas probabilidades a posteriori. Estado de la naturaleza Accion Medicamento eficaz (P = 0,75)* Medicamento inefizaz (P = 0,25)* Conservar la patente Vender la patente 125.000 50.000 -10.000 50.000 " Probabilidades a posteriori. EI valor monetario esperado, si se vende la patente, es de 50.000 $, mientras que si se conserva, es (0,75)(125.000) + (0,25)( -10.000) = 91.250 $ Por 10 tanto, si el resultado de la prueba inicial es positivo, la patente debe conservarse, segun este criterio. Consideremos ahora el caso en el que el resultado de la prueba preliminar es negativo. La probabilidad a posteriori del estado s, es, segun el teorema de Bayes, . P(sdnegatlvo)= . P(negativo!s,)P(s,) . P(negatJvo!s,)P(s,) + P(negatIVo!s2)P(S2) (0,4)(0,6) --04615 (0,4)(0,6) + (0,7)(0,4) , Por 10 tanto, la probabilidad a posteriori del estado s2 es P(S2! negativo) = 0,5385 Una vez mas, si se vende la patente, el valor monetario esperado son los 50.000 $ que se recibiran. Si se conserva la patente, el valor monetario esperado de esta decision es (0,4615)(125.000) + (0,5385)( - 10.000) = 52.302,50 $ Asf pues, aunque el resultado de la prueba preJiminar sea negativo, la decision optima, segun el criterio del valor monetario esperado, es conservar la patente. Capitulo 21 . Teoria estadistica de la decision 88 1 En este ejemplo, pues, cualquiera que sea la informacion muestral, la accion elegida es la misma. EI fabricante debe conservar la patente cualquiera que sea el resultado de la prueba preliminar. Dado que la informacion muestral no puede influir en la decision, no tiene senti do, desde luego, recogerla. De hecho, como la realizacion de la prueba preliminar tiene costes, serra suboptimo recogerla. Por 10 tanto, segun el criterio del valor monetario esperado, el fabricante de medicamentos debe conservar la patente y, si las pruebas demuestran que el medicamento es eficaz, debe comercializarlo. La prueba preliminar no debe realizarse. EI valor de la informacion muestral Se ha demostrado como puede tenerse en cuenta la informacion muestral en el proceso de toma de decisiones. El valor potencial de esa informacion se halla, por su puesto, en que permite saber con mayor precision cmlIes son las probabilidades de que ocurra cada uno de los estados de la naturaleza relevantes y eso penlite tener una base Imis solida para tomar una decision. En este apartado mostramos como puede asignarse un valor moneta rio a la informacion muestraI. Esto es importante, ya que la obtencion de informaci6n muestral normal mente tiene costes y la persona que debe tomar una decision qui ere saber si los beneficios esperados son mayores que este coste. EI ejemplo 21.5 muestra una situacion en la que una misma accion era optima, cualqui era que fuera el resultado muestral. En ese caso, la informacion muestral carece claramente de valor, ya que se habrfa elegido la misma accion sin ella. He aquf la regIa general: si la informacion muestral no puede influir en la eleccion de la accion, tiene un valor O. En el resto de este apartado solo nos referiremos, pues, a las circunstancias en las que el resultado muestral puede afectar a la eleccion de la accion. Un caso de ese tipo es nuestro ejemplo del fabricante de telefonos moviles que esta considerando la posibilidad de introducir un nuevo producto. Este fabricante tiene que elegir entre tres procesos de produccion y se enfrenta a tres estados de la naturaleza, que reprcscntan difcrcntcs nivelcs de demanda del producto. En el apartado 21.3 hemos mostrado que en ausencia de informacion muestral y utilizando solamente las probabilidades a priori, se selecciona el proceso A que tiene un valor monetario esperado de 147.000 $. Ahora bien, en la practica, una vez obtenida la informacion muestral, la persona que debe tomar una decision normalmente no sabe que estado de la naturaleza ocurrini, pero tiene valoraciones probabilfsticas mas fundadas de estos estados. Sin embargo, antes de analizar el valor de la informacion muestral en este modelo general, es util considerar el caso extrema en el que puede obtenerse informacion perfecta, es decir, el caso en el que la persona que tiene que to mar una decision puede obtener informacion que Ie diga con seguridad que estado oculTira. i, Que valor tiene esa informacion perfecta para la persona que debe tomar una decision? Valor esperado de la informacion perfecta, VEIP Supongamos que una persona tiene que elegir entre K acciones posibles y se enfrenta a H estad os de la naturaleza, S1' S2' ... , Sw La informacion perfecta corresponde al caso en el que se sabe que estado de la naturaleza ocurrira. EI valor esperado de la informacion perfecta se obtiene de la forma siguiente: 1. Se averigua que acci6n se elegira si solo se utili zan las probabilidades a priori P(S1)' P(S2) , ... , P(SH) · 882 Estadfstica para administraci6n y economfa 2. 3. Se hall a para cad a estado de la naturaleza posible, Si' la diferencia, Wi' entre el rendimiento de la mejor eleccion de la accion, si se supiera que ocurrira ese estado, y el rendimiento de la accion que se elegirfa solo si se utilizaran las probabilidades a priori. Este es el valor de la informacion perfecta, cuando se sabe que ocurrira si' EI valor esperado de la informacion perfecta, VEIP, es, pues, (21.3) Volvamos al caso del fabricante de telefonos moviles y calculemos el VEIP. En este ejemplo, la informacion perfecta corresponde al caso en el que se sabe cmil sera el nivel de demanda de los tres posibles. En ausencia de informacion muestral y basandose tinicamente en las probabilidades a priori, se elegira el proceso A. Sin embargo, volviendo a la Tabla 21.7, si el nivel de demand a es bajo, la mejor eleccion sera el proceso C. Como 6ste tiene un rendimiento que es 30.000 $ mayor que el del A, el valor de saber que la demanda sera baja es de 30.000 $. Asimismo, si se sabe que la demanda sera moderada, se elegira de nuevo el proceso C. En este caso, el rendimiento de la mejor elecci6n es 5.000 $ mayor que el del proceso A, que es, pues, el valor de saber que la demanda sera moderada. Si se sabe que la demanda sera alta, se elegira el proceso A. POl' 10 tanto, esta informacion carece de valor, ya que se habria tornado la misma decision sin ella. El valor de la informacion perfecta depende de la informacion. El valor esperado de la informaci6n perfecta se halla utilizando las probabilidades a priori de los distintos estados de la naturaleza. En el caso del fabricante de tel6fonos moviles, las probabilidades a priori son 0,1 en el caso en el que la demanda es baja, 0,5 en el caso en el que es moderada y 0,4 en el caso en el que es alta. Se deduce, pues, que para este fabricante el valor de la informacion perfecta es de 30.000 $ con una probabilidad de 0,1, 5.000 $ con una probabilidad de 0,5 y 0 $ con una probabilidad de 0,4. EI valor esperado de la informacion perfecta es, pues, VEIP = (0,1)(30.000) + (0,5)(5.000) + (0,4)(0) = 5.500 $ Esta cantidad monetaria representa, pues, el valor esperado para el fabricante de telefonos moviles de saber cual sera el nivel de demanda. Cuando los problemas son mas complejos, existen programas informaticos para calcular el VEIP. Aunque normalmente no se dispone de informacion perfecta, puede ser util calcular su valor esperado. Dado que, naturalmente, ninguna informacion muestral puede ser mejor que perfecta, su valor esperado no puede ser mayor que el valor esperado de la informacion perfecta. POl' 10 tanto, el valor esperado de la informacion perfecta es un limite superior del valor esperado de cualquier informacion muestral. POI' ejemplo, si el fabricante de telefonos moviles recibe informacion con un coste de 6.000 $, no es necesario que trate de obtener mas informacion sobre la calidad de esta informacion. No deberia comprarla, por muy fiable que sea, segtin el criterio del valor monetario esperado, ya que su valor esperado no puede ser de mas de 5.500 $. Consideremos ahora el problema mas general de calcular el valor de la informacion muestral que no es necesariamente perfecta. Consideremos de nuevo el problema de toma de decisiones del fabricante de telefonos moviles, que tiene la opcion de que una empresa de estudios de mercado valore las perspectivas del nuevo telefono m6vil. Estas perspectivas pueden considerarse «malas», «regulares» 0 «buenas». En el apartado 21.4 hemos mostrado que en los dos ultimos casos se elige, aun asi, el proceso A. Por 10 tanto, si la empresa de estudios de mercado dice que las perspectivas son «regulares» 0 «buenas», la eleccion inicial de la accion no varia y no se ganara nada consultando a esta empresa. Capitulo 21. Teoria estadistica de la decision 883 Sin embargo, si dice que las perspectivas son «malas», la Tabla 21.10 muestra que la eleccion optima es el proceso C. Esta eleccion optima generaria un valor monetario esperado de 124.600 $, mientras que el proceso A, que, de no ser asf, se habrfa utilizado, da un valor monetario esperado de 120.800 $. La diferencia entre estas cantidades, 3.800 $, representa la ganancia generada por la informacion muestral si la empresa dice que las perspectivas son «malas». Las ganancias generadas por la informacion muestral son 0 $ en el caso en el que las perspectivas son «buenas» 0 «regulares» y 3.800 $ si son «malas». Ahora necesitamos saber que probabilidades hay de que se materialicen estas ganancias, por 10 que en nuestro ejemplo debemos hallar la probabilidad de que la empresa de estudios de mere ado diga que las perspectivas son «malas». En general, si A representa una parte de la informacion muestral y SI' S2' ... , S H los H estados de la naturaleza posibles, entonces En el ejemplo del telefono movil, si SI, S2 Y S3 representan un nivel de demanda bajo, moderado y alto, respectivamente, entonces P(sJ) = 0,1 P(malasls J ) = 0,6 = 0,5 P(S3) P(malas IS2) = 0,3 P(malas 1 S3) P(S2) = 0,4 = 0,1 Por 10 tanto, la probabilidad de que la empresa diga que las perspectivas son «malas» es P(malas) = P(malaslsl)P(SI) + P(malas ls2)P(s2) + P(malas ls3)P(s3) = (0,6)(0,1) + (0,3)(0,5) + (0,1)(0,4) = 0,25 De la misma forma, utilizando las probabilidades condicionadas de la Tabla 2l.8, las probabilidades de las otras dos valoraciones de la empresa son P(regulares) = 0,30 P(buenas) = 0,45 Por 10 tanto, el valor de la informacion muestral es de 3.800 $ con una probabilidad de 0,25, de 0 $ con una probabilidad de 0,30 y de 0 $ con una probabilidad de 0,45 . Se deduce, pues, que el valor esperado de la informacion muestral es VEIM = (0,25)(3.800) + (0,30)(0) + (0,45)(0) = 950 $ Esta cantidad monetaria representa, pues, el valor esperado de la informacion muestral para la persona que tiene que to mar una decision. Segun el criterio del valor monetario esperado, esta informacion muestral merecera la pena si su coste es menor que su valor esperado. El valor esperado neto de la informacion muestral es la diferencia entre su valor esperado y su coste. Supongamos que la empresa de estudios de mere ado cobra 750 $ por su valoracion. El valor esperado neto de esta valoracion para el fabricante de telefonos moviles es, pues, 950 $ - 750 $ = 200 $. Por 10 tanto, el rendimiento esperado del fabricante sera 200 $ mayor si se compra la informacion muestral que si no se compra. Esta cantidad representa el valor esperado de tener esa informacion, teniendo en cuenta su coste. En este caso, la estrategia optima del fabricante es comprar el informe de la empresa de estudios de mercado y utilizar el proceso de produccion A si la empresa dice que las perspectivas son «buenas» 0 «regulares» y el C si dice que son «malas». EI VME de esta estrategia es de 147.200 $, es decir, los 147.000 $ que se obtendrfan si no se dispnsiera de informacion muestral mas el valor esperado neto de la informacion muestral. 884 Estadfstica para administraci6n y economfa Valor esperado de la informacion muestral, VEIM Supongamos que una persona tiene que elegir entre K acciones posibles ante H estados de la naturaleza, 5" 52' ... , 5 H . Puede obtener informaci6n muestral. Supongamos que hay M resultados muestrales posibles, A" A2 , .. . , AM' EI valor esperado de la informaci6n muestral se obtiene de la forma siguiente. 1. 2. Se averigua que acci6n se elegirfa si s610 se utilizaran las probabilidades a priori. Se averiguan las probabilidades de obtener cada resultado muestral: 3. Se halla para cad a resultado muestral posible Ai' la diferencia, Vi' entre el valor monetario esperado de la acci6n 6ptima y el de la acci6n elegida si s610 se utilizan las probabilidades a priori. Este es el valor de la informacion muestral, dado que se observ6 Ai' 4. EI valor esperado de la informacion muestral, VEIM, es, pues, (21.4) EI valor de la informacion muestral visto por medio de arboles de decision El valor esperado de la informacion muestral puede calcularse de otra forma (equivalente), que es desde el punto de vista aritmetico algo m<ls tediosa, pero comoda para representar el problema por medio de una sucesion de decisiones construyendo un arbol de decision. La primera decision que hay que tomar es si conviene obtener la informacion muestral. A continuacion, hay que averiguar cual de las acciones alternativas debe seguirse. Para ilustrarlo, consideremos de nuevo el problema del fabricante de telefonos moviles. La Figura 21.5 muestra los arboles de decision que se deducen de las tres valoraciones posibles del estudio de mercado. Estos arboles tienen la misma estructura general que la Figura 21.1, con una diferencia esencial: las probabilidades de los tres estados de la naturaleza son las probabilidades a posteriori, dada la informacion muestral especffica. Estas probabilidades a posteriori se obtuvieron en el apartado 21.4. Ahora se ponderan los rendimientos por las probabilidades a posteriori y se obtiene el valor monetario esperado de cada accion, dado cada resultado muestral posible. Estos son los valores monetarios esperados que muestra la Tabla 21.10. POl' ultimo, a la izquierda de cada parte de la Figura 21.5 se encuentra el valor monetario esperado mas alto posible de cada resultado muestral. Esta informacion se transfiere a la derecha de la Figura 21.6, en la que se analiza la decision de comprar 0 no el estudio de mercado. Si no se compra esta informacion, la parte inferior de la Figura 21.6 muestra un valor monetario esperado de 147.000 $. Esta cantidad se obtiene utilizando las probabilidades a priori y procede de la Figura 21.1. Pasamos ahora a examinar la parte superior de la Figura 21.6; el valor monetario esperado resultante depende del resultado muestral. Las probabilidades son 0,25 en el caso en el que las perspectivas son «malas», 0,30 en el que son «regulares» y 0,45 en el que son «buenas». Por 10 tanto, dado que cabe esperar 124.600 $ con una probabilidad de 0,25, 138.000 $ con una probabilidad de 0,30 y 167.000 $ con una probabilidad de 0,45, el rendimiento esperado si se compra la informacion muestral es (0,25)(124.600) + (0,30)(138.000) + (0,45)(167.556) = 147.950 $ Capitulo 21. Figura 21.5. Arbo les de decision del fabricante de telefonos moviles correspondientes a las valoraciones realizadas por la empresa de estud ios de mercado de que las perspectivas son (a) «malas» , (b) «regulares» y (c) «buenas» (* accion que tiene el maximo VME) . Teoria estadistica de la decisi6n 885 (a) "malas" Acciones Estados de la naturaleza Rendimientos (probabilidades) VME = 120.S00 $ 120.000 $ Alta (0,16) VME = 120.000 $ VME = 124,600 $ 70.000 $ Moderada (0,60) Proceso A ~ Baja (0,24) 200.000 $ Baja (0,24) SO.OOO $ Proceso B Moderada (0,60) Alta (0,16) VME = 124.600 $ *Proceso C Baja (0,24) Moderada (0,60) Alta (0,16) 120.000 $ lS0.000 $ 100.000 $ 125.000 $ 160.000 $ (b) "regulares" Acciones Estados de la naturaleza Rendimientos (probabilidades) VME = 13S.000 $ 70.000 $ Moderada (2/3) *Proceso A ~ Baja (1/15) 120.000 $ Alta (4/15) 200.000 $ VME = 138,000 $ VME = 133.333 $ Baja (1/15) SO.OOO $ Proceso B Moderada (2/3) 120.000 $ Alta (4/15) 180.000 $ VME = 132.667 $ Proceso C Baja (1/15) Moderada (2/3) Alta (4/15) 100.000 $ 125.000 $ 160.000 $ 886 Estadfstica para administraci6n y economfa (c) '"buenas'" Estados de la naturaleza (probabilidades) Acciones VME = 167.556 $ Baja (2/45) ~ 120.000 $ Alta (28/45) =167.556 $ VME = 155.556 $ Baja (2/45) Proceso B Moderada (1/3) Alta (28/45) VME = 145.667 $ Baja (2/45) Proceso C Moderada (1/3) Alta (28/45) Figura 21.6. Decision del fabricante de telefonos moviles de comprar los servicios de la empresa de estudios de mercado (* accion con el maximo VME) . 70.000 $ Moderada (1/3) * Proceso A VME Rendimientos Acciones 200.000 $ 80.000 $ 120.000 $ 180.000 $ 100.000 $ 125.000 $ 160.000 $ Estados de la naturaleza (probabilidades) VME = 124.600 $ Figura 21.5(a) VME - Coste de la muestra (750 $) = 147.200 $ UME = 138.000 $ Figura 21.5(b) VME Figura 21.5(c) =147.200 $ VME = 147.000 $ Figura 21.1 Capitulo 21. 887 Teoria estadistica de la decision Sin embargo, es necesario restar de esta cantidad el coste de 750 $ de la informaci6n muestral, por 10 que quedan 147.200 $. Dado que esta cantidad es superior al rendimiento esperado cuando no se obtiene informaci6n muestral, la mejor estrategia, segun el criterio del valor monetario esperado, es comprar los servicios de la empresa de estudios de mercado. La decisi6n 6ptima tiene, como se indica a la izquierda de la Figura 21.6, un valor monetario esperado de 147.200 $. EJERCICIOS Ejercicios aplicados 21.25. Un fabricante debe deciclir si lanza, con un coste cle 100.000 $, una campana publicitaria cle un producto cuyas ventas han side bastante bajas. Se estima que una campana que tuviera mucho exito aumentarfa los beneficios en 400.000 $ (de los que habrfa que restar el coste de la campana) y una campana que tuviera un exito moderado los aumentarfa en 100.000 $, pero una campana que no tuviera exito no los aumentarfa nada. Hist6ricamente, el 40 por ciento de todas las campanas parecidas ha tenido mucho exito, el 30 pOI ciento ha tenido un exito moderado y el resto no ha tenido exito. Este fabricante consulta a un experto en meclios de comunicaci6n y Ie pide que valore la eficacia que puede tener la campana. El historial de este experto muestra que ha valorado favorablemente el 80 por ciento de las campanas que han tenido mucho exito, el 40 pOI ciento de las que han tenido un exito moderado y el 10 pOI ciento de las que no han tenido exito. a) Halle las probabilidades a priori de los tres estados de la naturaleza. b) En ausencia de un informe del experto en medios de comunicaci6n, l.debe lanzarse esta campana publicitaria, segun el criterio del VME? c) Halle las probabilidades a posteriori de los tres estados de la naturaleza, suponienclo que el experto valora favorablemente la campana. d) Dado un informe favorable del experto, l.debe lanzarse la campana publicitaria, segun el criterio clel VME? e) Halle las probabilidades a posteriori de los tres estados de la naturaleza, suponiendo que el experto no valora favorablemente la campana. f) Si el informe del experto no es favorable, l.debe lanzarse la campana publicitaria segun el critelio del VME? 21.26. Vuelva al ejercicio 21.2. EI fabric ante de desodorantes tiene cuatro procesos de producci6n posibles entre los que elegir, dependiendo de la opini6n sobre el futuro nivel de demanda. Basanclose en la experiencia anterior, las probabilidades a priori son de 0,3 en el caso de la demand a alta, de 0,4 en el de la demand a moderada y de 0,3 en el de la demanda baja. La tabla adjunta muestra las proporciones de valoraciones segun las cuales las perspectivas son «malas», «regulares» y «buenas»; estas valoraciones han sido realizadas por una empresa de mercado sobre productos similares que han 10grado estos niveles de demanda. Acci6n Valoraci6n Malas Regulares Buenas Estado de la naturaleza Demanda baja Demanda moderada Demanda alta 0,5 0,3 0,2 0,3 0,4 0,3 0,1 0,2 0,7 a) Si no se consulta a la empresa de estudios de mercado, l.que acci6n debe elegirse, segun el criterio del VME? b) Halle las probabilidades a posteriori cle los tres niveles de demanda, suponiendo que la empresa de estudios de mercado dice que las perspectivas son «malas». c) l.Que acci6n debe elegirse, segun el criterio del VME, si la empresa de estudios de mercado dice que las perspectivas son «malas»? d) Halle las probabilidades a posteriori de los Ires niveles de demand a, suponiendo que la empresa de estudios de mercado dice que las perspectivas son «regulares». e) l.Que acci6n debe elegirse, segun el criterio del VME, si la empresa de estudios de merC<l clo dice que las perspectivas son «regulares»? f) Halle las probabilidades a posteriori de los tres niveles de demanda, suponiendo que la empresa de estuclios de mercado dice que las perspecti vas son «buenas». 888 Estadfstica para administraci6n y economfa g) i,Que accion debe elegirse, segun el criterio del VME, si la empresa de estudios de mercado dice que las perspectivas son «buenas»? 21.27. EI empresario del ejercicio 21.9 tiene dos cursos de accion posibles. Su decisi6n se basa en su opini6n sobre el exito probable del nuevo centro comercial. Historicamente, el 40 por ciento de los centros de este tipo ha tenido mucho exito, el 40 por ciento ha tenido un exito moderado y el 20 por ciento no ha tenido exito. Una empresa de consultorfa hace valoraciones de las perspectivas de este tipo de centro comercial. La tabla adjunta muestra la proporcion de valoraciones segun las cuales las perspectivas son «buenas» , «regula res» y «malas», dado el resultado obtenido real mente. Accion Valoracion Buenas Razonables Malas Estado de la naturaleza (nivel de ex ito) Mucho exito Exito moderado Ninglin exito 0,6 0,3 0,1 0,3 0,4 0,3 0,2 0,3 0,5 a) i,Cmiles son las probabilidades a priori de los tres estados de la naturaleza? b) Si el empresario no busca asesoramiento de la empresa de consultorfa, i,que accion debe elegir, segun el criterio del VME? c) i,Cuales son las probabilidades a posteriori de los tres estados de la naturaleza, suponiendo que la empresa de consultorfa dice que las perspecti vas son «buenas»? d) Segun el criterio del VME, suponiendo que la empresa de consultorfa dice que las perspectivas son «buenas», i,que curso de accion debe adoptar? e) i,Cuales son las probabilidades a posteriori de los tres estados de la naturaleza, suponiendo que la empresa de consultorfa dice que las perspectivas son «regulares»? t) Segtin el criterio del VME, suponiendo que la empresa de consultorfa dice que las perspectivas son «regu lares», i,que curso de accion debe adoptar? g) i,Cuiiles son las probabilidades a posteriori de los tres estados de la naturaleza, suponiendo que la empresa de consultorfa dice que las perspectivas son «malas» ? h) Si se sigue el criterio del VME, i,que accion debe elegirse, suponiendo que la empresa de consultorfa dice que las perspectivas son «malas» ? 21.28. Considere el fabricante de medicamentos del ejemplo 21.5 , que tiene que decidir si vende la patente de un medicamento que reduce el colesterol antes de probarlo. En el ejemplo hemos visto que, cualquiera que sea el resultado de una prueba preliminar de la eficacia del meclicamento, la decision optima era conservar la patente. Despues, este fabricante clesanollaba una prueba preliminar superior, que podia realizarse cle nuevo con un coste mocleraclo. En el caso cle los medicamentos que despues resultaban eficaces, esta nueva prueba daba un resultaclo positivo el 80 por ciento de las veces, rnientras que obtenfa un resultaclo positivo solamente un 10 por ciento cle los medicamentos que resultaban ineficaces. a) Halle las probabilidades a posteriori de los dos estaclos de la natw'aleza, dado un resultado positivo cle esta nueva prueba preliminar. b) Segun el criterio clel VME, i,debe venderse la patente si el resultaclo cle la nueva prueba es positivo? c) Halle las probabiliclacles a posteriori de los clos estados cle la naturaleza, clado un resultado negativo cle esta nueva prueba preliminar. d) Segun el criterio del VME, i,debe venclerse la patente si el resultado de la nueva prueba es negativo? 21.29. En el ejercicio 21.20, un proveeclor de piezas para la industria automovilfstica tenia que cleciclir si comprobaba el proceso cle produccion en busca de un fallo antes de empezar una serie cle procluccion. Los dos estados de la naturaleza eran s 1: 1a reparacion no es necesaria (el 10 por ciento de toclas las piezas proclucidas no cumple las especificaciones) S2: la reparacion es necesaria (el 30 por ciento de todas las piezas producidas no cumple las especificaciones) Las probabilidades a priori, basadas en los datos historicos de este proceso de produccion, son El fabricante, antes de iniciar una nueva serie de producci6n, puede producir una pieza y ver si cumple las especificaciones, basando la decision de comprobar 0 no el proceso de produccion en la informacion muestral resultante. a) Si la pieza comprobada cumple las especificaciones, i,cuiiles son las probabilidades {/ posteriori de los estados de la naturaleza? Capftulo 21 . b) Si la pieza comprobada cumple las especificac iones, i,debe comprobarse el proceso de produccion segun el criterio del VME? c) Si la pieza comprobada no cumple las especificaciones, i,cuales son las probabilidades a posteriori de los estados de la naturaleza? d) Si la pieza comprobada no cumple las especificaciones, l,debe comprobarse el proceso de produccion seglm el criterio del VME? 21.30. Continuando con el ejercicio 21.29, suponga ahora que antes de tomar la decision de comprobar 0 no el proceso de produccion, se fabrican dos piezas y se examinan. a) Si no es necesaria real mente una reparacion, i,cuales son las probabilidades de que ambas piezas, una de ellas 0 ninguna no cumpla las especificaciones? b) Calcule las mismas probabilidades que en el apartado (a), suponiendo que es necesario real mente reparar el proceso de produccion. c) Calcule las probabilidades a posteriori de los estados de la naturaleza y averigue la accion optima segun el criterio del valor monetario esperado, dada cada una de las siguientes circunstancias: i. Ninguna de las dos piezas cumple las especificaciones. ii. Solo una incumple las especificaciones. iii. Ninguna de las piezas incumple las especificaciones. 21.31. Una fabr ica de bombillas envla grandes pedidos de bombillas a gran des usuarios industriales. Cuando el proceso de produccion funciona correctamente (10 cual ocurre el 90 por ciento del tiempo), el 10 por ciento de todas las bombillas producidas tiene un defecto. Sin embargo, el proceso puede tener de vez en cuando algun fa110 y, en ese caso, la tasa de bombillas defectuosas es del 20 por ciento. La fabrica considera que el coste, en fondo de comercio, de un envio con una tasa mas alta de bombillas defectuosas a un usuario industrial es de 5.000 $. Si se sospecha que un envio contiene esta proporcion mas alta de bombillas defectuosas, puede venderlo a una cadena de tiendas de descuento, aunque eso supone una reduccion de los beneficios de 600 $, independientemente de quc cl cnVIO contenga 0 no una elevada proporcion de bombillas defectuosas. Las decisiones de esta empresa se tom an siguiendo el criterio del VME. a) Se prepara un envlo. En ausencia de mas informacion, i,debe enviarse a un usuario 1l1dustrial 0 a una cadena de descuento? Teorfa estadfstica de la decisi6n 889 b) Suponga que se comprueba una bombilla del envlo. Averigiie adonde debe enviarse en cada una de las circunstancias siguientes: i. Esta bombilla tiene defectos. ii. Esta bombilla no tiene defectos. c) Suponga que se comprueban dos bombillas del envlo. A verigue ad6nde debe enviarse en cada una de las circunstancias siguientes: i. Ambas bombillas tienen defectos. ii. Solo una bombilla tiene defectos. iii. Ninguna de las dos bombillas tiene defectos. d) Indique sin hacer los calculos como puede abordarse este problema de decision si se comprueban 100 bombillas antes de enviarlas. 21.32. Vuelva al problema del inversor del ejercicio 21.1. a) Explique que se entiende por «informacion perfecta» en el contexto del problema de este inversor. b) Las probabilidades a priori de que la bolsa de valores este fuerte son de 0,2, las de que este moderada son de 0,5 y las de que este debil son de 0,3. i,Cual es el valor esperado de la informacion perfecta para este inversor? 21.33. En el caso del fabricante de desodorantes del ejercicio 21.2, las probabilidades a priori de que la demanda sea alta son de 0,3, las de que sea moderada son de 0,4 y las de que sea baja son de 0,3. Halle el YElP de este fabricante. 21.34. En el caso del empresario del ejercicio 21.9, las probabilidades a priori de que el nuevo centro comercial tenga mucho exito son de 0,4, las de que tenga un exito moderado son de 0,4 y las de que no tenga exito son de 0,2. l,Cual es el valor esperado de la informacion perfecta para el empresario? 21.35. EI fabricante de piezas de automovil del ejercicio 21.20 debe decidir si comprueba el proceso de produccion antes de comenzar una nueva serie de produccion. Dado que el proceso de produccion funciona correctamente el 80 por ciento del tiempo, i,cual es el valor de la informaci6n perfecta para este fabricante? 21.36. Antes de demostrar como se balla el valor esperado de la informacion muestral, hemos analizado por separado la determinacion del valor esperado de la informacion perfecta. En realidad, no era necesario, ya que la informacion perfecta no es mas que un tipo especial de informacion muestral. Dado el metodo general para ballar el 890 Estadfstica para administraci6n yeconomfa valor esperado de la informaci6n muestral, muestre c6mo especializarlo al caso de la informaci6n perfecta. 21.37. Vuelva al ejercicio 21.25. EI fabric ante esta considerando la posibilidad de hacer una campana publicitaria y busca primero el asesoramiento de un experto en medios de comunicaci6n. a) i, Que valor esperado tiene para el fabricante el asesoramiento del experto en medios de comunicaci6n? b) El experto cobra 5.000 $. i,Cual es el valor esperado neto del asesoramiento del expelto? c) Este fabricante se enfrenta a un problema de decisi6n en dos etapas. Primero, debe decidir si compra asesoramiento al experto. A continuaci6n, debe decidir si lanza la campana publicitaria. Construya el arbol de decisi6n completo e indique que debe hacer el fabricante. 21.38. Vuelva al ejercicio 21.26. Halle los mayores honorarios que debe pagar el fabricante de desodorantes a la empresa de estudios de mercado, segun el criterio del valor monetario esperado. 21.39. Vuelva al ejercicio 21.27. Halle el valor esperado que tiene para el empresario una valoraci6n de las perspectivas del centro comercial realizada por la empresa de consultoria. 21.40. Vuelva al ejercicio 21.28. Antes de decidir si vende la patente de la nueva f6rmula para reducir el colesterol, el fabricante de medicamentos realiza una nueva prueba preliminar. Halle el valor esperado que tiene para el fabricante el resultado de la prueba. 21.41. Vuelva al ejercicio 21.29. EI proveedor de piezas de autom6vil puede producir y examinar una pieza antes de decidir si comprueba el proceso de producci6n. i,Cual es el VEIM? 21.42. Considere la fabrica de bombillas del ejercicio 21.31. La empresa puede comprobar una bombilla 0 mas antes de decidir si envfa un pedido a un usuario industrial 0 a una cadena de descuento. a) i,Que valor esperado tiene para la empresa la comprobaci6n de una bombilla? b) i,Que valor esperado tiene para la empresa la comprobaci6n de dos bombillas? c) i,Cual es la diferencia entre los valores esperados de comprobar dos bombillas y una bombilla? d) Si la primera bombilla comprobada es defectuosa, i,cual es el valor esperado de comprobar la segunda? e) Si la primera bombilla comprobada no es defectuosa, i,cuat es el valor esperado de comprobar la segunda? 21.5. Introducci6n del riesgo: analisis de la utilidad El criterio del valor monetario esperado para tomar decisiones tiene much as aplicaciones pnicticas. Es decir, en muchos casos, una persona 0 una empresa creen que la acci6n que ofrece el mayor valor monetario esperado es el curso de acci6n preferido. Sin embargo, no siempre es asf, como 10 demuestran los ejemplos siguientes. 1. Muchas personas compran un seguro de vida a plazo con el que, con un gasto relativamente pequeno, los beneficiarios de la persona asegurada son indemnizados generosamente en caso de muerte durante la vigencia de la p6liza. Actualmente, las companfas de seguros pueden calcular la probabilidad que tiene una persona de cualquier edad de morir durante un periodo de tiempo especffico. Por 10 tanto, fijan sus tarifas de manera que el precio de la p61iza sea mayor que la cantidad de dinero que esperan pagar en caso de fallecimiento. La diferencia cubre los costes de la compania de seguros y genera, en promedio, un margen de beneficio. Se deduce, pues, que para la persona asegurada el rendimiento esperado de la p6liza del seguro de vida es men or que su coste. Por 10 tanto, si todo el mundo tomara decisiones siguiendo el criterio del valor monetario esperado, el segura de vida a plazo no se compraria. No obstante, much as personas 10 compran, 10 que demuestra que estan dispuestas a sacrificar algunos rendimientos esperados a cambio de tener la seguridad de que sus herederos tendran un colch6n financiero en caso de fallecimiento. Capitulo 21. 2. Teoria estadistica de la decision 891 Supongamos que un inversor esta considerando la posibilidad de comprar acciones de un grupo 0 mas de empresas cuyas perspectivas considera brillantes. En principio, es posible postular los distintos estados de la naturaleza que influiran en los rendinuentos de la inversion en cada una de estas empresas. De esta forma, podrfa averiguarse cual es el valor monetario esperado de una inversion de una cantidad fija en cada empresa. Segun el criterio del valor monetario esperado, el inversor deberfa invertir todo el capital de que dispone en la empresa cuyo valor monetario esperado es mayor. En realidad, muchos inversores en la bolsa de valores no siguen esa estrategia sino que reparten su dinero en efectivo en una cartera de acciones. El abandono de la opcion de «poner todos los huevos en la misma cesta», aunque genera un rendimiento esperado menor, protege de la posibilidad de perder mucho dinero si resulta que las acciones de la empresa que tiene el mayor rendimiento esperado marchan mal. Al optar por una cartera de acciones, el inversor muestra su disposicion a sacrificar algun valor monetario esperado a cambio de que las probabilidades de experimentar grandes perdidas financieras sean menores. En cada uno de estos ejemplos, la persona que toma las decisiones ha mostrado una preferencia por un criterio de eleccion distinto del valor monetario esperado y en cada circunstancia esta preferencia parece muy razonable. Los dos ejemplos tienen un denonUnador comun, adem as de los rendimientos esperados. En ambos casos, la persona que toma decisiones quiere tener en cuenta el riesgo. El comprador de un segura de vida a plazo esta dispuesto a aceptar un rendimiento esperado negativo a cambio de la posibilidad de tener un gran rendimiento positivo en caso de fallecimiento. De esa forma, expresa una preferencia por el riesgo (naturalmente, se protege del riesgo de que su familia salga mal parada economicamente por su faliecinUento). En cambio, el inversor que, al repartir su inversion en una cartera de acciones, acepta un rendinUento esperado menor para reducir las posibilidades de experimentar una gran perdida muestra aversion al riesgo. El criterio del valor monetario esperado no es adecuado ni para las personas que prefieren el riesgo ni para las que son reacias a el. Afortunadamente, no es demasiado diffcil modificarlo para abordar las situaciones en las que el riesgo es un factor relevante. La idea es esencialmente sustituir los rendimientos monetarios por cantidades que reflejen no solo las cantidades monetarias que van a recibirse sino tambien la actitud de la persona hacia el riesgo. EI concepto de utili dad En el ejemplo 21.3 hemos analizado el problema de un inversor que elige entre una inversion a un tipo de interes garantizado y una cartera de acciones. La primera generarfa un rendimiento de 1.200 $, mientras que la segunda generarfa un rendimiento de 2.500 $ Y 500 $ si la bolsa de valores estuviera boyante 0 se mantuviera estable, pero una perdida de 1.000 $ si estuviera deprimida. Este inversor erda que las probabilidades respectivas de estos tres estados de la naturaleza eran 0,6, 0,2 Y 0,2. En ese caso, el valor monetario esperado de elegir la cartera de acciones era 1.400 $, que era 200 $ mayor que el de la inversion a un tipo de interes fijo. En esta coyuntura, necesitamos averiguar si este rendimiento esperado mayor compensa el riesgo de perder ,1.000 $, como ocurrirfa si el mere ado estuviera deprimido. Un inversor muy rico, que pudiera sufrir con comodidad esa perdida, decidirfa casi con toda seguridad que compensa el riesgo. Sin embargo, la postura de una persona relativamente pobre, para la cual una perdida de 1.000 $ serfa desastrosa, puede ser muy distinta. En el caso de ese inversor, los rendimientos deben ser sustituidos por 892 Estadfstica para administracion y economfa algunas otras cantidades que reflejen mejor la catistrofe que supondrfa una perdida de 1.000 $. Estas cantidades deben medir el valor 0 utilidad que tiene para el inversor una perdida de 1.000 $ en comparaci6n, por ejemplo, con una ganancia de 500 $ 0 de 2.500 $. Los estudios pioneros de investigadores como Von Neumann y Morgenstern (vease la referencia bibliografica 6) mejoraron el concepto de utilidad, que aun hoy desempena un papel fundamental en economfa. El analisis de la utilidad constituye la base para sol uci onar problemas de decisi6n en presencia de preferencia 0 de aversi6n al riesgo. Para empleario, s610 se necesitan unos supuestos bastante suaves y normalmente bastante razonubles. Supongamos que una persona se enfrenta a varios rendimientos posibles, que pueden ser 0 no monetarios. Se supone que puede ordenar (posiblemente con empates) la utilidad o satisfacci6n que Ie reportarfa cada uno. Asf, si prefiere el rendimiento A al B y el B ul C, debe preferir el A al C. Tambien se supone que si prefiere el rendimiento A al B y el B al C, existe un juego de azar que ofrece A con una probabilidad P y C con una probabilidad (l - P), tal que al individuo Ie dara igual aceptar el juego que recibir B con seguridad. Dados estos y otros supuestos generalmente inocuos en cuyos detalles no es necesario que nos detengamos, es posible mostrar que la persona racional elige la acci6n cuya utilidad esperada es mayor. Por consiguiente, el problema de decisi6n se analiza exactamente igual que en los apartudos anteriores, pero con utilidades en lugar de rendimientos. Es decir, se construye una tabla de utilidad en lugar de una tabla de rendimientos y, a continuaci6n, se emplean las probabilidades de los estados de la naturaleza para comparar las utilidades esperadas. Veamos ahora c6mo se averiguan las utilidades correspondientes a los distintos rendimientos. Los rendimientos posibles en orden ascendente en el caso de nuestro inversor son - 1.000 $, 500 $, 1.200 $ y 2.500 $. El primer paso es obtener una funci6n de utilidad. Como se obtiene una funcion de utili dad Supongamos que una persona puede recibir varios rendimientos alternativos. La transformacion de los rendimientos en utilidades se realiza de la forma siguiente: 1. 2. Las unidades en las que se mide la utilidad son arbitrarias. Por 10 tanto, puede fijarse una escala como convenga. Sea L el rendimiento mas bajo de todos y H el mas alto. Asignamos la utilidad 0 al rendimiento L y la utilidad 100 al rendimiento H. Sea I cualquier rendimiento comprendido entre L y H. Hallamos la probabilidad P tal que la persona es indiferente entre las siguientes alternativas: a) b) 3. Recibir el rendimiento I con seguridad. Recibir el rendimiento H con la probabilidad P y el rendimiento Leon la probabilidad (1 - P). La utilidad que tiene para el individuo el rendimiento I es, pues, 100P. La curva que relaciona la utilidad y el rendimiento se llama funcian de utilidad. EI primer paso no tiene ningun misterio y nos permite tener una c6moda medida para medir la utilidad. La elecci6n de los numeros 0 y 100 para representar la utilidad del menor rendimiento y la del mayor es totalmente arbitraria. Podrfa muy bien utilizarse cualquier otro par de numeros, mientras la utilidad del rendimiento mayor sea mayor que la del menor, sin afectar al res to dei analisis. A efectos practicos, el segundo paso es el mas diffcil, debido en parte a que presupone que el individuo puede manipular las probabilidades de una manera coherente. En la practica, la probabilidad debe averiguarse mediante el metoda de prueba y error, haciendo preguntas como «(,preferirfa recibir I con seguridad 0 participar en un juego de azar en el que Capftulo 21. Teorfa estadfstica de la decision 893 podria recibir H con una probabilidad de 0,9 y L con una probabilidad de 0,1 ?». 0 quiza «l,preferirfa recibir I con seguridad 0 participar en un juego de azar en el que podria obtener H con una probabilidad de 0,8 y L con una probabilidad de 0,2?». Este proceso continlia hasta que se alcanza el punto de indiferencia. La logica del ultimo paso es bastante sencilla. Dado que H tiene una utilidad de 100 y L tiene una utilidad de 0, la utilidad esperada si se obtiene H con una probabilidad de P y L con una probabilidad de (1 ~ P) es lOOP + 0(1 ~ P) = lOOP Dado que el individuo es indiferente entre este juego y recibir I con seguridad, la utilidad del rendimiento I es lOOP. Volvamos ahora a nuestro inversor. En primer lugar, asignamos una utilidad de 0 al menor rendimiento, ~ l.000 $, Y una utilidad de 100 al mayor, 2.500 $. Queda por averiguar las utilidades de los rendimientos intermedios, 500 $ y 1.200 $. Se averiguan planteando al individuo una serie de preguntas, como «preferiria recibir 500 $ con seguridad 0 participar en un juego en el que podrfa ganar 2.500 $ con una probabilidad P y perder 1.000 $ con una probabilidad de (1 ~ P)?». Se prueba con diferentes valores de la probabilidad P hasta que se halla el valor con el que el individuo es indiferente entre las dos alternativas. Este proceso se repite en el caso del rendimiento de 1.200 $. Supongamos que el inversor es indiferente entre un rendimiento de 500 $ y el juego de azar que tiene una P = 0,6 y entre un rendimiento de 1.200 $ y el juego que tiene una P = 0,8. Las utilidades de los rendimientos intermedios son, pues, Rendimiento 500 $: Utili dad = (100)(0,6) = 60 Rendimiento 1.200 $: Utilidad = (100)(0,8) = 80 En la Figura 21.7 representamos por medio de puntos las cuatro utilidades de este inversor en relacion con los rendimientos correspondientes. Figura 21.7. Funci6n de uti li dad de un inversor. 100 -a 80 Cll -a 60 5 500 1.200 2.500 Rend imiento Trazamos una curva por estos puntos para indicar la forma general de la funcion de utilidad de este inversor. La forma de esta curva es interesante, ya que caracteriza la actitud del inversor hacia el riesgo. Como no podia ser de otra forma, la utilidad aumenta a medida que aumenta el rendimiento. Observese, sin embargo, que la tasa de aumento de la utili dad es mayor en los rendimientos mas bajos y disminuye a medida que aumenta el rendimiento. Eso significa un desagrado por los rendimientos mas bajos que es mas que acorde con su cantidad monetaria, 10 que indica una aversion al riesgo. Esta aversion puede verse en la actitud del inversor hacia los juegos de azar que Ie proponen. Por ejemplo, el inversor es indiferente entre un rendimiento segura de 500 $ y un juego en el que puede 894 Estadfstica para administraci6n y economfa ganar 2.500 $ con una probabilidad de 0,6 y perder l.000 $ con una probabilidad de 0,4. El valor monetario esperado de este juego es (0,6)(2.500) + (0,4)( - l.000) = 1.100 $ que es considerablemente mayor que el rendimiento segura preferido de 500 $. La cuantfa de esta diferencia es una medida del grado de aversi6n al riesgo. La forma de la Figura 2l.7 es caracterfstica de la aversi6n al riesgo. Segun Friedman y Savage, «una importante clase de reacciones de los individuos al riesgo puede racionalizarse mediante una extensi6n bastante simple del amilisis ortodoxo de la utilidad» (vease la referencia bibliogrMica 2). Desarrollaron gnificos de funciones de utilidad similares a los tres tipos de funciones de utilidad que se muestran en la Figura 21.8. -0 -0 -0 co :Q co :Q co :Q 5 5 5 (a) Aversi6n al riesgo Figura 21.8. (b) Preferencia por el riesgo (c) Indiferencia hacia el riesgo Funciones de utilidad: (a) aversion al riesgo; (b) preferencia por el riesgo; (c) indiferencia hacia el riesgo. La funci6n de la parte (a) de la figura, en la que la utilidad aumenta a una tasa decreciente a medida que aumenta el rendimiento, tiene la misma forma que la Figura 21.7, reflejando una vez mas una aversi6n al riesgo. En la parte (b) de la figura, la utilidad aumenta a una tasa creciente a medida que los rendimientos son mayores. Eso implica un gusto por los rendimientos mas altos que es mas que acorde con las cantidades monetarias en cuesti6n, 10 que muestra una preferencia por el riesgo. Por ultimo, la parte (c) de la Figura 21.8 muestra el caso intermedio en el que la utilidad aumenta a una tasa constante en el caso de todos los rendimientos. En este caso, los valores monetarios de los rendimientos constituyen una verdadera medida de su utili dad para el individuo, que demuestra asf indiferencia hacia el riesgo. Las tres curvas de la Figura 21.8 caracterizan la aversi6n al riesgo, la preferencia por el riesgo y la indiferencia hacia el riesgo. Sin embargo, un individuo no tiene por que mostrar solamente una de estas actitudes ante toda la variedad de rendimientos posibles. La Figura 21.9 ilustra una situaci6n mas compleja. En esta figura, en los rendimientos comprendidos entre M j y M 2 , la funci6n de utilidad tiene la forma de la Figura 21.8(a), 10 que indica una aversi6n al riesgo entre estos rendimientos. Sin embargo, en el caso de los rendimientos comprendidos entre M2 y M 3 , esta funci6n de utilidad tiene la forma de la Figura 21.8(b). Por 10 tanto, entre estos rendimientos el individuo muestra una preferencia por el riesgo. Por ultimo, en el caso de los rendimientos mas altos, entre M3 y M 4 , la posici6n se invierte de nuevo y el individuo es renuente al riesgo. Esa funci6n de utili dad puede surgir en los problemas practicos. Por ejemplo, un inversor puede muy bien ser reacio a Cap itulo 21. Teoria estadistica de la decisi6n 895 experimentar grandes perdidas y estar dispuesto al mismo tiempo a aceptar algun riesgo para obtener un rendimiento positivo bast ante alto en lugar de un rendimiento moderado. Sin embargo, si puede lograrse un rendimiento satisfactoriamente alto con un riesgo moderado, puede ser reacio a arriesgarse mucho mas ante la posibilidad de obtener un rendimiento aun mayor. Figura 21.9. Funcion de utilidad que muestra una ave rsion al riesgo entre los ren dimientos M1 y M2 , Y los rendimientos M3 y M4 Y una preferencia por el riesgo entre los rendimientos M2 y M3 · M2 M3 Rendimiento Criterio de la utili dad esperada para tomar decisiones Una vez halladas las utilidades, no queda mas que resolver el problema de decision averiguando el curso de accion que tiene la utilidad esperada mas alta. Las utilidades esperadas se obtienen como siempre, empleando las probabilidades de los estados de la naturaleza, como se muestra en la ecuacion 21.5. EI criterio de la utilidad esperada Supongamos que una persona tiene K acciones posibles, 8 1 , 8 2 , •.. , 8K' Y se enfrenta a H estados de la naturaleza. Sea Vii la utilidad correspondiente a la i-esima acci6n y el j-esimo estado y P la probabilidad de que ocurra el j-esimo estado de la naturaleza. En ese caso, la utilidad esperada, VE(8) , de la acci6n 8 i es H UE(aJ = PIUn + P2Ui2 + ... + PHUiH = L PjUij (21.5) j = 1 Dada una elecci6n entre acciones alternativas, el criterio de la utilidad esperada dicta la elecci6n de la acci6n cuya utilidad esperada es mayor. Partiendo de unos supuestos generalmente razonables, puede demostrarse que una persona racional debe adoptar este criterio. Si el individuo es indiferente al riesgo, el criterio de la utilidad esperada y el criterio del valor monetario esperado son equivalentes. La Tabla 21.11 muestra las utilidades y las probabilidades de los estados de la naturaleza de nuestro inversor. Si se elige la inversion a un tipo de interes fijo, esta garantizada una utilidad de 80, cualquiera que sea el estado de la naturaleza. En el caso de la cartera de acciones, la utilidad esperada es (0,6)(100) + (0,2)(60) + (0,2)(0) = 0,72 Dado que esta cantidad es men or que 80, este inversor debe invertir a un tipo de interes fijo, segun el criterio de la utilidad esperada. 896 Estadfstica para administraci6n y econom fa Tabla 21.11. Utilidades y probabilidades de los estados de la naturaleza de un inversor. Accion Estado del mercado Inversion Tipo de interes fijo Cartera de acciones Estado boyante (P = 0,60) Estado estable (P = 0,20) Estado deprimido (P = 0,20) 80 100 80 60 80 0 En el ejemplo 21.3 se selecciono la inversion en la cartera de acciones segun el criterio del valor monetario esperado. Sin embargo, la introduccion en el analisis de otro factor -eJ grado de aversion de este inversor al riesgo- !leva a la conclusion de que la opcion del tipo de interes fijo es la mejor. Este ejemplo sirve para ilustrar que a veces, cuando el riesgo es un factor importante, el criterio del valor monetario esperado no es adecuado para resolver problemas de decision. EI criterio de la utilidad esperada es el mas aplicable e intelectualmente defendible de todos los introducidos para abordar problemas de decision. Su principal inconveniente radica en la dificultad para extraer informacion sobre que juegos de azar se consideran igual de atractivos que los diferentes rendimientos asegurados. Este tipo de informacion es esencial para averiguar las utilidades. En una amplia variedad de problemas en los que puede suponerse con seguridad que el individuo es indiferente al riesgo, eJ criterio del valor monetario esperado sigue siendo aplicable. Ese serfa normal mente el caso, por ejemplo, de una pequena proporcion del ingreso total de la empresa. Sin embargo, si (como puede ocurrir en el desarrollo de una nueva compaiifa aerea, por ejemplo) las posibles perdidas de un proyecto pueden poner en peligro una empresa, las utilidades deben reflejar correctamente la aversion al riesgo. Una empresa puede intentar repartir este riesgo creando proyectos de colaboracion con otras empresas del sector 0 con posibles clientes. EJERCICIOS Ejercicios aplicados 21.43. Una persona se enfrenta a un problema en el que los rendimientos posibles (en d61ares) son 1.000 3.000 6.000 9.000 10.000 21.44. El empresario del ejercicio 21.9 tiene seis rendimientos posibles (en d6Iares): - 10.000 30.000 60.000 70.000 90.000 130.000 12.000 Se asigna la utilidad 0 al rendirniento de 1.000 $ Y la utilidad 100 al rendirniento de 12.000 $. Esta persona es indiferente al liesgo en el caso de los rendimientos comprendidos en ese intervalo. a) Halle las utilidades de los cuatro rendimientos intermedios. b) Halle en el caso del rendimiento intermedio la probabilidad P de que el individuo sea indiferente entre recibir I con seguridad y una apuesta en la que se reciben 12.000 $ con una probabilidad P y 1.000 $ con una probabilidad (1 - P) . Asigne una utili dad de 0 a una perdida de 10.000 $ y una utili dad de 100 a un beneficio de 130.000 $. La tabla adjunta muestra para el caso de cada rendimiento intermedio la probabilidad P de que el empresario sea indiferente entre recibir I con seguridad y un juego de azar en el que recibirfa 130.000 $ con una probabilidad P y perderfa 10.000 $ con una probabilidad (1 - P). Rendimiento 30.000 p 0,35 60.000 70.000 90.000 0,60 0,70 0,85 Capftulo 21. a) (,Cuales son las utilidades de los rendimien- tos intermedios? b) Suponga que las probabilidades de que el nuevo centro comercial tenga mucho exito, tenga un exito moderado y no tenga exito son 0,4, 0,4 y 0,2, respectivamente. (,Que accion deberfa elegirse si se quiere maximizar la utilidad esperada? 21.45. EI empresario del ejercicio 21.44 no sabe que valor P asignar a la indiferencia entre recibir 30.000 $ con seguridad y un juego de azar en el Teorfa estadfstica de la decision 897 que recibirfa 130.000 $ con una probabilidael P y perderfa 10.000 $ con una probabi lielael (l - P). Suponiendo que el resto de las especificaciones del problema son las del ejercicio 21.44, (,en que intervalo de valores de esta probabilidad generara el criterio de la utilidad esperada la misma eleccion de la accion ? 21.46. Considere el contrati sta del ejercicio 21.21. En realidad, este contratista es indiferente entre presentar y no presentar una oferta. (,Que implica eso sobre la funcion de utilidad del contratista? RESUMEN Este capftulo pretende ser una introduccion al analisis de las decisiones. Todos debemos vivir y trabajar en un entomo cuyo futuro es incierto. La toma de decisiones de las empresas no es una excepcion. Hemos analizado el marco de un problema de decision, hemos estudiado varios criterios para seleccionar una accion optima, hemos analizado el valor de la informacion muestral y hemos examinado las situaciones en las que la persona que tiene que tomar una decision puede estar mas interesada en tener en cuenta el riesgo que en maximizar los valores monetarios esperados. En la segunda situacion, hemos examinado una funcion de utilidad. En este capitulo, hemos analizado cuatro criterios para to mar decisiones: maximin, perdida de oportunidades minimax, valor monetario esperado y utili dad esperada. Hemos utilizado el TreePlan para construir arboles de decision. TERMINOS CLAVE accion, 856 accion admisible, 857 accion inadmisible, 857 analisis de sensi bilidad, 872 arboles de decision, 866 aversion al riesgo, 891 criterio de la perdida de oportunidades minimax, 862 criterio de la utilidad esperada, 895 criterio del valor monetario esperado, 865 criterio maximin, 860 estados de la naturaleza, 857 funcio n de utilidad, 892 informacion perfecta, 881 indiferencia al riesgo, 894 nodos de decision, 867 nodos de sucesos, 867 nodos terminales, 867 preferencia por el riesgo, 891 probabilidad a priori, 876 tabla de perdida de oportunidades, 862 tabla de perdidas, 862 tabla de rendimientos, 857 teorema de Bayes, 876 TreePlan, 868 valor de la informacion muestral, 881 valor de la informacion perfecta, 881 valor esperado de la informacion pelfecta, 882 valor esperado neto de la informacion muestral, 883 valor monetario esperado, 865 VEIM,884 VEIP, 881 VME,865 EJERCICIOS V APLICACIONES DEL CAPiTULO 21.47. Un consultor esta considerando la posibilidad de presentar ofertas detalladas para la adjudicacion de dos contratos. La preparacion de la oferta para el primero cuesta 100 $, mientras que la preparacion de la oferta para el segundo cuesta 150 $. Si se acepta la oferta para el primer contrato y se realiza el trabajo, el beneficio es de 800 $. Si se acepta la oferta para el se- gundo contrato y se realiza el trabajo, el beneficio es de 1.200 $. Los costes de Ia preparacion de la oferta deben restarse de estos beneficio~ EI consultor puede presentar, si 10 desea, ofertas para los dos contratos. Sin embargo, no tiene los recursos necesarios para realizar los dos trabajos si multaneamente. Si presenta una oferta, esta es aceptada y el consultor no puede rea- 898 Estadistica para administraci6n y economia lizar el trabajo, 10 contabiliza como un coste de 200 $ de perdida de fondo de comercio. En el proceso de toma de decisiones, hay cuatro estados de la naturaleza posibles: s I: se rechazan ambas ofertas S2: se acepta la oferta para el primer contrato y se rechaza la oferta para el segundo S3: se acepta la oferta para el segundo contrato y se rechaza la oferta para el primero S4: se aceptan ambas ofertas a) El consultor tiene cuatro cursos de acci6n posibles. z,Cwlles son? b) Elabore la tabla de rendimientos del problema de decision de este consultor. e) z,Que acci6n se elige segun el criterio maximin? d) z,Que acci6n se elige segun el criterio de la perdida de oportunidades minimax? 21.48. Vuelva al ejercicio 21.47. El consultor cree que la probabilidad de que se acepte la oferta para el primer contrato es de 0,7 y la probabilidad de que se acepte la oferta para el segundo es de 0,4. Tambien cree que la aceptaci6n de una oferta es independiente de la aceptaci6n de la otra. a) z,Cuales son las probabilidades de los cuatro estados de la naturaleza? b) Segun el criterio del valor monetario esperado, z,que acci6n debe elegir el consultor y cua! es el valor monetario esperado de esta acci6n? e) Construya el arbol de decisi6n del problema del consultor. d) z,Cual es el valor esperado de la informaci6n perfecta para este consultor? e) El consultor tiene la posibilidad de conseguir «informaci6n privilegiada» sobre las perspectivas de la oferta para el primer contrato. Esta informaci6n es total mente fiable en el sentido de que Ie permitirfa saber con seguridad que oferta se aceptaria. Sin embargo, no dispone de mas informaci6n sobre las perspectivas de la oferta para el segundo contrato. Z, Cual es el valor esperado de esta «informaci6n privilegiada»? 21.49. Vuelva a los ejercicios 2l.47 y 21.48. Este consultor se enfrenta a nueve rendimientos posibles (en d6Iares): - 250 - 150 0 550 700 750 950 l.950 Se asigna una utilidad de 0 a una perdida de 250 $ Y una utilidad de 100 a un beneficio de 1.050 $. La tabla adjunta muestra las probabilidades, P, de cada rendimiento intermedio, /, por las que el consultor es indiferente entre un rendimiento de I con seguridad y un juego de azar en el que ganarfa 1.050 $ con la probabilidad P y perderfa 250 $ con la probabilidad (1 - P). Segun el criterio de la utilidad esperada, z,que acci6n debe elegir el consultor y cual es la utilidad esperada de esa acci6n? Rendimiento - 150 - 100 p 0,05 0 550 700 750 950 0,10 0,20 0,65 0,70 0,75 0,85 Bibliografla 1. 2. 3. 4. 5. 6. Eppen, G. D., F. J. Gould et al. , Introductory Management Science: Decision Modeling with Spreadsheets, Upper Saddle River, NJ, Prentice Hall, 1998, 5." ed. Friedman, Mi lton y L. J. Savage, «The Utility Analysis of Choices Involving Risk», Journal of Political Economy, 56, 1948, pags. 279-304. Middleton, Michael, profesor, University of San Francisco, www.usaf.edu/ ~ middleton. Render, Barry y Ralph M. Stair, Jr. , Quantitative Analysis for Management, Upper Saddle River, NJ, Prentice Hall, 2000, 7. a ed. TreePlan Documentation, disponible en www.treeplan.com. Von Neumann, John y Oskar Morgenstern, The Theory of Games and Economic Behavior, Princeton, NJ, Princeton University Press, 1953, 3. a ed. TABLAS Tabla 1. DEL APENDICE Funci6n de distribuci6n acumulada de la distribuci6n normal estandar. o z Z F(z) Z F(z) Z F(z) Z F(z) Z F(z) Z F(z) 0,00 0,01 0,02 0,03 0,04 0,05 0,5000 0,5040 0,5080 0,5120 0,5160 0,5 199 0,31 0,32 0,33 0,34 0,35 0,6217 0,6255 0,6293 0,6331 0,6368 0,61 0,62 0,63 0,64 0,65 0,7291 0,7324 0,7357 0,7389 0,7422 0,91 0,92 0,93 0,94 0,95 0,8186 0,8212 0,8238 0,8264 0,8289 1,21 \ ,22 1,23 1,24 1,25 0,8869 0,8888 0,8907 0,8925 0,8944 1,5 1 1,52 1,53 1,54 1,55 0,9345 0,9357 0,9370 0,9382 0,9394 0,06 0,07 0,08 0,Q9 0,10 0,5239 0,5279 0,5319 0,5359 0,5398 0,36 0,37 0,38 0,39 0,40 0,6406 0,6443 0,6480 0,6517 0,6554 0,66 0,67 0,68 0,69 0,70 0,7454 0,7486 0,7517 0,7549 0,7580 0,96 0,97 0,98 0,99 1,00 0,8315 0,8340 0,8365 0,8389 0,841 3 1,26 1,27 1,28 1,29 1,30 0,8962 0,8980 0,8997 0,9015 0,9032 1,56 1,57 1,58 1,59 1,60 0,9406 0,941 8 0,9429 0,9441 0,945 2 0,11 0, 12 0, 13 0,14 0,15 0,5438 0,5478 0,5517 0;5557 0,5596 0,41 0,42 0,43 0,44 0,45 0,659\ 0,6628 0,6664 0,6700 0,6736 0,7 1 0,72 0,73 0,74 0,75 0,7611 0,7642 0,7673 0,7704 0,7734 1,01 1,02 1,03 1,04 1,05 0,8438 0,8461 0,8485 0,8508 0,8531 1,3 1 1,32 1,33 1,34 1,35 0,9049 0,9066 0,9082 0,9099 0,9115 1,61 1,62 1,63 1,64 1,65 0,9463 0,9474 0,9484 0,9495 0,9505 0,16 0,17 0, 18 0,19 0,20 0,5636 0,5675 0,57 14 0,5753 0,5793 0,46 0,47 0,48 0,49 0,50 0,6772 0,6803 0,6844 0,6879 0,6915 0,76 0,77 0,78 0,79 0,80 0,7764 0,7794 0,7823 0,7852 0,7881 1,06 1,07 1,08 1,09 1,10 0,8554 0,8577 0,8599 0,8621 0,8643 1,36 1,37 \ ,38 1,39 1,40 0,9131 0,9147 0,9162 0,9177 0,9192 1,66 1,67 1,68 \,69 1,70 0,9515 0,9525 0,95 35 0,9545 0,9554 0,21 0,22 0,23 0,24 0,25 0,5832 0,5871 0,5910 0,5948 0,5987 0,5 1 0,52 0,53 0,54 0,55 0,6950 0,6985 0,7019 0,7054 0,7088 0,81 0,82 0,83 0,84 0,85 0,7910 0,7939 0,7967 0,7995 0,8023 1,1 1 1, 12 1,13 1,14 1,1 5 0,8665 0,8686 0,8708 0,8729 0,8749 1,41 1,42 1,43 1,44 1,45 0,9207 0,9222 0,9236 0,9251 0,9265 1,7 1 1,72 1,73 1,74 1,75 0,9564 0,9573 0,9582 0,9591 0,9599 0,26 0,27 0,28 0.29 0,30 0,6026 0,6064 0,6 103 0,6 141 0,6179 0,56 0,57 0,58 0,59 0,60 0,7123 0,7157 0,7190 0,7224 0,7257 0,86 0,87 0,88 0,89 0,90 0,8051 0,8078 0,8106 0,8133 0,8 159 1, 16 1,17 1, 18 1, 19 \ ,20 0,8770 0,8790 0,8810 0,8830 0,8849 1,46 1,47 1,48 1,49 1,50 0,9279 0,9292 0,9306 0,93 19 0,9332 1,76 1,77 1,78 1,79 1,80 0,9608 0,9616 0,9625 0,9633 0,9641