INDUCTANCIA Inductancia El inductor es un elemento de un circuito que guarda energía en el campo magnético que rodea a sus alambres portadores de corriente. Del mismo modo que un capacitor guarda dicha energía en el campo eléctrico formado entre sus placas cargadas. El inductor se caracteriza por su inductancia, la cual depende de la forma de dicho inductor. Inductancia Inductancia L: di εL = L dt Inductancia We used a coil and the solenoid assumption to introduce the inductance. But the definition L≡− EL dI dt holds for all types of inductance, including a straight wire. Any conductor has capacitance and inductance. An inductor is usually made of a coil to make a large inductance (more loops = more flux). The circuit symbol is The self-induced emf through this inductor under a changing current I is given by: dI EL = − L dt Unidades de la inductancia The SI unit for inductance is the henry (H) V ⋅s 1H = 1 A Named for Joseph Henry: 1797 – 1878 American physicist First director of the Smithsonian Improved design of electromagnet Constructed one of the first motors Discovered self-inductance Inductancia Vb > Va Vb < Va di Vb − Va = −L dt Cálculo de la inductancia NΦ B L= i NΦB conexiones de flujo Por ser ΦB proporcional a la corriente i, la razón de dicha ecuación no depende de i y, por consiguiente, la inductancia (como la capacitancia) depende sólo de la forma del dispositivo. Cálculo de la inductancia de un solenoide When a current flows through a coil, there is magnetic field established. If we take the solenoid assumption E for the coil: B = µ0 nI When this magnetic field flux changes, it induces an emf, EL, called self-induction: d ( NAB ) d ( NAµ0 nI ) dΦ B dI E =− =− =− = − µ n 2V L dt dt dI or: EL ≡ − L dt dt 0 dt I + EL – ≡ −L For a solenoid: L = µ0 n 2V dI dt Where n: # of turns per unit length. N: # of turns in length l. A: cross section area V: Volume for length l. This defines the inductance L, which is a constant related only to the coil. The self-induced emf εL is generated by (changing) current in the coil. According to Lenz’s Law, the emf generated inside this coil is always opposing the change of the current which is delivered by the original emf ε. La inductancia de un toroide Recordemos… Magnetic Field of a Toroid The toroid has N turns of wire Find the field at a point at distance r from the center of the toroid (loop 1) r r ∫ B ⋅ ds = B( 2πr ) = µoN I µo N I B= 2πr There is no field outside the coil (see loop 2) La inductancia de un toroide Inductores con materiales magnéticos Recordemos… Magnetización La permeabilidad de la mayor parte de los materiales comunes (excepto los ferromagnéticos) tiene valores cercanos a 1. Con respecto a otros materiales que no son ferromagnéticos, la permeabilidad puede depender de propiedades como la temperatura y la densidad del material, pero no del campo B0. Para los ferromagnéticos κm depende del campo aplicado B0. r r B = κ mB 0 Put inductor L to use: the RL Circuit An RL circuit contains a resistor R and an inductor L. There are two cases as in a RC circuit (charging and discharging) but in an RL circuit one changes current, not electric charge. Current increases: When S2 is connected to position a and when switch S1 is closed (at time t = 0), the current through R and L begins to increase Current decreases: When S2 is connected to position b. RL Circuit Applying Kirchhoff’s loop rule to the circuit in the clockwise direction gives ε −IR −L dI =0 dt Here because the current is increasing, the induced emf has a direction that should oppose this increase. Solve for the current I, with initial condition that I(t=0) = 0, we find ( ) ( ε ε −Rt L I= 1− e ≡ 1 − e −t τ R R ) Where the time constant is defined as: L τ≡ R Constante de tiempo inductiva RL Circuit When switch S2 is moved to position b, the original current disappears. The self-induced emf will try to prevent that change, and this determines the emf direction (Lenz Law). dI IR + L = 0 dt Solve for the current I, with initial condition that I ( t = 0 ) = E R we find I= ε −Rt L ε −t τ e ≡ e R R Energy stored in an inductor The increasing current I from the battery supplies power not only to the resistor, but also to the inductor. From Kirchhoff’s loop rule, we have ε =IR +L dI dt Multiply both sides with I: εI = I 2 R + LI dI dt This equation reads: powerbattery=powerR+powerL So we have the rate of energy increase in the inductor as: dUL dI = LI dt dt I 1 2 Solve for UL: UL = ∫ LId I = LI 2 0 Stored energy type and the Energy Density of a Magnetic Field Given UL = ½ L I2 and assume (for simplicity) a solenoid with L = µo n2 V 2 2 1 B B UL = µo n 2V V = 2 2 µo µo n Since V is the volume of the solenoid, the magnetic energy density, uB is UL B 2 uB ≡ = V 2 µo So the energy stored in the solenoid volume V is magnetic (B) energy. And the energy density is proportional to B2. This applies to any region in which a magnetic field exists (not just the solenoid) RL and RC circuits comparison RL ( Charging ε I= 1 − e −Rt L R Discharging ε I = e −Rt L R Energy 1 UL = LI 2 2 RC ) −t ε I ( t ) = e RC R −t Q RC I (t ) = e RC Q2 1 UC = = C (∆V ) 2 2C 2 Magnetic field Electric field Energy density B2 uB = 2 µo 1 uE = ε o E 2 2 Energy Storage Summary Inductor and capacitor store energy through different mechanisms Charged capacitor When current flows through an inductor Stores energy in the electric field Stores energy in the magnetic field A resistor does not store energy Energy delivered is transformed into thermo energy Oscilaciones electromagnéticas: cualitativas Oscilaciones electromagnéticas: cualitativas Oscilaciones electromagnéticas: cualitativas Analogía con el MAS q↔x i↔v 1/C↔k L↔m k ω = 2πf = m 1 ω = 2πf = LC Oscilaciones electromagnéticas: cualitativas Oscilaciones electromagnéticas: cuantitativas U = UB + UE 2 1 2 1q U = Li + 2 2C U = cte dU dt =0 Oscilaciones electromagnéticas: cuantitativas d 2q 1 + q=0 2 LC dt d 2x k + x =0 2 m dt x = x m cos(ωt + φ ) q = qm cos(ωt + φ ) Oscilaciones electromagnéticas: cuantitativas 2 2 qm 1q UE = = cos 2 (ωt + φ ) 2 C 2C 1 2 1 2 2 2 U B = Li = Lω qm sen (ωt + φ ) 2 2 Sustituyendo ω: qm2 2 UB = sen (ωt + φ ) 2C