Lógica de Predicados - Universidad de Oviedo

Anuncio
!
"
# $ $ $ $ $"$%
& $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ '
(
"
&
"
)
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ *
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ +
,
& $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ .
0
2
&
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ '/
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ '1
3
& $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ *4
& $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ *4
!
3
& ) ,
3
&
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ *4
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ *-
& $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 45
2
3
&
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 46
& $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ //
)
, 3
8
& $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ /7
! $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 6'
9
!
2!
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 64
&
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 6+
Introducción
,
,
;
&
,
,
<=
&
& # ,
!
,
&
&
,
$
,
,
?
,
&
,
!
&
#
= = <=
%
!
. ,
!
,
,
&
<
>
,
!
,
!
"
"%$
)
;
.
, ,
&
,
:
!
&
,
:2
,
,
.
!
$ 0
!
&
.
.
,
,
$
@,
#
&$
A
,
&
&<
&
( #!&
.
@,
!
&
&
!
%$
%<
& <,
&$
:':
,
, @
&
&
Lenguaje Formal de la Lógica de Predicados
!
!
,
& =
<
, &
,
=
)
!
@
A &
, ,
,
,
&
!
$
!
<
&
,
&
, ,
:# $
2
,
!
!&
# !
(
'A
•
(
•
•
.
&
!
,
<
$
<
.
;
,
&
,
!
!
'%
#
%<,
!
'% )
!
,
&
!
∈
L
( , A
!
'%
,
∈
&
;
<
&
!
,
∈
L
,
!
'
.
,
$
L
(
'
&
.
&
∈
A
!
&
L
.
$?
(
%$ ?
,
.
$
( !
!
%
(
;
$
.
( %
!
!
( , A
!
&%
!" #
&
$ ?
!
# !
$
&
;
.
! " #,
&
!
!
, ,
=
(
:
,
;
$
.
<,
&
(<!
,
!
,
&
$ 2 ,
$
,
!
$
:*:
;
( ,
$
A
•
(
;
&
!
,
'%
?
,
K∈
(
<,
%?
,
,
∈
( , A
?
<
,
$
A
¬
∧
∨
→
↔
%?
!
A
∀
∃
?
()
A)
# !
)A
$
,
"
,
(
%
:
$
L
:?
!
L
&
$
:
,
,
;
$
# !
4A
* "
)
!
A
!
,
*"
B
.
$
,
;
( <
,
&$
:4:
.
!
# !
+% #
! "
!
! "
:
!&
:?
¬
¬
(
&! !'
!
!&
:?
!&
!
"
'A
! " /
" %
%
#
! "
∀
4
!
-
!
! "*
! ="
"
6A
@,
!
" ,
#
→
E! !
4C
, ∀ <∃ <
!&
*"
&
(
&$
+A
!
$
∃
!
-
!!
# !
!
$
D
!
%
A
∀
# !
"
!
!&
!&
!
"
!
?
∧
∨
→
↔
,
!&
!
<
.
!
!
,
& $$
&
:/:
.
! ="
.
"
*A
"
%∀
0
!!
#
:
,
!
!
& <,
<
$
,
1
!
!
-A ?
# !
.
$
<
$
!&
!
! "
,
$)
$)
&
!
( , <
!
,
,
,
!&
∃
!→∀
!! <
$
! &
!&
. .
A
∀
0
F
<,
& <,
!
!
.
G
:6:
,
!
∃
<
Otros Ordenes
=
?
.
=.
<@
&
,
(
,
&
#
, ,
&
, ,
<!
!
.
&
<, ( , <
&A
<
< @
!
!
&
!
"#
&
,
%"
&
%$ )
!
$
,
4A
!
!
&
!
,
.
.
#
!
.
<
!
&
!
A '
& %
!
!
&
@
%
∃∀ ∃
% &
!
+%
!
A∃ ∀ ∀
"
!
!
$
( ,
,
$
&
2
.
,
/?
$%
!&
,
(
A
!! → "#
$%
,
!=
&
!
#"
!"
&
$
"
!
!! ∧
,
%$
<
,
!
!
! → "#
<
,
,
$ ?
,
, ,
H ∧ → H
<
!"
.
, ,
"
?
<@
<
!
!&
∀
,
B
" $#
,
$
$
!
,
!→
.
(
!!
,
&< ,
!&
!
,
!
6
&
?,
&
!&
,
"
,
@
,
!
%<
&
%
,
&
)
, ,
"
$
& )
)
:+:
,
) ,
$
/
Interpretación
,
#F %
!
&
!&
$ )
.
,
!&
!(<
.
,
,
$
,
&<
.
,
$
!
!
<
!
!
!&
,
:
$ ?
,
(
&
!&
<
# "
!
→
6
× ×
%
,
&
∈
&
,
→{
&
,
$
&
!
$
:2
×
!
∈
:2
× ×
!
<
<,
:2
×
&
$
1A
# !
!
"
<
,
#V%
B
!
,
*
!
&
}
,
,
& ,
&
,
&$
,
,
;
:-:
$
<
# "
( ( ) ∧ ( ) → ( ( ))) ∧
=∀
6A ?
"
,
!
0;
%
)
=
= '%
!=
!=
!=
%
!=
,
&
H
>'
&
#
!=
(
.
,
%
!=
$
!&
;
!=
$
!=
8(
A
A
.
; ,
7
*
.
H
C
.
(
,
&
A
H
!
!
7A
# !
,
!+
,
:?
!=
'
,
&
K
,&I
(
!&
'
,
.
K
@,
(
'
K
,
$ 0
!
,
"
$
.
#"
#"
!=
¬(
&
K
'
!
!
-A
!
"
!
-"
(
!
!
+
&
!
,
:?
( , <
,
.
H$
!&
<
&
'
(! =
(! =
!&
K
$
& ,
=
$?
(
@,
<,
! &
&
,
$
.
<.
!
:1:
,
B
$
<
:?
!
(∧)
!=
#"
(! =
)! =
:?
!
(∨)
!=
#"
(! =
)! =
:?
!
(→)
!=
#"
(! =
:?
!
(↔)
!=
#"
(! =
:?
!
#"
!=
#"
!=
#
,
,
!&
"
,
*∈
A
!
( * !! =
$ *∈
<( * !
!
,
%
+
,
<,
!&
$ 0&
?
, ,
5<
.
,
∃ (
!
3%
&
!&
!&
,
={
A
A
,
,
=∀ ∃
A
&
!< = = <
( (
}
=
=
! = )−
!=
&
,
,
,
A
=.
,
;
$
)!
!
( * !! =
!
:?
!
∀ (
)! =
+ + ! *+,
+
:7:
! &$?
!
, ,
,
#,
-%$
) ∧ ( ( ))) → ¬ ( (
<
&
,
! &
< @
! )) <
)
! =" ≤ "
A
! =" =
)
@
.
= "
!&
)∧
( (
,
,
,
&
( ( ))) → ¬ ( (
! ))
=.
,
, 045%
?
% ?
<
.
<
<,
.
( (
' '
( , < J'$
FA
,
) ∧ ( ( ))) → ¬ ( (
'
! ))
' 4
4
'
4
*
% )
.
,
J'
, <
( (
' *
$)
) ∧ ( ( ))) → ¬ ( (
'
J*
! ))
' 4
4
*
*
'
V
2
=.
%
#
$
:'5:
=
A
% )
04)%
,45%
( (
) ∧ ( ( ))) → ¬ ( (
* '
*
! ))
' 4
'
*
4
*
#
=
% )
046%
<
=.
;
%
,45%
( (
) ∧ ( ( ))) → ¬ ( (
4 '
4
! ))
' 4
'
'
4
*
=
!&
(
,
,
&
:'':
.
!=V
=
V
!&
<
"
=∀ ∃
!&
7%
={
A
!! ∧
,
!
&
A
}
=
A
A
.
!
/
0
0
1
1
/
)
=
={
A
? ,
!&
V
# !
58%
# !
$
55%
"
,
$)
}
. <
<
! = F$
,
!
# !
,
;
,
,
<
.
! = V$
,
"
&
!&
# !
@
!&
*
@
=
<,
&
!&
.
={
!}<
!
&
,
=.
$
5)%
56%
& .
!&
@
!
!&
!
$
:'*:
,
&
.
@
!
!&
< .
(
" 5A
# "A ?
¬ !=F,
,
.
A
!
!&
!
,
$
!
V
!=V ,
.
&<
@
:'4:
,
,
<
& ¬
&
*
.
,
#
$
%$ )
,
!&
!&
!
,
&
$
& $)
.
! = V$
<
-.
{
%
}
%
#
0
1
!=
!=
=
/.
!
/
+ #,
!=V
2
"/ ,
!=
"
3
+
V
V !/
4
{
,
{
}
}
%
.
/
5
/
&
# "%
∧
5$: ?
→
∧
.
!=
∧
) 1?
2
∧
&
" )A
∧
!=
∧
!=
=
∧
∧
∧
!=
A
∧
∧
!=
.
!=
→
$
,
&
! = F$
! = F$
*
!=
$
:'/:
.
,
.
, .
→
→
=
∧
→
@
∧
∧
,
∧
! = V(
59A ?
.
& ⇔ % ,
# !
≡
,
!&
$
,
& <
6
#
"
!=
, .
!
#
#
/
/
.
2
2
#
→
A
"
≡¬ ∨
∧( ∨
6
1
≡( →
↔
A
"
)≡
)∧ (
)
→
∨( ∧
∧ F≡ F
∨V≡ V
∧V≡
∨ F≡
∧¬ ≡ F
1/
∧
2
7
∨
/
7
/6
7
/,
8
∧( ∧
∨( ∧
∨¬ ≡ V
≡
≡
∨
∨
)≡ (
)≡ (
¬( ∨
, *
∧
∧
2
)∧
∨
)∧ (
)≡ ¬
∧¬
¬¬ ≡
,
)≡
!
:'6:
∨( ∨
∨
)
∧( ∨
¬( ∧
≡
≡
∧
)≡ (
)≡ (
∨
∧
)≡ ¬
)∨
)∨ (
∨¬
∧
,
# :
"
¬∃
( )≡∀
-,
! ∧ ¬ %,&
%
()
¬
!
;%
A ¬∃
!
!
2
&
.
.
AH
!
A
∀ ∀
!≡∀ ∀
!
∃ ∃
∃ ∀
%
,
,
∀ ∃
!
(
!)
-, ! → %,&
!≡∃ ∃
&A3
!
!
!
, ;
! / ∃ ∀
∀ ∃
?
!) ≡ ∀
H$
"
<
%
A
! ) ≡ ∀ (¬ -, ! ∨ %,&
,
( )
¬
!!
2,
∀ ¬( -, ! ∧ ¬ %,&
( )≡ ∃
¬∀
4*
< .
!$
<
"4
A
%
$
$
&
%
=
∃
<
( ( ) ∨ ( )) ≡ (∃ ( ) ∨ ∃ ( ))
%0
∃
∀
( ( ) ∧ ( )) ≡ (∀ ( ) ∧ ∀ ( ))
,
,
( ( ) ∧ ( )) ≡/ (∃ ( ) ∧ ∃ ( )) <,
( , <,
A '
5 0
4
"
A
,
&
5 .
4
'
5
!
3
6
!
A∀
( ( ) ∨ ( )) ≡/ (∀ ( ) ∨ ∀ ( )) < (
4
!
$
$
, A
4
$
:'+:
.
!
=
%
#
∨∃
( )≡ ∃ (
∨
( ))
∨∀
( )≡ ∀ (
∨
( ))
∧∃
( )≡ ∃ (
∧
( ))
∧∀
( )≡ ∀ (
∧
( ))
,
%
:'-:
Formas Normales
53% ?
# !
!
.
!&
" < "
0 & < '
.
#∀ ∃%
!
!&
.
L
"
!&
/
2
&
.
!&
#
,
,
.
.
.
@
!&
)
0
,
!
,
@$ ?
$
,
)
!&
,
!&
0
,
@$
&
# "%
&
&
.
)
.
.
0
%
!&
" 6% )
!&
.
0
<
!
$
$
!
!
>
!
!
!&
!&
<
@$
,
A
:3
!
:
& # ↔ %<
,
:
,
&A
:2,
&
: )
!
$
$)
&
<
2
!
→ (! ∧ ( →
!
→ ( ≡ ¬ ∨(
C
!&
!
↔(≡
$
!
&
,
!
.
$
,
!
!&
0
(
&A
:'1:
,
0
∧ /"
/ ∧ / ∧L ∧ /
!&
"=
# !
!&
57%
%
!&
# !
∨ /"
¬
K
!&
5;%
K
&
&
/ ∨ / ∨L ∨ /
!&
"=
! #
!#
%
" < "
& < '
"
(
& !
# !
∧ ∨
!
"=
<
"'
'=
!&
5>%
$
"'
" < "
# ,
& <#'
"
& !
" +% )
0
.
#
$
# "%
(
"=
.
"'
'=
!&
#
(
!&
<
0
,
.
" 9%
# "% ?
0) <
,
!
,
!&
0)
!
/
@
0
$
.
'
0 (
%
!&
&
!&
2?
" & <2'
?I
,
&
.
$
&
I
!&
!
!&
!
,
#
4
!
.
&
(
" < "
$
!&
0
, ,
0
!&
)5%
.
!&
C
" < "
0
!&
0 )
!
)
!
<
!&
% .
.
# !
0 )
$
"'
%$
)8%
!&
0 ) # 0 )%<
) @$
# !
2
@
∨ ∧
!
$
:'7:
& ,
,
!
@
" & ?
"/
'$: ?
'
,
!
*$: ?
&<!
4$: ?
!
,
!
B
"
,
!
!&
4<
∀ ∀
∃ ∀
!
.
0?
!&
4 /
$
!
@
<
&
!
!
!
$
,
<.
!$
!!
$
∀ ∃
! JH'
∃ ∀
!
H
! J H!
!
.
!&
!
.
!
∀
,
$
.
/<
!
& A H7 " J
∀ ∃
!
,
∃
&
=
@
!! $
?I
!
$)
!
!
.
<
"
,
,
∀
&
!&
.
!
! %<
,
< ,
) @ # 0 )%$ )
@
;
,
(
!
,
<
$ ?
<
!&
$
∃
!
! %$
0
,
$
'$
.
# "% C
0
,
?
, #
!
! &
A∀ ∀
!
3%
&
?
,
#.
!
%$ K
!&
.
'$
∀ ∃
#% ,
B
,
$
@
,
/$: ? @
A ∀ ∀
!
@
#
@
$
&
,
$
!$ ?
A
.
.
!
7 "
$
&
,
7 "
$
:*5:
.
# !
!&
))%
!
(
"
%
)
::
,
>%
$
&
!
!
J@
<
=
!&
)
(()
∀ (¬()
5
8"
!
!
:
J@
:+
J@
,
(
A
!∨
! ) → (∃
!
!&
(
! ) ∧ ∀ (( (
!∧
)→
<
! )))
,
A
A
!∨
! ) → (∃
(
!∧
! ) ∧ ∀ (( ( ) →
! ) ∨ (∃
(
!∧
! ) ∧ ∀ (¬( ( ) ∨
!∨
*$:
! )))
! )))
$
((¬)
∀ ∃ ∀
! ) ∨ (∃
!∧¬
4$: )
!
((¬)
!∧¬
/$: )
(
!∧
! ) ∧ ∀ (¬( ( ) ∨
,
,
!&
! ) ∨ ((
.
$?
! )))
0)$
! ) ∧ (¬( ( ) ∨
!∧
0 <,
∀ ∃ ∀;
1
&
,
→
'$:
∀
A !
J@
'$: 3
∀
!
9 $$
:7 "J@
K
(()
%
,
;$
A
:-
: 2#@<%J @ ,
∀
0?
"
, ,
! )))
$?
0 )$
¬: ∨
∧
¬: ∨
" ∧
¬: ∨¬+ ; ∨ 7 "
; ∧
¬- ∨
∧
¬- ∨
" ∧
¬- ∨¬+ ; ∨ 7 "
;
0?<
,
$
:*':
(
6$: K
!
@
$?
¬: ∨
∧
¬: ∨
"
∧
¬: ∨¬+ ; ∨ 7 "
; ∧
¬- ∨
∧
¬- ∨
"
∧
¬- ∨¬+ ; ∨ 7 "
;
∀ ∀;
+$: ? ,
<
!
(
<
$
¬)
!∨
!! ¬)
!∨
!! ¬)
¬
!∨
!! ¬
!∨
!! ¬
# !
,
0?
L
)6%
<
!
A
! ∨ ¬( ( ) ∨
!
! ∨ ¬( ( ) ∨
!
.
←
=
,
$
? = '<
A
L
H←
H H
B(
,
!
(
H
# !
$)
, ❏
)+% ?
! &<
!
:**:
.
&
Algoritmo de Resolución
Introducción
3
,
,
&
(
%$ ?
'7+6$ ?
#
,
!
(
,
.
& ,
&
,
,
$
,
<
$2$
<
!
,
, ,
8
,
, ,
!
,
,
,
<
,
$
,
,
,
&
<
,
,
!
,
&
&
$
;
,
A
!
5
$)
<
#
5
/
Resolución Proposicional
-
2
"
B
$
$
)5A ?
B (H$ ? ,
AH
< ,
&
6+%
¬& ∈ <
A &
!=(
"
"
%*-
-, $
C-
)
. A H" )
A
∨
∨
&
!
.
{
}
= & ∨& ∨& ∨ ∨&
# "% ?
@
.
&∈
,
− {¬&}) $ ?
$
B (H$
∨
.
" 3&
C-
A ( → ∨ ≡ ¬( ∨ ∨
# !
− {&}) ∪ (
-
, H H?
,
A (∨ ∨
!
!
"
$
*
(
'%
= ¬& ∨ &
)
∨&
∨
∨&
$
,
&
:*4:
! =& ∨& ∨ &
∨& ∨& ∨
∨&
)
∧
(
→
&
∨
*< ,
{
.
)
}
$ ? ,&
(
.
)
@
''
∨M ∨
∧¬ ∨
'
*'
.
<
< !&
∨M ∨
→
*
''
<
∨
'
*'
∨
*
,
,
<
$
# "% ? ;
<,
< !&
,
&
<
∧
A
*
→❒
< ∧
$)
,
(
&
<,
!
❒
.
.
$
& =.
<
(
!
.
$
<,
$?
!
$
<
>
,
(
$
"
(
%
2
7
!
7
%
∈
'$: 8
*$: ?
6$: ?
"
!
&
/$: ?
4$: ?
.
@
.
, .
&∈
¬& ∈
A
4$:
,
∨M ∨
*
!
@
& .
.
E
& < !&
$
*
" 7% ?
<
,
=
A
D
)
.
,
>
!=❒
&
<2>
&
(
.
2@ C
!
7 B
A 2@ C
))% ? 7
. 7
7
!
'
.
!
7
7
!
{
(
,
&$)
:*/:
¬ ∨
A
¬ ¬ ∨¬ ∨
}<
#¬ %
:?
:?
=
:?
=
)
# ¬ ∨ ¬ ∨ %<
#¬ ∨ %
!
,
!
74O$ 2
<@
N?,
<
$
,
,
& , ,
$? ,
&
,
0
!
&
,
N8 :2
;
, !
!
=
)6% ?
"
❏
<7
&
$
A¬
,
.
2
¬ ∨¬
,
&
7'O
(
7
(
! !
= { ¬ ∨ ¬ ¬ ∨ ¬ ∨ } <,
(
.
!&
< ∧(¬ ∨ ) ∧(¬ ) ∧ (¬ ∨ ¬ ∨ ) $
,
A
.
<
! $
¬
F
¬
F ¬ ∨ !
¬
F ¬ ∨¬ ∨ !
F ¬ !
" 5% ?
(
,
!
.
#,
$
,
# "% )
<*
!
$
(
,
.
(
.
$
# "% )
" +%
!
!
!
.
=
<
! !
7
" 6%
,
# !
=(
!
<
! <
" )%
*
!
7 ! !
,
& ,
. 7
69% ?
<
,
&%
$2
<
<
!
! $
! <
.
&
<
@
$
.
!
!
<
;
=( $
:*6:
!
" 9%
,
=( $
<,
&
! !
=
,
<
$
!
# "%
.
<
.
.
A
"
¬ !
=F
!
=V
'
F
:)
.
%<
! !&
'
<
9<
,
= ¬ ∨ ,# 9
∨ ,# 9
0 =
,
,
.
'
.
%$
,
'
0
A
! = ,# 9
'
∨ ,# 9
0
0
<,
'
,# 9
<
'
$
%
'
< ,# 9
'
$)
"
0
<
<
'
0
! = ,# 9
!
,
0
<,
{
#
%#
%$
"
,
,
9
0
0
'
!
.
¬
&
&!
%
)
,# 9
;
'
'
:)
, .
0
F
%!
¬ ∨
¬ ¬ ∨
.
}(
!
! !
<
,
(
A
( , <
<(
¬
¬ !
F
¬
F ¬ ∨ !
¬
F ¬ ∨ !
F ¬ !
! !
<
+
*$
!
-
:*+:
#¬ % .
! !
/,
'
∨ ,# 9
0
" ;&
"
@
"
<,
!
'% ?
&<
C
(
$
# "%
! #
,
!
(
!
'%<
<
@
=( #
(
,
,. > .
(
,
$
#,
<@
!
!
6%
#
/%
>
(
$ ?
<
.
!
% <
<$$$< ,
!
.
,
Resolución General
=
<
&
,
, &
& , ,
&
,
,
< ! .
$
!
&
,
.
$
& ,
!
!
,
,
<,
& .
!
&
,
$
2
&
,
.
<
,
(
!
@,
,
@,
<=
!
!&
$
&<
.
@,
$
# !
{- : - :
63A
σ
}
- :
(
<
-"
- - L -
-"
$
? σ(
σ(
)=
$
<
0
(
&
&
"
)
)+A
!
"
"
6;A ? σ = {- : - :
- :
', σ <
, σ ( )<
, &
-"
# !
"
67A
0
!
$
*
# !
!
}
σ(
?
!! $
=
!!
:*-:
@, & <
@, & .
',
"
)
!
#" = K
'
*
σ ={ :
:
%$
!}
σ ={ :
6>% ?
<
# !
:
"
{ :σ ( ) :σ ( )
}
' ∉{
σ ={ :
!"- .
σ ={ :
σ
!
:
:
}7
, ,
"
& σ$
:<
: #'}
,
&
?
'= K <
( ") .
:σ
:
,
&
?
=
σ
!=
!
"
}/
!! <
σ σ
} σ
:
σ (σ
!!
!
A σ oσ
σ
σ
@,
.
.
)7A
σ oε = ε oσ = σ ,
={ :
:
@,
$
}$
A
!
+5A
.
,
&
$
""
)3A ? σ = { :
σ ={ :
! :
:
( " )$
σ σ σ
,
%
=σ
(
,
<
"
}
( )) = σ σ ( ) ,
-
7"
,
, ε$
,
"
# !
!
:# }
&A
:#
σ oσ
:
&
,
: σ (σ
σ
={ :
σ ={ :#
% σ o σ oσ ! = σ oσ ! oσ ,
:@
1
} σ
&
) ,
'
"
!
+8A
# !
.&
( )} {
:σ
}
:
!) =
!=
=σ
!
!
<
( )
!!
!!
<
=σ
.
( )$
.
@
'
'
!
! !
,
!
: $
:*1:
%! ! $ ?
<
!$
!
# !
{
,
:
+)A ?
:
,
}
"
.
@, &
"
{
(
'
,
,
}⊆
'
:*7:
.
,
&
'
!
.
Unificación
,
3
@,
)
, <
# !
! &
,
< '7+6<.
,
&$
<
.
NP
$?
,
.
< =
(
.
!
@,
!
< A ω(
ω
$
={
< .
);A ?
!
?
<
! !
( ,
!
ω
{% : -}
. A ω =ω
,
(
,
ω(
) = ω(
{
(
<
!
,
) = ω(
}
,
)=
= ω(
@,
>A ? ω
ω
!
:
!
1!!}
}
!
, .
$
(
{- : %}<
,
!
@,
.
!
<
,
:
%:<
<
$
:45:
,
ω′
@
!
,
!
- !!}<
(
!
:
! !
! !
ω
ω
,
)
ω ={ :
A ω ={ :
$?
< ,
;
,
ω =ω
={
$
,
,
.
.
.
: },
, . ω ′ = ω oσ $
! -:% : }
,
{- : %}
.
$
"
'745<
<
,
,
!
$
,
,
( , )>A ?
={
! % !!
ω ={ :
! %:- : }
!
ω′ = { :
!
$) ( ,
!
ω ,
& σ = { : }$
,
!
&
!}<
)=
ω,
++A ?
.
!
!
"*
#
%
,
& σ .
, ω ′ = ω oσ $
!
!
,
!
&<
= 17O$
+6A
& ω$ ?
&<
(
# !
,
!
> ,
3
!
"
.
L
@,
7<
. ω
{% : -}<
,
2
(
&
,
@,
.
!
!
"
@,
@,
@,
!
<
,
$
!
$ ?
(
=
<
! < ,
&<
<
!
,
,
!
$ ? ,&
,
.
= =
!
;
,
$
,
@,
$
!
,
(.
!
.
.
!
.
@,
@,
@,
@,
$
!
,
<
$
&
$
)
,
# !
, &
!
.
(
$
(
+9A
@,
={
,
,
#
(
!
:?
!=∅
A
:?
@,
?
!
'!
={
'
!=
68A ?
={
'
'
}
!
A
!}
!
!=
'!
,
9
.
$
!
! !
<
!
<
≠∅
(
,
!
'
?
'5?
H'5<
H
={
"
@,
!
A
<
:?
}<
( )<
@,
&%
$?
!
,
!
! !} <,
!
(
'
.
,
A
<
.
;
:4':
!
,
#
<
≥'
={
!} <.
={
!
<
}<
@,
!=
<.
9.
@
, .
"
'!
,
,
={
≠∅
!
(
$
<. <
}
* <,
<
! ={
!=
<
!
}
!
& A 0-= ' <σ ' -= ε
'$:
*$: ? σ 0
!&
!
&
4$: ?
A
0
0
-=
!
, σ 0 Q%
σ0 .
A?
A
#QL
(σ 0 ( ))
@
$
{- : }
σ 0+ = σ 0
0 =0+
B
,
A ?
.
!
.
,
!
,
&
;
@
.
!
*$
(
& ,
,
,
!
$
&
$?
=
,
$
,
@,
&
:4*:
.
,
4
,
.
< .
$
4<
<
&
"
65% 2
={
!
!}
!!
5% 0 = ' ( σ ' = ε
)%
'
={
!
}
, =
-=
6% 2
!={
)% σ
!
σ ={ :
!
!!
!}( 0 =
!!}(
!
={
.
6% <
"
={
6)% 2
!!!
!}
!
0"
!
$
!!}
!
5% 0 = ' ( σ ' = ε
)%
'
={
}
6% 2
4/( 4
σ ={ :
!={
)% σ
}( 0 =
!!!
% 40( 4B&,' σ = { :
6% 2
! ={
)% σ
!
6% 2
!!!
4,( 4 & '
! ={
)% σ
:
!
σ ={ :
={
!!} (
!
:
!} ?4)
!}
={
!!
!!!}
!!
!}
!}
:
2
!}
( ?46
σ $
,
*
"
,
4
!
$
2
&
=.
( ,
&<
=.
H =.
$
:44:
.
H#
= I%$
"
={
66% 2
)
'A 0 = ' <σ ' = ε $
)
*A
)
4A ?
)
*A σ
! ={
)
4A )
.
'
={
!
.
<
}
4 "4 σ = { :
3
,
!!}$
!
,
(
6+A ?
={
!!} <
!
,
&
& ,
(
}<0 =
<
={
(
!}
0"
!
.
$
"
(
!
@,
$
! & ,
& ,
!
!
& @,
$
,
$
"
!
.
!
!
'
'
:4/:
!
!
−
−
!}$
Algoritmo de Resolución General
&
! &
!
)
"
,
,
# !
&
$ 2
!
.
&
,
.
.
,
@,
&
.
$
+3A
¬& ∈
,
&
,
!
ω$ ?
,
!
*
<
.
& ∈
.
,
& , &
A
! = {ω
& &
"
! − ω & !} {ω
69A
=
!! ∨
!
!∨¬
& =
ω ={ :
!
:
=¬
!
!
63A ?
"
?
<
!¬
!}
,
!
ω ={ :
!∨¬
A
}
&
!! ∨
=
=¬
A
&
!!
!
. <
(
!
!
!$
.
,
#
$
<
$
∀
!&
!
,
!
{
!! ¬
!∧¬
.
!$
(
, $ /*%<
,
,
(
;
( , <
!
67% ?
!
(
!
,
&
"
!!
! =❏
) .
;$
<
,
.
!!
! !
}
!=
& &
!! ∨
!!
& =
!!
<
{
! − ω ¬& !}
!} $
:46:
<
=
<
<
$?
!
( $
=
=¬
!!
,
!
=.
.
$?
!
<
<
A
-
=
-
!!
=¬
!
ω ={ :
)
!
!}<.
.
<
<
<
∀
. <
A
!! ∧ ∀ ¬
(
4
<
A {
(
(
-
A
!!
-
! =❏
{
(
!}
<
!
< <
<
''$
!
5
#
!}
$
! &
!!
!
%
# ) !
#
;
#
#
3/ 6
-
@
"
(
%
2
7
!
7
%
∈
'$: 8
*$: ?
A
4$:
>
!
!=❒
/$: ?
6$: ?
4$: ?
(
,
$
,
<2>
!
,
!&
.
2@ C
7 B
A 2@ C
''
7
!
'
.
!
∀
7
7
!
<
&
!! ∨ ¬
:4+:
!
=.
A
!! .
$
!! ∨ ¬
!$
6;A 2
"
¬
2
&
!∨
!∨
!! ¬
!¬
!
,
!∨2
!∨
! ¬2
(
!∨
!∨¬
!!
! ¬2
!∨¬
':#
1
#
;
¬
!∨
¬
*
!∨
!∨
2
!!
!
/
!
6
¬
!∨2
+
¬2
!∨¬
!
-
¬2
!∨¬
!
1
¬
7
!∨
!
!
!!
{
:
}
−<
{
:
}
−)
ε
!!
'5
!∨
''
{
!!
'4
2
'/
¬
'6
:
=−(
}
−)
ε
!!
'*
!!
!!
=−
{
:
!}
>−
{
:
!}
?−
ε
❏
'− )
.
(
,
,
!
4
.
!
#
,
'*0
&
!!
!∨
4
,
$2
%(
$
'
)
!
(
'6% ,
A
.
&
.
,
.
,
!
,
$
:4-:
'*$
$
<
,
,
'% ?
" 58&
&
# "% )
.
.
&
& '
@,
, .
& σ
,
&
ω(
ω(
2=
σ(
&
)
,
)$
ω(
.
&
ω
! = ω & !∨ω
ω
! = ¬ω & ! ∨ ω
=
? ,&
& &
.
) ∧ ω( )
= ¬& ∨
.
?ω
,
#3
.
& ∈
ω & !=ω & !
&
!
! J ¬ω & ! ∨ ω
!
<
! = {ω
! − ω & !} {ω
! − ω ¬& !}J ω
&
!∨
<
A
F
/
¬& ∈
.
$
.
=>
&$
.
N'O
,
)
@,
<,
'"
& ω
&
=& ∨
A
! ,
)
,
?
$
∨ > )7/ ?∧ =¬>
0
∨ > )70 ?→ > )7/ ∨ > )70
F
:41:
!
<
%
ω &!
F<
,
V %$
!
= $)
.
@,
&
,
V
< , ,
< !&
=
= !
,
!
#
@,
.
&
F
,
$?
, . A
ω(
)∧ ω( )
<
ND
ω(
ω(
E:
A
)
)
.
&
. <
O
!
,
!
(
,
<
$
,
&
:
L
@
:)
V : F$
(
<
(
!
!
.
? =
, ,
, ,
A
!
<
.
$
,
, ,
,
&
!
(
#
,
%$
" 55 &
σ
.
′=σ
ω′
′ =σ(
ω
σ
'% ?
"
)
ω
′ =σ
!
σ
;
%
!
′
@
#,
.
# ′
%$ B
.
!
A
ω
σ
′=σ
σ
′ =σ
!
σ
σ
!
′=σ
ω′
!
′ =σ
σ
′
′
:47:
!
:
(
(
<,
A ? ,&
. A
= {& ∨ & ∨
= {¬&
}
∨&
∨ ¬&
+
@ ,
&$
,
∨
+
∨ ¬&
.
&"
<,
+
}
!
.
.
<
,
>'
@
> '$
?
,
. A
′ =σ
! = {σ & ! ∨
′ =σ
! = {σ ¬&
∨ σ & !} σ
+
!
∨ σ ¬&
!∨
ω′
{σ
A
+
!} σ
!
σ & !σ &
& !
+
σ &
!
+
!}
A
′ = ω′ σ
)
{σ
{σ
!! U ω ′ σ
. σ
σ
& ω ′ (σ ∪ σ
(σ
∪σ
){&
∪σ
& !
& !
σ
R
& &
(
σ(
σ ω
σ oω
!
&
+
!
+
!
=ω
<@
!
)%
&
@
)=σ
+
σ
{&
;
σ
& & +
!
!
σ ∪σ
&
σ
&
+
}=
& ! σ ∪σ
!
ω ′ (σ ∪ σ
?
)
σ ∪σ
& !σ &
? @
<,
ω ′ (σ ∪ σ
N*O
!!
&
&
+
+
!}
+
}
,
!
. A
!} =
, ω′ $
{&
< ω
, . <,
& σ
.
& &
!
.
&
+
N4O
,
!
ω<
A
)=
!∪ω
∪
+
#
ω
!∪ω
<
!! =
!=
# ,
:/5:
N*O%
}<
ω ′ (σ ∪ σ
)(
∪
ω ′ (σ ∪ σ
)(
) ∪ ω ′ (σ
#)
)J
.
!
σ ∪σ
#
!=σ
J ω ′(σ
# ,
)(
∪σ
!
(
σ ∪σ
ND
;<
<σ
!
!%
!=σ
)) ∪ ω ′(σ (
)=
!
& σ & !
%< ,
A
)) =
E:
O%
!
J ′
)
"
σ(
)=
=
6>A ?
A σ ={ :
′<
< ′
!∨
!
! 3! ∨
:
!}
!
σ ={ ′:
:/':
=¬
′:
}$ ?
′!
′ !! ∨ ¬
′
.
′!
A
=
σ =
l
:
!
:
!∨
!
:
!
′=
! !∨
q
σ =
!! ∨
!
′!
=¬
!
m′ :
!
!! ∨ ¬
′! ∨ ¬
′
ε
′=
?
ω ={ :
!
:
=
′!
:
!∨
&<@
′! ′ :
}.
! !∨
!
!! ∨ ¬
!
.
A
′!
=¬
ω
σ
σ
=
′=σ
′ !! ∨ ¬
σ=
!
′=
′!
m′ : r
!! ∨ ¬
′ =σ
" 5) & "
!
<
$
,
<,
!
!
& .
,
,
&
:/*:
%A ?
&
′
′!
r
′:
′ =¬
!!
′! ∨ ¬
A
(
′!
!
A ? 7
.
(
!
!
7
#,
@
L
(
!
#
,
@
& , ,
&
@
<
?
!¬
!!}
%
$
7
&%
(
;
7
.
!
(
&
@A
%
7
#
{
<
A
,
$
7
& <,
,
,
&<
,
;$
<
!
,
<
<
.
:/4:
!
< <,
!!
( , <
!
(
A
Estrategias de resolución
1
0
$
5
#
3
* ;
;
%
5 #
/
#
3
/
,
- @A 0
B/
#
0
5
8
%
#
5
3!
/
4
%
5
$
#
3/ .
#
$
;
$
/ 6
%
#
$ /
Estrategias de Borrado
4
#
#
$
5
#
1
/.
0
;
#
3
#
;
/
#
# !
!.
+7%
(
.
@
%
;
,
;.
<
,
%
&$)
, $
&
"
={
(
<,
+8%
<
!
.
$
.
,
&
.
,
&
*
# !
!¬
!∨
< ,
!! ¬
!∨
!¬
+;%
.
.
∨¬ ∨ ∨¬
+5%
$
$8$
,
(
!
(
,
.
$
!}
<,
$
!
"
<
!
(
,
>
$
!
!
://:
!
.
<
&
!
(
$
,
<,
,
.
"
,
<
(
;.
!
.
&
,
$ 0
, .
"
!
1
!∨
(
!
& { :
< ,
,
$
(
{
(
!
!}
!¬
!
!
$
!
# !
3
@
.
+6%
!∨¬
,
,
,
$
{¬
(
+)%
,
"
(
@
,
,
$
7
+>%
$?
"
& σ
.
σ
!∨¬
!
! ∨ ¬ -! ∨ 1! ¬
! ∨ ¬ -! ∨ 1! ,
.
: -}
,
<
<
<
!⊆
$
!
!} $
!
$
? ,
<
.
(
(
3
,
( $
3
$
!
&
!
. <
!
<,
<
,
.
=.
,
(
&
&<
,
$8
(
&$
C
# !
,
98%
#
&
%$
,
&
&
$
"
'$:
*$:
4$:
/$:
6$:
+$:
"
={ ∨
<,
$
++% ?
&
¬ ∨
<
∨
¬ ∨
¬ ∨
-$:
1$: %
7$:
'5$:
¬
¬
¬
)!
)!
&
.
<!
?!
< ?!
(
$)
,
, .
∨
,
>!
.
&
=
,
¬ }$ 2
,
¬ ∨
( , <
.
,
' *,
$?
.
:/6:
$
,
&
,
<
<
!
&
.
.
$"
<
!
!
,
;.
$
=
$
!
<
={ ∨
<
,
<
,
∨¬ ¬ ∨¬ }
, .
¬ ∨
)
<
,
!
$
@
%
!
$
&
)
!
( , <
<
<
(
&
$
!
,
L
.
#
(
<
L
,
&
Resolución de Entrada
# !
,
95%
(
={ ∨ ¬ ∨
<,
<
(
+9% ?
&
"
.
$
,
$
¬ ∨ ¬ }$ 2
&
&
&
,
,
A
,
'$: ∨
*$: ¬ ∨
4$: ¬ ∨
/$: ¬
6$: ∨
-$: ¬
1$:
7$:
)!
<!
) =!
!
+$: ∨
? ,
,
<
!
.
&
.
!
&
,
$
.
L
<,
$
,
&
( , < ,
$
Resolución Lineal
8
0
!
5
#
%
/
:/+:
,
,
,
9)% ?
# !
(
(
7
2
!
#'%
=
'
"+
$
*
.
,
4@"
/" "A/A
"
#
"
%<
#*%
,
"
#
%
,
"$
&
,
$
&
,
(
< ,
(
/%
*
!
,
.
.
,
!
#
(
={ ∨
<
,
,
∨
¬ ∨
.
∨¬ ¬ ∨¬
¬ ∨
}$ "
$
∨¬
¬ ∨¬
¬
❒
&
=
;
,
,
(
? ,
.
&
,
$
$2
<
(
∪
!
&
.
lq
!
<
$)
(
!
,
(
<
<
.
,
$
Resolución Ordenada
*,
8
*
#,&, "-
#
%
5
/8
#
/ 8
#
#
3
!
#
3
!/
:/-:
={ ∨
#
+3% ?
&
%A
"
!
¬ ∨
=
¬ }$ 2
¬ ∨
&
,
,
'$: ∨
6$: ∨
!
*$: ¬ ∨
4$: ¬ ∨
+$:
>!
/$: ¬
-$:
) <!
6
;
.
,
&
,
6<
/,
'
,
*
4,
$
,
&
,
?
L
& %$
< =
#
!
.
( , <
<
&
&
'
4
,
$
$)
,
,
$
,
,
;
)
#2
/
,
!
/$
,
4 /$
+<
,
,
,
&<
&
(
&
> .
&
&
#
7
L
&
%.
$
,
<
& ?
!
:/1:
&$
Prueba de Teoremas por Resolución
,
'4
"
!
=.
,
&
!
.
,
@
.
$
,
!
,
(
(
!&
,
,
,
@
<
.
'74'< S
,
&.
<,
&
& ,
<
$
<
!
,
,
,
!&
,
$?
, ,
=
<
,
,
,
;
,
5<
!
*%
+ "
&
#
! ="
! =" + "
⋅ "
,
,
$
A
' !
*$: ¬#%
! ∨ #%
*%
*%
,
&
$
&
&
#
(
# ! # !)
+
+ !=
+ !+
' '!
/$: ¬
-! ∨ ¬#%
- !∨
*%
&
.
( ,
#
&
&
=
<@
&
! ="
$
$
@
(
= ,
'$: #%
!
$
.
,
(
,
+7% 2
&
,
@
&
!
.
'4
@,
;
!&
4$:
$
,
,
"
&.
!&
(!
$
'755<L
< !
. ,
@
)
#%
$ ?
@
(
&
%.
!
&
,
@
#
!
!&
0
&
%
# @
&
?
"
$
,
!&
%
%
:/7:
,
(
#(
,
.
!
) )
∗
+ != ∗ +
<
,
& ,
,
2,
@
;
,
$ )
,
< ,
( , <,
$ ? ,
@
;
&A
T
,
A
∃
<
(
)
,
*%
(
# (')))
,
<
>
&
&
<
:65:
&
.
@
(
;
$
Bibliografía
CD E6
N
( F */ D E6
. ,
" &+
" +
7
G 2 /
+
% , + ", ,
(( !
16O
$
2
CH
#'716%
; =?F
*/ I/ H
" &+ % * " #+ +
*
K
7
N?" 74O
*)
3!
NP
!
= 17OP
2 C
?"
+ * /"+
A ?"E
P
=
6 B
,
N
C*
N0
7*O?
3
2
1-O
'774
%
<B $ *' 0 $ '<C
'717$ ,,$ 7*:'*/
$
&
P
3
:U
= U
?,
B
(=?!
7
3
2
' ? ** U '-$ 0''5$ C
?
NP V I -7O3$ P V I
$ *
0 =L
$
2 ! $ #'7-7%
NP
; /J/
" " " &+ ,&&" , ,
; 2 /
,> A &
$* $
<)
&
$
#'77*%
$* $
$* $ $
==F,
*
,
% " +1" +
M; D %
:
75O !0
< C
$ "* $
$
= U
W?
$
#'71-%
./ L
" ++
7
*
;
2 /
(==!
I
$
#'775%
:6':
C.
;
8
6
N?
( FN/ .
-6
EL
;
H/ 6
.
7
;
(( !
1+O
?
< = ?= ,
!5
* $
= C ) $ * $ $ 7/
#'71+%
:6*:
Índice Alfabético
H =.
H
44
,
*
!
@
&
*1
"
/7
"
4
"
4+
(
@
4'
"
(
*/
"
4'
!
4'
!
2
,
!
&
*
4*
4
/
*"
."
*
*
4
* "
."
*
/
**
*
&
=.
'/
4+
&
'*
'1
0
'/
*
/-
/
4
!
*
**
A
**
*
#
3
4+
*
.
**
&
/7
-
"
46
.
&
'6
*4
*
&
,
46
,
47
"
@
*&
,
&
@,
&
*,
*-
"
C
,
@,
//
,
/*
:64:
@,
4'
0
'7
<
'7
0
'7
<#
'7
0)
'1
//
0?
'7
*
"
*'
*
'7
*
@
'7
+
0
(
0
(
0
)
?I
'7
,
'7
'7
"
+
0
'7
0
)
@
'7
+
2
*
0
)
@
'1
"
! "
'1
/
/
"
'*
6
! "
*6
!
!&
!
'*
**
!&
!
'*
= I
!&
44
'*
'1
!
!&
!
/
,
S
& &
/
A
'
/7
'/
"
**
B
/
L
45
L
/7
&
3
& , ,
*4
*4
**4<46
*
*-
&
-<1<'/
/+
,
&
3
45
2
4
/5
'7
:6/:
&
*-
&
*-
&
*7<
&
*1
4
"
45
!
&
45
45<46
!
45
!
45
/6
!&
1
//
.
!
/
,
, ,
L
"
.
!
47
/
47
/
4/
45
/7
*1
:66:
Información de Contacto
*
! "*
G
#
.
'
&
"
VVV$
= ,
*
!
/
:6+:
$
$
X $
$
X
$
Descargar