21st Alert Workshop Program Aussois, October the 6th 2010 Analysis of ground movements induced by diaphragm wall installation Benoit Garitte, Marcos Arroyo and Antonio Gens Universitat Politècnica de Catalunya, Barcelona asientos (mm) Settlements [mm] 30-10-06 30-9-06 58 12 10 8 6 4 2 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30 -32 -34 -36 -38 -40 -42 -44 -46 -48 -50 -52 -54 -56 -58 20-8-08 21-7-08 21-6-08 22-5-08 22-4-08 23-3-08 22-2-08 23-1-08 24-12-07 24-11-07 25-10-07 25-9-07 26-8-07 27-7-07 27-6-07 28-5-07 fechas Execució bigues c. Xuquer Rebaix de terres Pas de la Tuneladora Execució bigues centrals Estació Jet protecció CC Jet 3 (1 col/2 dies) T1B05286R207HT029Z Pilots protecció T1B05283R207HT066Z Jet rampa (Jet 3) Pantalles front CC (mòdul 76) T1B05282R289HT066Z Pantalles-pila (mòduls 92-95) Pantalles front CC (mòduls 71-75) Pantalles rampa costat edificis 29-3-07 28-4-07 27-2-07 28-1-07 29-12-06 29-11-06 Pantalla rampa costat CC (mòduls R1-R5) Motivation Sant Cosme. Movimientos 1 T1B05294R208HT066Z Jet 2 (<1 col/dia) Outline of the presentation Boundary condition for diaphragm wall: implementation and validation San Cosme station and parameter determination Modelling one panel: sensitivity analysis Modelling an entire diaphragm wall: comparison with in situ measurements Conclusions Implementation of the boundary condition Literature review (Ng y Yan, 1998; Gourvenec & Powrie, 1999; Schaffer y Triantafyllidis, 2006) : Guide wall construction is not taken into account Excavation under bentonite slurry support is reproduced by retiring the elements included in the volume of the panel and applying the hydrostatic pressure (total stresses and null flux) Fresh concrete is reproduced by a “bilinear hydrostatic” boundary condition Hardening of concrete is reproduced by replacement of the panel volume by new elements with hard concrete parameters. The “bilinear hydrostatic” boundary condition is desactivated Installation Function: protection of existing structures Impermeabilization Stiffening Implementation of the boundary condition Excavation under bentonite slurry Installation of fresh concrete Critical depth Gourvenec & Powrie, 1999 Implementation of the boundary condition Validation (2D): comparison between CB and G&P simulation results CB (bentonita) G&P (bentonita) CB (24h después bentonita) CB (hormigón) G&P (hormigón) CB (24h después hormigón) 0 Profundidad Depth [mm] [m] -2 -4 -6 -8 -10 -12 -14 -16 -30 -25 -20 -15 -10 Desplazamientos [mm] Displacement [mm] -5 0 Implementation of the boundary condition Gourvenec & Powrie, 1999 Displacement [mm] Depth [mm] Installation of a panel is a 3D event Effects due to the installation of various panels are not additive Correct representation of the earth pressure coefficient is a key issue Outline of the presentation Implementation of the boundary condition in CB and validation San Cosme station and parameter determination Modelling one panel: sensitivity analysis Modelling an entire diaphragm wall and comparison with in situ measurements Conclusions San Cosme station San Cosme station and parameter determination Quaternary alluvial Silty clay Sand Clay Gravels Parameter determination DMT (Marchetti Dilatometer) Parameter determination 2.00 4.00 Id 6.00 8.00 Quaternary alluvial Silty clay Sand DMT01 DMT02 DMT03 DMT04 Clay a Aren Sand Gravels Limo Silt 0.00 0.00 -5.00 -10.00 -15.00 -20.00 -25.00 -30.00 -35.00 -40.00 -45.00 -50.00 Arcill Clay Depth [m] DMT (Marchetti Dilatometer) Parameter determination Profundidad [m] Depth [mm] DMT (Marchetti Dilatometer) Quaternary alluvial Silty clay 0.00 -5.00 -10.00 -15.00 -20.00 -25.00 -30.00 -35.00 -40.00 -45.00 -50.00 Sand DMT01 -1 DMT02 -1 Clay DMT03 -1 DMT04 -1 Ajuste del coefficiente de empuje Gravels 0.0 0.5 1.0 Horizontal stress index 1.5 K0 2.0 2.5 Earth pressure coefficient 3.0 K0 = σ 'h σ 'v Parameter determination Depth [m] DMT (Marchetti Dilatometer) Quaternary alluvial DMT01 DMT02 DMT03 DMT04 0.00 -5.00 -10.00 -15.00 -20.00 -25.00 -30.00 -35.00 -40.00 -45.00 -50.00 Silty clay Sand Clay 0 DMT modulus 200 400 600 E [bar] Oedometer modulus 800 Gravels 1000 λ (CC): 0.06 Parameter determination Depth [m] DMT (Marchetti Dilatometer) 0.00 -5.00 -10.00 -15.00 -20.00 -25.00 -30.00 -35.00 -40.00 -45.00 -50.00 0.00 Preconsolidation pressure Swelling coefficient and friction angle: Mayne (2008): fitting of DMT and CPTu tests Permeability values were determined o the basis of in situ pump tests (AMPHOS) 1.00 2.00 3.00 OCR Outline of the presentation Implementation of the boundary condition in CB and validation San Cosme station and parameter determination Modelling one panel: sensitivity analysis Modelling an entire diaphragm wall and comparison with in situ measurements Conclusions Modelling one panel 25m 50m Modelling domain for one panel Modelling one panel Perfil hidrostático en la bentonita [mm][m] cotaDepth topográfica 0 Perfil hidrostático en el hormigón -5 Perfil en el hormigón (empírico) -10 Tensión horizontal (total) -15 -20 -25 0 100 200 300 tensión [kPa] Stresses [kPa] 400 Modelling one panel Settlement evolution 1 Settlement @ Settlement @ Settlement @ Settlement @ Settlement @ Settlement @ Settlement [mm] 0 -1 2m 3m 4m 5m 10 m 16 m -2 -3 Hardening of the concrete -4 Injection of fresh concrete -5 Excavation under bentonite support 0 10 20 30 40 Di Biagio and Myrvoll, 1973 Time [hrs] Modelling one panel Convergence of the panel wall t [horas] = 0.13 , profundidad panel [m] = 1 t [horas] = 0.26 , profundidad panel [m] = 2 t [horas] = 0.39 , profundidad panel [m] = 3 t [horas] = 0.52 , profundidad panel [m] = 4 t [horas] = 0.65 , profundidad panel [m] = 5 t [horas] = 0.90 , profundidad panel [m] = 7 t [horas] = 1.16 , profundidad panel [m] = 9 t [horas] = 1.42 , profundidad panel [m] = 11 t [horas] = 1.55 , profundidad panel [m] = 12 t [horas] = 1.81 , profundidad panel [m] = 14 t [horas] = 2.06 , profundidad panel [m] = 16 t [horas] = 2.32 , profundidad panel [m] = 18 t [horas] = 2.58 , profundidad panel [m] = 20 t [horas] = 2.84 , profundidad panel [m] = 22 t [horas] = 3.10 , profundidad panel [m] = 24 t [horas] = 3.23 , profundidad panel [m] = 25 t [horas] = 8.23 , antes hormigonado Justo despues hormigonado t [horas] = 20.23 , antes fraguado Justo despues fraguado t [horas] = 24 t [horas] = 2400 Profundidad [m] Depth Depth [mm] [mm] 0 -5 -10 -15 -20 -25 -40 -20 0 20 desplazamientos [mm] Displacement [mm] 40 Modelling one panel Settlements asientos [mm] [mm] Settlement profile 2 t [horas] = 0.13 , profundidad panel [m] = 1 0 t [horas] = 0.39 , profundidad panel [m] = 3 -2 t [horas] = 0.65 , profundidad panel [m] = 5 t [horas] = 0.26 , profundidad panel [m] = 2 t [horas] = 0.52 , profundidad panel [m] = 4 t [horas] = 0.90 , profundidad panel [m] = 7 -4 t [horas] = 1.16 , profundidad panel [m] = 9 t [horas] = 1.42 , profundidad panel [m] = 11 -6 t [horas] = 1.55 , profundidad panel [m] = 12 t [horas] = 1.81 , profundidad panel [m] = 14 -8 t [horas] = 2.06 , profundidad panel [m] = 16 t [horas] = 2.32 , profundidad panel [m] = 18 -10 t [horas] = 2.58 , profundidad panel [m] = 20 t [horas] = 2.84 , profundidad panel [m] = 22 -12 t [horas] = 3.10 , profundidad panel [m] = 24 t [horas] = 3.23 , profundidad panel [m] = 25 -14 t [horas] = 8.23 , antes hormigonado 0 10 20 30 40 Distancia hasta la pared Distance to wall [m] [m] 50 Modelling one panel: sensitivity analysis Case 1: base case Case 2: bentonite slurry level is 2m below the surface Case 3: length of the panel is 6m (instead of 3.6m) Case 4: depth of the panel is 35m (instead of 25m) Case 5: Critical depth is set to H/5 (instead of H/3) Case 6: width of the panel is 1m (instead of 1.2m) Asientos @ 3 m (caso 1) Asientos @ 3 m (caso 2) Asientos @ 3 m (caso 3) Asientos @ 3 m (caso 4) Asientos @ 3 m (caso 5) Asientos @ 3.1 m (caso 6) 1 Settlements [mm] asientos [mm] Settlement evolution 0 -1 -2 -3 -4 -5 -6 0 10 20 30 Tiempo [hrs] Time [hrs] 40 Outline of the presentation Implementation of the boundary condition in CB and validation San Cosme station and parameter determination Modelling one panel: sensitivity analysis Modelling an entire diaphragm wall and comparison with in situ measurements Conclusions asientos (mm) Settlements [mm] Execució bigues c. Xuquer Jet 3 (1 col/2 dies) Rebaix de terres Pas de la Tuneladora Execució bigues centrals Estació Jet rampa (Jet 3) Jet protecció CC Pilots protecció Pantalles-pila (mòduls 92-95) Pantalles front CC (mòdul 76) Pantalles rampa costat edificis Pantalles front CC (mòduls 71-75) 20-8-08 21-7-08 21-6-08 22-5-08 22-4-08 23-3-08 22-2-08 23-1-08 24-12-07 24-11-07 25-10-07 25-9-07 26-8-07 27-7-07 p6 27-6-07 p7 28-5-07 p5 28-4-07 p1 29-3-07 R3 p4 27-2-07 p3 28-1-07 R5 p2 29-12-06 R1 29-11-06 R4 30-10-06 30-9-06 R2 12 10 8 6 4 2 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30 -32 -34 -36 -38 -40 -42 -44 -46 -48 -50 -52 -54 -56 -58 Pantalla rampa costat CC (mòduls R1-R5) Modelling an entire diaphragm wall Jet 2 (<1 col/dia) Settlements [mm] asientos [mm] Modelling an entire diaphragm wall 1 Prisma 1 :3m desde panel (medidas) 0 Prisma 2 :5.5m desde panel (medidas) Prisma 3 :13.5m desde panel (medidas) -1 Prisma 4 :23.5m desde panel (medidas) -2 Prisma 5 :31m desde panel (medidas) -3 Prisma 6 :42.5m desde panel (medidas) -4 Prisma 7 :49.5m desde panel (medidas) -5 -6 R1 R2 R3 R4 R5 p5 p3 p2 p1 p4 p7 p6 20 23 /0 2/ 2/ 03 /0 1/ /0 14 07 07 20 07 20 06 20 2/ /1 25 05 15 /1 /1 2/ 1/ 20 20 06 06 -7 Modelling an entire diaphragm wall Modelling an entire diaphragm wall Settlements [mm] asientos [mm] Settlement evolution 1 Asientos @ 3 m debidos a la ejecución de dos panel de 3.6m 0 Asientos @ 3 m debidos a la ejecución de un panel de 6m -1 -2 -3 -4 -5 -6 0 50 100 Tiempo Time [horas] [hrs] Modelling an entire diaphragm wall Settlement evolution 1 0 Prisma 1 :3m desde panel (simulación) Prisma 1 :3m desde panel (medidas) Settlements asientos[mm] [mm] -1 -2 -3 -4 -5 -6 15 / 11 / 17 200 6 /1 1/ 19 200 6 /1 1/ 21 200 6 /1 1/ 23 200 6 /1 1/ 25 200 6 /1 1/ 27 200 6 /1 1/ 29 200 6 /1 1/ 01 200 6 /1 2/ 03 200 6 /1 2/ 05 200 6 /1 2/ 20 06 -7 Di Biagio and Myrvoll, 1973 Modelling an entire diaphragm wall Settlement evolution 1 Prisma 1 :3m desde panel (simulación) Settlements [mm] asientos [mm] 0 Prisma 1 :3m desde panel (medidas) -1 -2 -3 -4 -5 -6 20 0 23 / 02 / 20 0 02 / 03 / 01 / 14 / 7 7 7 20 0 6 20 0 25 / 12 / 20 0 12 / 05 / 15 / 11 / 20 0 6 6 -7 Modelling an entire diaphragm wall Settlement evolution 1 Prisma 2 :5.5m desde panel (simulación) Prisma 2 :5.5m desde panel (medidas) 0 -0.5 -1 -1.5 -2 -2.5 6 20 0 6 05 / 12 / 20 0 6 03 / 12 / 20 0 6 01 / 12 / 20 0 6 11 / 20 0 29 / 27 / 11 / 20 0 6 6 25 / 11 / 20 0 6 11 / 20 0 23 / 21 / 11 / 20 0 6 11 / 20 0 19 / 11 / 20 0 17 / 11 / 15 / 6 -3 6 Settlements asientos[mm] [mm] 0.5 Modelling an entire diaphragm wall Settlement evolution asientos [mm] Settlements [mm] 1 Prisma 2 :5.5m desde panel (simulación) 0 Prisma 2 :5.5m desde panel (medidas) -1 -2 -3 -4 7 20 0 7 02 / 23 / 02 / 03 / 01 / 14 / 20 0 7 20 0 6 20 0 12 / 25 / 12 / 05 / 15 / 11 / 20 0 20 0 6 6 -5 Modelling an entire diaphragm wall Settlement profile 1 Settlements [mm] asientos [mm] 0 -1 -2 Simulación (R1-R2) @ 27/11/2006 -3 Simulación (R4) @ 27/11/2006 -4 Medida @ 12/02/2007 (p1) -5 Medidas @ 12/02/2007 (otros prismas) -6 -7 0 20 40 60 Distancia ato la wall pared[m] [m] Distance 80 Concluding remarks Diaphragm wall installation in soft soils may produce settlement in its neighbourhood. Numerical models may help to quantify and understand the problem. Three settlement phases were distinguished during the installation of a panel: Settlement during excavation under bentonite support Heave during injection of concrete Settlement during hardening of concrete Design parameters were classified by order of importance: The length of the panel The bentonite level during excavation The width of the panel The depth of the panel 3D effects were shown to be very important A good agreement between measured and simulated settlements was achieved Model limitations: soil-wall interface & concrete hardening Implementation of the boundary condition Fresh concrete: Critical depth Schad et al., 2007 Lion Yard, Cambridge (Lings et al., 2004) Hcrit = H/3 Hcrit = H/5 Modelling one panel Case 1: base case Case 2: bentonite slurry level is 2m below the surface Case 3: length of the panel is 6m (instead of 3.6m) Case 4: depth of the panel is 35m (instead of 25m) Case 5: Critical depth is set to H/5 (instead of H/3) Case 6: width of the panel is 1m (instead of 1.2m) Convergence of the panel wall 0 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 t [horas] = 3.23 (caso 1) t [horas] = 3.23 (caso 2) t [horas] = 3.23 (caso 3) t [horas] = 4.35 (caso 4) t [horas] = 3.23 (caso 5) t [horas] = 3.23 (caso 6) Profundidad Depth [m][m] Settlements asientos [mm][mm] Settlement profile -5 t [horas] = 3.23 , profundidad panel [m] = 25 (caso 1) t [horas] = 3.23 , profundidad panel [m] = 25 (caso 2) -10 t [horas] = 3.23 , profundidad panel [m] = 25 (caso 3) t [horas] = 4.35 , profundidad panel [m] = 35 (caso 4) -15 t [horas] = 3.23 , profundidad panel [m] = 25 (caso 5) t [horas] = 3.23 , profundidad panel [m] = 25 (caso 6) -20 -25 0 10 20 30 40 Distancia hasta la pared [m] Distance to wall [m] 50 -40 -30 -20 -10 Desplazamiento [mm] Displacement [mm] 0