ámbito científico tecnolóxico ccnn unidade 2

Anuncio
Educación secundaria
para persoas adultas
Ámbito científico tecnolóxico
Educación a distancia semipresencial
Módulo 1
Unidade didáctica 5
A materia
Páxina 1 de 46
Índice
1.
Introdución.................................................................................................................3
1.1
1.2
1.3
2.
Descrición da unidade didáctica ................................................................................... 3
Coñecementos previos ................................................................................................. 3
Suxestións para a motivación e o estudo...................................................................... 3
Secuencia de contidos e actividades ......................................................................4
2.1
A materia e as súas propiedades. Magnitudes e unidades ........................................... 4
2.1.1
2.1.2
2.1.3
2.1.4
2.1.5
2.1.6
2.1.7
2.2
Estados da materia..................................................................................................... 14
2.2.1
2.3
2.4
Lonxitude............................................................................................................................................................6
Superficie ...........................................................................................................................................................8
Masa...................................................................................................................................................................9
Temperatura.....................................................................................................................................................10
Tempo ..............................................................................................................................................................10
Volume .............................................................................................................................................................10
Densidade ........................................................................................................................................................12
Efectos da calor sobre as substancias.............................................................................................................16
Clasificación da materia. Substancias puras e mesturas ............................................ 19
A atmosfera terrestre .................................................................................................. 20
2.4.1
2.4.2
2.4.3
2.4.4
Estrutura da atmosfera.....................................................................................................................................20
Fenómenos atmosféricos .................................................................................................................................21
Clima e tempo atmosférico...............................................................................................................................23
A importancia da atmosfera. O impacto da contaminación..............................................................................24
3.
Resumo de contidos ...............................................................................................28
4.
Actividades complementarias................................................................................29
5.
Exercicios de autoavaliación .................................................................................31
6.
Solucionarios...........................................................................................................33
6.1
6.2
6.3
Solucións das actividades propostas .......................................................................... 33
Solucións das actividades complementarias............................................................... 39
Solucións dos exercicios de autoavaliación ................................................................ 42
7.
Glosario....................................................................................................................44
8.
Bibliografía e recursos............................................................................................46
Páxina 2 de 46
1.
Introdución
1.1
Descrición da unidade didáctica
A palabra materia é un termo moi xeral; calquera cousa en calquera parte do universo,
desde a estrela máis afastada ata o máis pequeno lixo de po, está composta por materia.
Todo o que nos arrodea e podemos percibir cos nosos sentidos está formado por materia.
A mesa que temos diante, o bolígrafo con que escribimos, a auga que bebemos e o aire
que respiramos son materia.
Nesta unidade trátase a materia, e nela analízanse as súas propiedades e a súa diversidade, canto aos seus estados e a diferenza entre mestura e substancia pura. Ligando co anterior, explícase a atmosfera terrestre resaltando que a súa estrutura e a súa composición a
fan idónea para a vida; séguese cos compoñentes básicos do tempo atmosférico e, para finalizar, analízase o impacto que as actividades humanas están a provocar nela, e as súas
consecuencias.
1.2
Coñecementos previos
A materia posúe masa e volume.
A materia pode atoparse en tres estados: sólido, líquido e gasoso.
A atmosfera terrestre é a capa de gases ca envolven.
Na atmosfera teñen lugar os fenómenos meteorolóxicos.
O tempo atmosférico está determinado pola temperatura, a precipitación e o vento.
A contaminación atmosférica está a provocar cambios imprevisibles no clima.
1.3
Suxestións para a motivación e o estudo
Coñecer o que é a materia.
Recoñecer as propiedades xerais da materia: lonxitude, masa, volume, temperatura...
Coñecer as unidades en que se miden as propiedades xerais e as súas relacións.
Indicar as características dos estados da materia: sólido, líquido e gasoso.
Recoñecer os cambios de estado da materia.
Identificar as diferenzas entre substancias puras e mesturadas.
Coñecer a composición e capas da atmosfera terrestre que a fan idónea para a vida.
Coñecer os factores que condicionan o tempo atmosférico os instrumentos adecuados
para a súa medida.
Interpretar un mapa meteorolóxico.
Establecer a diferenza entre tempo e clima.
Coñecer a incidencia da contaminación atmosférica no cambio climático, no medio e na
saúde das persoas.
Páxina 3 de 46
2.
Secuencia de contidos e actividades
2.1
A materia e as súas propiedades. Magnitudes e
unidades
Podemos definir a materia como todo o que ten masa e que ocupa un espazo, é dicir, que
ten volume. A materia pódese atopar en tres estados: sólido, líquido e gasoso.
É doado comprobarmos que os sólidos e os líquidos teñen masa e volume,
pero, e os gases? Os gases, aínda que son lixeiros, tamén posúen masa e
volume. Se pesamos nunha balanza precisa un globo inflado, observaremos
que ocupa un maior volume e pesa máis que un globo baleiro. Outro exemplo: a bombona de butano pesa máis chea que baleira.
Todos os corpos, por estaren feitos de materia, teñen características comúns. Chamarémolas propiedades xerais, como a lonxitude, a superficie, o volume, a masa, a densidade ou a
temperatura. Estas propiedades pódense medir, e exprésanse mediante unha cantidade.
Neste caso estamos utilizando magnitudes físicas. As magnitudes físicas son propiedades
da materia que se poden medir.
Sistema Internacional de Unidades (SI)
O número que expresa a medida pode ser diferente se cambia a unidade de medida. Cada
un pode elixir o seu patrón de medida (unidade). Para unificar criterios, en ciencia utilízase o Sistema Internacional de Unidades (SI).
Magnitudes fundamentais e derivadas
A lonxitude, a masa, o tempo e a temperatura considéranse magnitudes fundamentais, ao
non depender de outras. Pero a maioría son magnitudes derivadas: obtéñense a partir das
fundamentais, aplicando relacións matemáticas. Por exemplo, a superficie é unha magnitude derivada obtida de multiplicar dúas lonxitudes (largura por altura), e a velocidade é
derivada, ao obterse de dividir unha lonxitude entre o tempo empregado en percorrela.
Magnitudes fundamentais
Lonxitude
Masa
Tempo
Temperatura
Unidades (SI)
Metro
Quilogramo
Segundo
Kelvin
Símbolo (SI)
m
kg
s
K
Actividade resolta
Ao mergullarmos un tubo “baleiro” ou un vaso cara a abaixo nun
recipiente con auga, a auga non pode entrar porque o tubo está
cheo de aire, e o aire ocupa o seu propio volume (para que a auga
poida entrar no tubo teríamos que abrirlle unha saída ao aire na
parte superior).
Páxina 4 de 46
Actividades propostas
S1.
S2.
Dos seguintes termos, cales se refiren a algo material e cales a algo inmaterial?
Dor de cabeza
Aire
Roupa
Sede
Auga
Area
Envexa
Alegría
Libro
Sur
Beleza
Osíxeno
Se estivese a medir a largura da súa mesa.
Que instrumento utilizaría ?
Que propiedade xeral está a medir?
Que unidades outras unidades de medida pode-
ría utilizar para facer a actividade?
En que unidades tería que expresar a medida se
utilizase o SI?
S3.
Procure no texto o significado de magnitude e unidade.
Magnitude
Unidade
Páxina 5 de 46
S4.
Indique en cada caso se trata dunha unidade ou dunha magnitude:
Metros
Quilogramo
Temperatura
Volume
Hora
Densidade
2.1.1 Lonxitude
A lonxitude é a distancia entre dous puntos.
O instrumento de medida é unha cinta métrica
graduada.
A unidade do sistema internacional é o metro (m). Para facilitar a expresión de lonxitudes
grandes ou pequenas utilízanse os múltiplos e os submúltiplos do metro, engadindo uns
prefixos tomados do grego e do latín. O valor das unidades vai de dez en dez, o mesmo
que o noso sistema de numeración, o que facilita o cambio de unidades.
Os símbolos non son abreviaturas, débeos pór tal e como están aquí (en singular, sen
puntos, etc.). Para expresar unha medida debe empregar unha soa unidade: podemos dicir
mido 1,70 m, ou tamén mido 170 cm, pero se aconsella non dicir mido 1 m e 70 cm.
Unidades e símbolos
Equivalencia en metros
Unidades e símbolos
Equivalencia en metros
Quilómetro (km)
1000 m
Decímetro (dm)
0,1 m
Hectómetro (hm)
100 m
Centímetro (cm)
0,01 m
Decámetro (dam)
10 m
Milímetro (mm)
0,001 m
Metro
1m
Se queremos pasar dunha unidade maior a outra menor teremos que multiplicar por un 1
seguido de tantos ceros como lugares nos despracemos cara a abaixo na escala lineal.
Deca
significa multiplicar a unidade por dez
1 x 10 = 10
Hecto
significa multiplicar a unidade por cen
1 x 100 = 102
Quilo
significa multiplicar a unidade por mil
1 x 1000 = 103
Se queremos pasar dunha unidade menor a outra maior teremos que dividir por un 1 seguido de tantos ceros como lugares nos despracemos cara a arriba na escala lineal.
Deci
significa dividir a unidade en dez partes
1/10 = 0,1
Centi
significa dividir a unidade en cen partes
1/100 = 0,01
Mili
significa dividir a unidade en mil partes
1/1000 = 0,001
Páxina 6 de 46
Actividades resoltas
Exprese 2 km en metros.
De km a m desprazamos tres lugares cara a abaixo; é dicir, multiplicamos por 1000.
Solución
– 2 km = 2 — 1000 = 2000 m
Exprese en metros 40 cm.
De cm a m desprazamos dous lugares cara a arriba, e daquela dividimos entre 100.
– 40 cm = 40 / 100 = 0,40 m
Solución
Actividades propostas
S5.
Exprese a mesma medida en distintas unidades:
km
m
dm
cm
mm
325
127
13
9
5000
S6.
Que múltiplo e submúltiplo do metro usa para expresar o tamaño destes corpos:
Corpos
Múltiplo e submúltiplo
Balea
Corpos
Bacteria
(30 m)
(0,00005 m)
Mesa
Lapis
(0,75 m)
(0,15 m)
Montaña
Home
(3500 m)
(1,80 m)
Páxina 7 de 46
Múltiplo e submúltiplo
2.1.2 Superficie
É unha magnitude que expresa a extensión dun corpo en
dúas dimensións, o longo e o largo.
O instrumento de medida é a cinta métrica.
A unidade de superficie no sistema internacional é o metro cadrado (m2). O valor dos múltiplos e dos submúltiplos da superficie vai de cen en cen.
Múltiplos e submúltiplos do metro cadrado
Quilómetro cadrado km2
km2 = 1 000 000 m2
Hectómetro cadrado hm2
1 hm2 = 10 000 m2
Decámetro cadrado dam2
1 dam2 = 100 m2
1m2 = 0,01 dam2= 0,0001 hm2 = 0,000001 km2
Decímetro cadrado dm2
1 dm2=0,01 m2
Centímetro cadrado cm2
1 cm2 = 0,0001 m2
Milímetro cadrado mm2
1mm2 = 0,00001 m2
1 m2 = 100 dm2 = 10 000 cm2 = 1 000 000 mm2
Actividades propostas
S7.
A superficie é unha magnitude fundamental ou derivada?
S8.
Calcule a superficie dun campo de deportes de 20 m de largo e 65 de longo.
S9.
Calcule a superficie en m2 e en hectáreas dun terreo cadrado de 500 m de lado.
Páxina 8 de 46
2.1.3 Masa
A masa é a magnitude que expresa a cantidade de
materia que ten un corpo.
Mídese empregando balanzas.
A unidade do sistema internacional é o quilogramo (kg).
Unidades e símbolos
Equivalencia en quilogramos
Unidades e símbolos
Equivalencia en quilogramos
Quilogramo (kg)
1000g
Decigramos (dg)
0, 1g
Hectogramos (hg)
100g
Centígramos (cg)
0,01g
Decagramos (dag)
10g
Miligramos (mg)
0,001g
Gramos
1g
Non se debe confundir masa e peso, xa que o peso é a forza con que a Terra atrae os corpos. Así, por exemplo, unha maleta que na Terra ten unha masa de 30 kg tamén ten na Lúa
a mesma masa (pense que a maleta é a mesma). Porén, na Lúa o seu peso ha ser menor, xa
que a Lúa é máis pequena que a Terra e, xa que logo, a súa gravidade tamén é menor. Como resultado ... sería ben doado levarmos a maleta na Lúa!
Actividade resolta
A cantos gramos equivalen cinco quilogramos?
Solución
Un quilogramo equivale a 1000 gramos; daquela, 5 kg equivalen a 5000 g.
Actividades propostas
S10.
Converta 2,5 gramos en:
mg
S11.
dag
kg
Para expresar a masa de grandes obxectos utilizamos a unidade chamada tonelada, que equivale a 1000 kg. Cantos quilogramos terá un camión cuxa masa é
de 2,5 toneladas?
Páxina 9 de 46
2.1.4 Temperatura
A temperatura é a magnitude que indica o estado térmico dun corpo.
O seu instrumento de medida é o termómetro.
A unidade de medida que utilizamos habitualmente é a escala de graos celsius ou centígrados (ºC), que lle asigna o valor cero (0º C) ao xeo fundíndose, e o valor cen (100º C), á
auga fervendo.
O sistema internacional, utiliza a escala Kelvin. O cambio de graos celsius a kelvins (e
viceversa) facémolo coa relación:
TK = TC + 273
Actividade proposta
S12.
Converta as seguintes temperaturas a escala celsius:
285 K
254 K
2.1.5 Tempo
Aínda que non é doado definilo, podemos dicir que o tempo é unha magnitude que mide o
transcorrer dos acontecementos. A unidade de medida no sistema internacional é o segundo (s). Tamén utilizamos outras unidades para medir o tempo; entre elas, as máis comúns
son os minutos, as horas, os días e os anos.
1 min = 60 s
1 h = 60 min
Actividade proposta
S13.
Indique os segundos que ten unha hora, e un día?
2.1.6 Volume
É a cantidade de espazo que ocupa un corpo. En sólidos regulares, como un prisma, calcúlase o volume multiplicando a lonxitude das súas tres dimensións (longo, largo e alto). A
unidade é o resultado de multiplicar as tres lonxitudes. Como cada unha delas se expresa
en metros (m), no sistema internacional o volume medirase en metros cúbicos (m3). O valor dos múltiplos e submúltiplos do volume vai de mil en mil.
Páxina 10 de 46
Múltiplos e submúltiplos do metro cúbico
Quilómetro cúbico (km3)
km3 = 1 000 000 000 m3
Hectómetro cúbico (hm3)
1 hm3 = 1 000 000 m3
Decámetro cúbico (dam3)
1 dam3 = 1000 m3
1m3 = 0,001 dam3= 0,000001 hm3 = 0,000000001 km3
Decímetro cúbico (dm3)
1 dm3=0,001 m3
Centímetro cúbico (cm3)
1 cm3 = 0,000 001 m3
Milímetro cúbico (mm3)
1 mm3 = 0,000 000 001 m3
1m3 = 1000 dm3 = 1 000 000 cm3 = 1000 000 000 mm3
Malia ser o metro cúbico a unidade de volume, é probable que estea máis familiarizado co
litro (l ou L), unha unidade relacionada coa capacidade, que indica o volume de líquido
nun recipiente.
Unidades e símbolos
Equivalencia en litros
Unidades e símbolos
Equivalencia en litros
Quilolitro kL
1000L
Decilitro dL
0, 1L
Hectolitro hL
100L
Centílitro cL
0,01L
Decalitro daL
10L
Mililitro mL
0,001L
Litro L
1L
Relación entre medidas de volume e de capacidade
1 m3 = 1 kL= 1 000 L
1 dm3 = 1 L
1 cm3 = 1 m L = 0,001 L
Se os sólidos son de formas irregular, calcúlase o volume mergullándoos nun líquido e mídese o volume do líquido que desprazan. O volume dos líquidos mídese
empregando recipientes graduados, como a probeta.
Actividade resolta
Calcule o volume dun depósito de auga de medidas 10 m x 15 m x 5 m. Transforme o
volume obtido en dm3 e cm3?
Páxina 11 de 46
O volume calcúlase multiplicando as tres lonxitudes do depósito.
Solución
V = 10 m . 15 m . 5 m = 750 m3
Para pasarmos a dm3 e a cm3 cómpre multiplicarmos por 1 000 e 1 000 000 respectivamente.
Así 750 m3 equivalen a 750 000 dm3 e a 750 000 000 cm3
Actividades propostas
S14.
Cal será o volume dunha rocha, se temos un volume inicial nunha probeta de 5
mL e ao mergullarmos a rocha o volume na probeta pasa a 7 mL?
S15.
Un cuarto mide 4 m de longo, 3 m de largo e 2,5 m de alto. Calcule o volume de
aire que hai dentro do cuarto.
2.1.7 Densidade
É a magnitude que mide, en certo modo, o “concentrada” que está a masa nun corpo. Por
exemplo, o chumbo ten densidade maior que a da madeira. Isto quere dicir que, se collemos dúas bólas de igual volume de chumbo e de madeira, a de chumbo ha ter unha masa
maior. A densidade dunha substancia é unha magnitude derivada e expresa a relación entre
a masa e o volume dun corpo. Exprésase matematicamente mediante esta fórmula:
densidade =
masa
volume
Ou utilizando
estes símbolos:
d=
m
V
O valor da densidade dunha substancia non depende do tamaño da mostra que se utiliza; a
densidade dunha pebida de ouro é a mesma que a densidade dun lingote de ouro.
Para cada substancia, a cantidade de masa que cabe nun volume concreto é única, e por
iso a densidade é unha propiedade específica da materia
Xa que no SI a masa se expresa en kg e o volume en m3, a unidade da densidade nese
sistema é kg/m3. Outras unidades moi usadas son os g/cm3 (1 g/cm3 = 1000 kg/ m3).
A densidade dos sólidos é, en xeral, maior que a dos líquidos, e a dos líquidos é maior
que a dos gases. Velaquí algúns exemplos de densidades en distintos materiais:
Materia
Auga mar Gasolina
Densidade kg/ m3
1030
900
Chumbo
Mercurio
Ouro
Xeo
Auga
Alcohol
Osíxeno
11300
13600
19300
920
1000
790
1,13
Actividades resoltas
Cales das substancias da táboa anterior flotan na auga?
Solución
Ao xuntarmos substancias inmiscibles (que non se mesturan) de densidades diferentes, as menos densas
flotan sobre as de maior densidade. Xa que logo, flotarán na auga a gasolina, o xeo, o alcohol e o osíxeno.
Páxina 12 de 46
Actividades propostas
S16.
Onde é mais doado flotar, no mar ou nun río. Por que?
S17.
Se lle preguntan que pesa máis, 1kg de palla ou un de chumbo, seguro que non
“pica”, pero cal ten máis densidade? Razoe a súa resposta.
Páxina 13 de 46
2.3
Clasificación da materia. Substancias puras e
mesturas
Se nos fixamos na materia que nos arrodea veremos que, ademais do seu estado físico, o
seu aspecto externo presenta diferenzas que nos permiten dar unha clasificación.
Sistemas homoxéneos e heteroxéneos
Nunha rocha aprécianse a simple vista partes moi diferenciadas. Pola
contra, se miramos auga de mar vemos que ten un aspecto uniforme e
non se poden distinguir a simple vista os compoñentes que contén.
No primeiro caso falamos de sistema heteroxéneo.
No segundo caso falamos de sistema homoxéneo.
Sistema heteroxéneo
( rocha)
Sistema homoxéneo.
( auga de mar)
Esta clasificación depende da escala da observación. Algunhas substancias que parecen
homoxéneas, ao observármolas ao microscopio resultan ser heteroxéneas.
Por outra banda, isto non é suficiente para clasificarmos a materia, xa que non podemos
incluír no mesmo grupo os sistemas homoxéneos formados por unha única substancia e os
que, malia presentaren aspecto uniforme, están formados por varias substancias.
Para comprobarmos se un sistema homoxéneo está formado por unha ou máis substancias empregamos procedementos físicos que permiten separar os compoñentes do sistema.
Por exemplo, para determinar se a auga do mar é pura ou presenta outras substancias disolvidas, podemos encher un recipiente con ela e quentalo ata que a auga evapore. Despois
comprobamos se tras a evaporación ficaron restos dalgunha outra substancia no recipiente.
Substancias puras: son sistemas materiais, xeralmente homoxéneos, dos que non se poden separar substancias mediante
procedementos físicos. Identifícanse polas súas propiedades específicas, como a temperatura a que cambia de estado.
Mesturas: son sistemas materiais dos que se poden separar substancias utilizando algún procedemento físico. As mesturas
poden ser homoxéneas e heteroxéneas.
Os principais métodos de separación de mesturas son: filtraxe (separa líquidos de sólidos),
decantación (separa líquidos de sólidos ou líquidos de distinta densidade) e destilación.
Actividades propostas
S23.
Clasifique agora as seguintes substancias en puras e mesturas:
Sangue
S24.
Limoada
Aire
Osíxeno
Clasifique as substancias en mesturas homoxéneas e heteroxéneas.
Páxina 19 de 46
3.
Resumo de contidos
Páxina 28 de 46
4.
Actividades complementarias
S33.
Que é materia?
S34.
Un poste da liña telefónica mide 3 m e 12 cm. Cantos dm mide?
S35.
Ordene de maior a menor as seguintes medidas:
5,2 m2
0,72 dam2
540 dm2
70000 cm2
S36.
Indique a cantos kelvins equivalen 25 ºC
S37.
O volume dun tubo de pasta dentífrica é de 75 mL. A cantos cm3 equivale?
S38.
Que unidades de tempo son equivalentes aos seguintes exemplos:
3600 s
365 d
24 h
0,001 s
S39.
España é o terceiro país do mundo en produción vinícola tras Francia e Italia,
cun total de 45 000 000 hectolitros. Exprese esta cantidade en litros.
S40.
Indique o significado destas magnitudes e o seu instrumento de medida.
Magnitude
Significado
Instrumento de medida
Lonxitude
Masa
Volume
Densidade
S41.
Relacione as seguintes columnas, colocando a letra no lugar adecuado:
a
30 cm
Temperatura ambiental.
b
63 kg
Tempo que dura un partido de fútbol .
c
250 g
Volume dunha botella de auga.
d
600 km
Masa dun paquete de sal.
e
0,5 cm3
Lonxitude dun cabelo.
Páxina 29 de 46
S42.
f
1,5 l
Volume dunha pinga de auga.
g
7800 kg/m3
Distancia entre dúas cidades.
h
4 500 s
Densidade do aceiro.
i
25 ºC
Masa dunha persoa.
Complete a seguinte táboa:
Estado
Disposición partículas
Forma
Volume
Poden fluír
Sólido
Líquido
Gasoso
S43.
A auga ao conxelarse ocupa un maior volume. Que lle ocorre á súa densidade?
S44.
Cando un corpo se dilata, aumentan as súas partículas de tamaño?
S45.
En que capa da atmosfera se atopa o ozono? Cal é a súa función?
S46.
Que son as nubes? Como se forman?
S47.
Que diferenza existe entre o tempo atmosférico e o clima?
S48.
Indique o que miden cada un destes instrumentos meteorolóxicos:
Termómetro
Anemómetro
Catavento
Pluviómetro
Barómetro
Páxina 30 de 46
5. Exercicios de autoavaliación
1.
Que non é certo acerca da materia:
2.
Os seres vivos son materia.
A masa.
O tempo.
A densidade.
A temperatura.
0,40 km.
4000 mm.
4 m.
0,40 m.
Os gases:
5.
Ten propiedades que se poden medir.
40 cm equivalen a:
4.
Pode estar en estado sólido ou líquido, pero non gasoso.
Indique a magnitude que se calcula por unha relación matemática a partir doutras:
3.
É todo aquilo que ten masa e volume.
Non teñen forma propia e teñen volume variable.
Non teñen forma propia e teñen volume fixo.
Teñen forma propia e volume variable.
Teñen forma propia e volume fixo.
Os sólidos:
Están formados por partículas que se moven sempre e baten unhas con outras.
Poden comprimirse diminuíndo de volume.
Son todos moi duros.
Están formados por partículas moi próximas e ordenadas.
Páxina 31 de 46
6. O paso de gas a líquido é:
7.
Condensación.
Fusión.
Substancia pura.
Mestura homoxénea..
Sistema heteroxéneo.
Ningunha das anteriores.
O efecto invernadoiro natural débese a:
9.
Sublimación.
O sangue é un exemplo de:
8.
Vaporización.
O ozono.
O vapor de auga e o dióxido de carbono.
O osíxeno.
Non hai efecto invernadoiro natural.
Cal non é un fenómeno meteorolóxico:
O vento.
A presión atmosférica.
A sarabia.
A altitude.
10. Nun mapa meteorolóxico, unha liña azul con triángulos representa:
Unha zona de baixas presións.
Unha fronte cálida.
Unha fronte fría.
Unha zona de anticiclóns.
Páxina 32 de 46
6.
Solucionarios
6.1
Solucións das actividades propostas
S1.
Destes termos, indique cales se refiren a algo material e cales a algo inmaterial:
Dor de cabeza
Inmaterial
Aire
Material
Roupa
Material
Sede
Inmaterial
Auga
Material
Area
Material
Envexa
Inmaterial
Libro
Material
Beleza
S2.
Inmaterial
Alegría
Inmaterial
Sur
Inmaterial
Osíxeno
Material
Se estivese a medir a largura da súa mesa.
Que instrumento utilizaría ?
Unha regra ou unha cinta métrica.
Que propiedade xeral está a medir?
A lonxitude
En que unidades tería que expresar a medida se no SI?
Metro
Que outras unidades de medida podería utilizar?
S3.
Procure no texto o significado de “magnitude” e “unidade”.
Magnitude
Son propiedade da materia que se poden medir.
Unidade
S4.
Cantidade que expresa a medida
Indique en cada caso se trata dunha unidade ou dunha magnitude:
Metros
Temperatura
Hora
S5.
Centímetros, milímetros
Unidade
Quilogramo
Magnitude
Unidade
Unidade
Volume
Magnitude
Densidade
Magnitude
Exprese a mesma medida en distintas unidades:
km
m
dm
cm
mm
0,000325
0,325
3,25
32,5
325
0,00127
1,27
12,7
127
1270
0,013
13
130
1300
13000
0,009
0,9
9
90
900
5 000
5 000 000
50 000 000
500 000 000
5 000 000 000
Páxina 33 de 46
S6.
Que múltiplo e submúltiplo do metro usa para expresar o tamaño destes corpos:
Múltiplo e submúltiplo
S7.
Múltiplo e submúltiplo
Balea (30 m)
3 dam
Bacteria (0,00005 m)
0,05 mm
Mesa (0,75 m)
75 cm
Lapis (0,15 m)
15 cm
Montaña (3500 m)
3,5 km
Home (1,80 m)
180 cm
A superficie é unha magnitude fundamental ou derivada.
A superficie é unha magnitude derivada por que se obtén de multiplicar dúas lonxitudes
S8.
Calcule a superficie dun campo de deportes de 20 m de longo e 65 de largo.
Para calcular a superficie do campo hai que multiplicar o longo e largo do cuarto; S = 20m . 65 m = 1 300 m2;
O campo de deportes terá unha superficie de 1 300m2.
S9.
Calcule a superficie en m2 e en hectáreas dun terreo cadrado de 500m de lado.
Primeiro calculamos a superficie do terreo en m2; S= 500m . 500m = 250 000 m2
A continuación pasamos os metros cadrados a hectáreas, sabendo cunha hectárea, corresponde a 1 hm2 = 10 000
m2
Por último temos que dividir os 250 000 m2 entre 10 000.
O terreo terá unha superficie de 25 ha.
S10.
Converta 2,5 gramos en:
mg
S11.
2 500 mg
dag
0,25 dag
kg
0,0025 kg
Para expresar a masa de grandes obxectos utilizamos a unidade chamada “tonelada” que equivale a 1000 kg. Cantos quilogramos terá un camión cuxa masa
é de 2,5 toneladas?
Para pasar a masa de 2,5 a quilogramos debemos multiplicar por 1000, xa que unha tonelada ten 1000 kg;
2,5 .1000 = 2500 kg.
Daquela, 2,5 toneladas corresponden a 2500 quilogramos.
S12.
Converta as seguintes temperaturas a escala celsius:
285 K
S13.
Tc = Tk – 273
Tc = 285- 273 = 12 ºC
254 K
Tc = Tk – 273
Tc = 254 - 273 = - 19 ºC
Indique os segundos que ten unha hora, e un día?
Para saber os segundos que ten unha hora primeiro debemos indicar os minutos que ten unha hora e a continua-
ción multiplicar polos segundos que ten cada minuto; 60 minutos . 60 segundos = 3600 segundos.
Así un día terá 3600 segundos.
Para saber os segundos que ten un día, temos que multiplicar o número de horas dun día polo número de segun-
dos dunha hora; 3600 segundos . 24 horas =86 400
Polo tanto un día terá 86 400 segundos.
Páxina 34 de 46
S14.
Cal será o volume dunha rocha, se temos un volume inicial nunha probeta de 5
mL e ao mergullar a rocha o volume na probeta pasa a 7 mL?
O volume da rocha será a diferenza entre o volume da probeta con a rocha mergullada e o volume da probeta sen a
rocha; é dicir V= 7 ml – 5 ml = 2 ml
O volume da rocha será de 2 ml.
S15.
Un cuarto mide 4 m de longo, 3 m de largo e 2,5 m de alto. Calcule o volume de
aire que hai dentro do cuarto.
Para calcular o volume de aire hai que multiplicar o longo, ancho e largo do cuarto;
V= 4m . 3 m . 2,5 m = 30 m3
O volume de aire do cuarto é de 30 m3
S16.
Onde é mais doado flotar, no mar ou nun río. Por que?
É máis doado flotar no mar, por que a auga salgada é de maior densidade.
S17.
Se lle preguntan que pesa máis, 1kg de palla ou un de chumbo, seguro que non
“pica”, pero cal ten máis densidade? Razoe a resposta.
A densidade é a relación entre a masa dun corpo e o volume que ocupa; d = m
V
A densidade é inversamente proporcional ao volume.
Ten unha maior densidade o chumbo, xa que 1 kg de chumbo ocupa menos volume ca mesma masa de palla.
S18.
Indique se son certas as seguintes afirmacións:
Afirmación
S19.
V/F
Os líquidos teñen forma definida
F
As partículas dos gases non se moven
F
Os gases non ocupan espazo
F
As partículas dos líquidos gozan de grande mobilidade
V
Os líquidos e os gases móvense con dificultade polo interior das tubaxes
F
Nunha habitación pechada, co aire en repouso, o fume dun cigarro acaba ocupando toda a habitación. Explique este feito.
As partículas que forman o fume, ao estaren en estado gasoso, móvense independentemente unhas das outras, e
expándense, é dicir, ocupan todo o espazo que poden, repartíndose na habitación de xeito uniforme.
S20.
Cando mexemos unha bombona de butano, parece que no seu interior se move
un líquido, pero ao abrir a chave de saída só sae gas. Pode explicalo?
As partículas do butano na bombona, ao atopárense moi comprimidas gozan de pouca liberdade de movemento,
manténdose en estado líquido, pero ao abrir a chave as partículas expándense e flúen ocupando todo o espazo que
poden e pasan ao estado gasoso.
Páxina 35 de 46
S21.
No anterior esquema, os pasos represéntanse con frechas vermellas e azuis.
Cales remiten a cambios producidos por quecemento e cales por arrefriamento?
As frechas vermellas representan cambios por quecemento, entanto que as azuis por arrefriamento.
S22.
Indique os cambios de estado que se producen nos seguintes fenómenos:
A roupa seca, ao sol
Vaporización
Cando a lava arrefría, pasa a rocha sólida
Solidificación
Un vaso con auga que sacamos do frigorífico, ao cabo dun rato está mollado por fóra
Condensación
Ao abrir un frasco de perfume apréciase o aroma en todo o cuarto
Vaporización
O vapor de auga das nubes que produce as choivas
Condensación
O desxeo das montañas
Fusión
Un espello que se empapa ao botarlle o alento
S23.
S24.
S25.
Condensación
Clasifique agora as seguintes substancias en puras e mesturas:
Sangue
Mestura.
Aire
Limoada
Mestura.
Osíxeno
Mestura.
Pura.
Clasifique as substancias en mesturas homoxéneas e heteroxéneas.
Mestura homoxénea.
Mestura heteroxénea.
Mestura heteroxénea.
Mestura homoxénea.
Onde hai máis presión atmosférica, no cumio dunha montaña ou a nivel do mar?
Haberá máis presión atmosférica no nivel do mar.
S26.
Como se fai o vento? Cal é a orixe da enerxía que permite o seu movemento?
O vento faise polo movemento das masas de aire debido a diferenzas de temperatura.
A enerxía que lle dá orixe ao seu movemento é o sol.
S27.
De que depende que as precipitacións sexan de chuvia, de sarabia ou de neve.
O tipo de precipitacións depende da temperatura do aire nas nubes.
Páxina 36 de 46
6.2
Solucións das actividades complementarias
S33.
Que é materia?
A materia é todo o que ten masa e volume.
S34.
Un poste da liña telefónica mide 3 m e 12 cm. Cantos dm mide?
31,2 dm
S35.
S36.
Ordene de maior a menor as seguintes medidas:
5,2 m2
0,72 dam2
540 dm2
70000 cm2
0,72 dam2
70000 cm2
540 dm2
5,2 m2
Indique a cantos kelvins equivalen 25 ºC
298 K
S37.
O volume dun tubo de pasta dentífrica é de 75 mL. A cantos cm3 equivale?
75 cm3
S38.
Que unidades de tempo son equivalentes aos seguintes exemplos:
3600 s
S39.
X
365 d
24 h
X
0,001 s
España é o terceiro país do mundo en produción vinícola tras Francia e Italia,
cun total de 45 000 000 hectolitros. Exprese esta cantidade en litros.
4 500 000 000 L
S40.
Indique o significado destas magnitudes e o seu instrumento de medida.
Magnitude
Significado
Instrumento de medida
Lonxitude
Distancia entre dous puntos.
Masa
Cantidade de materia que ten un corpo. balanza
Volume
Espazo que ocupa un corpo
Cinta métrica graduada.
En sólidos regulares, multiplicando a lonxitude
das súas tres dimensións.
Nos líquidos empregando recipientes graduados.
Páxina 39 de 46
Unidade SI
m
kg
m3
Densidade
S41.
S42.
expresa a relación entre a masa e o
volume dun corpo
kg/ m3
Relacione as seguintes columnas, colocando a letra no lugar adecuado:
a
30 cm
i
Temperatura ambiental
b
63 kg
h
Tempo que dura un partido de fútbol
c
250 g
f
Volume dunha botella de auga
d
600 km
c
Masa dun paquete de sal
e
0,5 cm3
a
Lonxitude dun cabelo
f
1,5 l
e
Volume dunha pinga de auga
g
7800 kg/m3
d
Distancia entre dúas cidades
h
5 400 s
g
Densidade do aceiro
i
25 ºC
b
Masa dunha persoa
Complete a seguinte táboa:
Estado
S43.
Calculase a masa e o volume por separado e
logo se dividen
Disposición partículas
Forma
Volume
Poden fluír
Fixa
Fixo
Non
Sólido
Moi próximas entre si e fortemente unidas
Líquido
Próximas aínda que teñen mobilidade
Variable
Variable
Si
Gasoso
Moi separadas
Variable
Variable
Si
A auga ao conxelarse ocupa un maior volume, que lle ocorre á súa densidade?
A densidade da auga conxelada é menor que a da auga líquida, xa que o volume é inversamente proporcional á
densidade.
S44.
Cando un corpo se dilata, aumentan as súas partículas de tamaño?
Non, as partículas que o forman vibran con máis intensidade e necesitan máis espazo para se mover.
S45.
En que capa da atmosfera se atopa o ozono? Cal é a súa función?
Estratosfera. A súa función é filtrar as radiacións ultravioletas.
Páxina 40 de 46
S46.
Que son as nubes? Como se forman?
É a condensación de vapor de auga da atmosfera. Fórmanse cando o aire quente e húmido ascende e, ao alcanzar
as capas altas da troposfera, arrefría.
S47.
Que diferenza existe entre o tempo atmosférico e o clima?
O tempo atmosférico é o estado da atmosfera nun momento e nun lugar determinado, entanto que o clima son os
fenómenos meteorolóxicos que caracterizan unha determinada rexión durante un longo período.
S48.
Indique o que miden cada un destes instrumentos meteorolóxicos:
Termómetro
A temperatura
Anemómetro
A velocidade do vento
Catavento
A dirección do vento
Pluviómetro
As precipitacións.
Barómetro
A presión atmosférica
Páxina 41 de 46
6.3
Solucións dos exercicios de autoavaliación
1.
Que non é certo acerca da materia:
2.
Os seres vivos son materia.
A masa.
O tempo.
A densidade.
A temperatura.
0,40 km.
4000 mm.
4 m.
0,40 m.
Os gases:
5.
Ten propiedades que se poden medir.
40 cm. equivalen a:
4.
Pode estar en estado sólido ou líquido, pero non gasoso.
Indique a magnitude que se calcula por unha relación matemática a partir doutras:
3.
É todo aquilo que ten masa e volume.
Non teñen forma propia e teñen volume variable.
Non teñen forma propia e teñen volume fixo.
Teñen forma propia e volume variable.
Teñen forma propia e volume fixo.
Os sólidos:
Están formados por partículas que se moven sempre e baten unhas con outras.
Poden comprimirse diminuíndo de volume.
Son todos moi duros.
Están formados por partículas moi próximas e ordenadas.
Páxina 42 de 46
6.
O paso de gas a líquido é:
7.
Condensación.
Fusión.
Substancia pura.
Mestura homoxénea.
Sistema heteroxéneo.
Ningunha das anteriores.
O efecto invernadoiro natural débese a:
9.
Sublimación.
O sangue é un exemplo de:
8.
Vaporización..
O ozono.
O vapor de auga e o dióxido de carbono.
O osíxeno.
Non hai efecto invernadoiro natural.
Cal non é un fenómeno meteorolóxico:
O vento.
A presión atmosférica.
A sarabia.
A altitude.
10. Nun mapa meteorolóxico, unha liña azul con triángulos representa:
Unha zona de baixas presións.
Unha fronte cálida.
Unha fronte fría.
Unha zona de anticiclóns.
Páxina 43 de 46
7.
Glosario
A
Axitación térmica
Movemento desordenado das partículas que forman un corpo.
C
Cambio de estado
Proceso en que unha substancia pasa dun estado a outro, conservando a súa identidade.
Contaminación
Alteración dunha substancia, un organismo ou un medio por acumulación de compostos
prexudiciais.
Densidade
Propiedade característica da materia que indique a relación entre a masa e o volume dun
corpo ou sistema material.
D
Desenvolvemento
sustentable
Aquel que cumpre as necesidades da xeración actual sen comprometer a capacidade das
xeracións futuras para satisfacer as súas propias necesidades.
Destilación
Operación consistente en separar un ou máis líquidos volátiles (que pasan a vapor) doutras
substancias non volátiles mediante evaporación e posterior condensación.
Dilatación
Proceso de aumento do volume que experimenta a materia ao aumentar a temperatura.
Efecto invernadoiro
Elevación da temperatura nas capas baixas da atmosfera.
Estado da materia
Cada unha das formas, sólida, líquida ou gasosa en que se presenta a materia. Tamén pode
denominarse estado de agregación ou estado físico.
F
Fluído
Substancia en estado líquido ou gasoso.
G
Gravidade
Propiedade universal da materia segundo a cal todos os corpos materiais se atraen.
M
Masa
Propiedade xeral que mide a cantidade de materia dun corpo ou sistema material.
Materia
Todo aquilo que ocupa un lugar no espazo e ten masa.
Meteorito
Corpo planetario menor que procedente do espazo cae sobre a Terra.
P
Plancto
Conxunto de pequenos organismos que viven flotando nas augas de mares e lagos.
O
Presión atmosférica
Presión que exerce a atmosfera sobre todos os corpos inmersos nela.
Propiedade
Propiedade da materia que permite diferenciar substancias entre elas.
E
característica
Propiedade xeral
Propiedade da materia que non permite diferenciar substancias entre elas.
Páxina 44 de 46
S
Sistema material
É unha porción da materia que se illa para o seu estudo.
Sublimación
Cambio de sólido a gasoso sen pasar polo estado líquido. Tamén se lle denomina sublimación ao proceso inverso.
Substancia
Clase de materia caracterizada por unha propiedades específicas, como a densidade ou a
temperatura de fusión e ebulición.
T
Temperatura
Magnitude física que caracteriza o nivel de axitación térmica dun corpo.
V
Volume
Espazo que ocupa un corpo.
Páxina 45 de 46
2.6
Sustancias puras y mezclas
Una mezcla está formada por varias sustancias puras diferentes. Se dividen en mezclas
homogéneas y heterogéneas.
Mezclas homogéneas: son las que tienen un aspecto uniforme (todo igual), y no se
pueden diferenciar a simple vista ni con una lupa las sustancias que la componen. Las
propiedades de la mezcla (color, sabor, densidad, temperaturas de fusión y ebullición,
etc.) son las mismas en todo su volumen, en todos los puntos de la mezcla homogénea.
Mezclas heterogéneas: no presentan un aspecto uniforme a simple vista, observamos
facialmente que están hechas de varias sustancias diferentes.
Actividades resueltas
Encontramos en nuestra casa lo siguiente: una botella con un refresco de naranja, papel
de aluminio, algodón, leche, agua mineral, aceite puro de oliva, azúcar, sal, un cuchillo
de acero y gel de ducha. Clasifique estas sustancias en puras o en mezclas.
Solución
Papel de aluminio: sustancia pura. Solo tiene aluminio, es una única sustancia.
Algodón: sustancia pura. Está formado por celulosa pura.
Azúcar: sustancia pura.
Sal: es cloruro sódico, Na Cl, sustancia única.
Refresco de naranja: es una mezcla. Tiene agua, azúcar, colorantes y otras sustancias.
Leche: es una mezcla. Tiene varias sustancias (grasas, proteínas, agua, lactosa…)
Agua mineral: mezcla. Tiene agua y varias sales minerales.
Aceite de oliva: es una mezcla de varias sustancias; cuando se dice que es “aceite puro de oliva” quiere decir
que se fabrica exclusivamente con aceitunas, pero tiene varios compuestos distintos.
Cuchillo de acero: es una mezcla formada por hierro (componente mayoritario) y carbono.
Gel de ducha: mezcla (lea los componentes en la etiqueta del gel, va a ver que son numerosos).
Observe las imágenes y clasifique cada una como mezcla homogénea o heterogénea.
Granito
Agua de mar
Leche
Queso
Heterogénea
Homogénea
Homogénea
Heterogénea
Actividades resueltas
S19.
Observamos en uno vaso un líquido de color amarillo intenso de aspecto uniforme. Pasadas cuatro horas miramos de nuevo y ahora el líquido es incoloro, y un
sólido amarillo se depositó en el fondo. ¿Qué tipo de mezcla había inicialmente
en el vaso?
Página 19 de 53
2.7
Técnicas de separación de mezclas
¿Cómo podemos separar las sustancias que forman una mezcla? Muchas veces las separamos usando procedimientos físicos, dependiendo de las propiedades de las sustancias
mezcladas. Veamos estas técnicas.
Cribado. Es útil para separar sólidos mezclados que tengan granos de distinto tamaño.
Por ejemplo, podemos separar la arena fina mezclada con grava, el café de los posos, o
el zumo de naranja de la pulpa.
Filtrado. Se usa para separar un sólido insoluble mezclado con un líquido; las partículas sólidas quedan retenidas en el filtro y el líquido pasa a través de él.
Decantación. Si un sólido es insoluble en el líquido y está depositado en el fondo del
recipiente, lo podemos separar inclinando el vaso y derramando el líquido en otro recipiente; los sólidos quedarán en el vaso original. Podemos así separar, por ejemplo, agua
y arena, la sal de limaduras de hierro si antes disolvemos la sal.
La decantación también se usa para separar los líquidos inmiscibles (que no se mezclan
entre sí), como agua y aceite. Se hace con un embudo de decantación, como el de la figura de abajo.
Cristalización. Esta técnica es adecuada cuando un sólido se ha disuelto en un líquido;
evaporando el líquido el sólido quedará en el fondo del recipiente. Si la evaporación es
lenta el sólido formará cristales con formas geométricas. Este procedimiento se usa, por
ejemplo, para extraer la sal del agua del mar.
Destilación. Permite separar los líquidos de una mezcla si hierven a temperaturas bastante diferentes. Al calentar la mezcla se evapora antes la sustancia que hierve a temperatura más baja. El vapor desprendido se enfría, se condensa a líquido y se recoge aparte. Observe cómo se hace en la figura que tiene abajo.
Cristalización
Cribadora
Destilación
Embudo de decantación
Página 20 de 53
Cromatografía. Cuando los líquidos de una mezcla tienen diferente solubilidad en un
disolvente o afinidad por un substrato, podemos separarlos mediante cromatografía.
Las hay de varios tipos: en papel, en columna... Aquí veremos la más sencilla: la cromatografía en papel, en una de las actividades siguientes.
Separación magnética. Está indicada cuando uno de los componentes de la mezcla es
un metal ferromagnético (hierro, cobalto, níquel, etc.). Se pueden separar estos metales
simplemente pasando un imán por la mezcla. Por ejemplo, podemos separar así limaduras de hierro mezcladas con limaduras de aluminio.
Actividades prácticas
Filtrado. Mezcle tierra y agua en un vaso, remueva y espere a que se decanten los
granos más gruesos. Luego filtre el líquido con un papel del filtro (vale el de las cafeteras).
Cristalización. Disuelva 150 g de sulfato de cobre pentahidrato, CuSO4.5H2O, en 150
mL de agua muy caliente. Si no se disuelve todo el sulfato, decante el líquido en un
vaso de boca ancha. Déjelo en reposo y espere a que se vaya evaporando el agua
(levará horas o días). En el fondo irán formándose cristales azules de sulfato de cobre.
Cromatografía en papel. En una tira de papel de filtro de 5 cm x 10 cm aproximadamente dibuje un punto grueso (un círculo) con un rotulador negro. Meta la tira de papel dentro de un vaso con una disolución de agua y etanol de modo que se moje solo
la parte inferior del papel; el punto negro debe quedar por encima del líquido. La disolución subirá por capilaridad por el papel y arrastrará a los componentes de la tinta
del rotulador, separándolos ya que unos avanzarán más que otros.
Actividad propuesta
S20.
¿Qué métodos emplearía para separar las sustancias componentes en las mezclas siguientes:
Gasolina y agua
Página 21 de 53
2.10 Rincón de lectura
Una mezcla peligrosa: el tabaco
El tabaco es un producto vegetal obtenido de las hojas de varias plantas del género Nicotiana, en concreto Nicotiana tabacum. El tabaco está compuesto por el alcaloide nicotina, que está en la hoja de la planta en proporciones variables, entre
el 1 % y el 12 %. El resto es el alquitrán, sustancia oscura y resinosa compuesta por varias sustancias químicas, muchas
de ellas generadas por la combustión del cigarro, como cianuro de hidrógeno, monóxido de carbono, dióxido de carbono,
óxido de nitrógeno, amoníaco, etc.
Según la OMS (Organización Mundial de la Salud) hay en el mundo más de 1.100 millones de fumadores y fumadoras,
que consumen una media diaria de 14 cigarros, lo que representa un total de 5.6 billones de cigarros cada año.
Actualmente el modo de consumo más habitual es la inhalación de los productos de combustión del tabaco. En el extremo del cigarro que se está quemando se alcanzan temperaturas altísimas.
Los cigarros modernos tienen mucho más que tabaco. Contienen nicotina, que es una droga altamente adictiva, y además se mezclan cientos de aditivos que van desde edulcorantes hasta compuestos amoniacales. Aunque las compañías
tabaqueras generalmente alegan que muchos de los aditivos que usan están aprobados para el consumo humano, sus
propiedades químicas se alteran cuando son sometidos a las altas temperaturas que se alcanzan en el extremo, haciéndolos potencialmente tóxicos o activos farmacológicamente.
Aditivos como el amoníaco elevan el nivel del pH del humo del cigarro, generando altos niveles de nicotina "libre" que se
absorbe más rápidamente en el organismo humano. Se añaden edulcorantes y sabores artificiales que enmascaran el desagradable sabor del tabaco haciéndolo más agradable para los niños y para los que se inician en su consumo. El mentol y
otros se usan con la finalidad de adormecer la garganta de modo que los fumadores no sientan los efectos irritantes del
humo.
Recientemente las industrias tabaqueras fueron obligadas a publicar los ingredientes de los cigarros. Esas interminables
listas (http://www.altadis.com/es/corporate/documents/20061231-Ingtab_07_RYO-Es.pdf) evidencian los aditivos que se
les añaden a las más de veinte sustancias tóxicas y cancerígenas que se liberan de forma natural al quemar el cigarro.
Algunos ingredientes peligrosos son:
Acetaldehido. Trabaja en sinergia con la nicotina con el fin de incrementar la adicción.
Acetona. Disolvente tóxico.
Amoníaco. Facilita la absorción de la nicotina.
Cadmio. Cancerígeno.
Monóxido de carbono. Tóxico, impide la llegada de oxígeno a la sangre.
Cacao. Edulcorante y broncodilatador, permite inhalar el humo más profundamente.
Formaldehido. Posible cancerígeno.
Nitrosaminas. Cancerigenas.
Página 28 de 53
2.5
Estados de agregación de la materia
Si observamos alrededor de nosotros encontramos que la materia puede estar en tres estados: sólido, líquido y gaseoso. A estas tres formas de presentarse la materia las llamamos
estados de agregación de la materia. La razón del término "agregación" la veremos en la
siguiente unidad didáctica.
En cada uno de estos estados la materia posee propiedades diferentes; revisamos a continuación algunas de ellas.
Sólido. La mayoría de los objetos que utilizamos son sólidos: herramientas, muebles,
libros, ropa, electrodomésticos, etc. Tienen forma fija, aunque haciendo fuerza en ellos
puedan deformarse; si los comprimimos casi no disminuyen de volumen (excepto que
tengan huecos o poros con aire en su interior). No se difunden y no pueden fluir.
Líquido. No tienen forma fija, se adaptan a la forma del recipiente donde estén metidos
(vaso, botella, etc.). No son compresibles: si los comprimimos casi no diminuyen de
volumen. Son fluidos, es decir, pueden resbalar sobre una superficie o moverse fácilmente por el interior de tubos. Tampoco se difunden.
Gaseoso. No tienen forma fija ni volumen constante. Los gases se expanden por todo el
volumen del recipiente que los contiene: se difunden. También son fluidos como los líquidos.
En el cuadro siguiente recogemos las propiedades de los gases, sólidos y líquidos.
Estados de agregación de la materia
Sólido
Líquido
Gaseoso
Fijo
Fijo
Variable
Tienen forma propia
No tienen forma propia
No tienen forma propia
No disminuyen de volumen
No disminuyen de volumen
Cambian de volumen
No se difunden
No se difunden
Se difunden
Volumen
Forma
Compresibilidad
Difusión
Actividades propuestas
S17.
Podemos encontrar muchas sustancias en los tres estados: el agua es el caso
más conocido, ya que puede ser sólida (hielo o nieve), líquida y gaseosa (vapor).
¿Conoce otras sustancias que puedan estar en dos o tres estados de agregación?
S18.
Diga si son verdaderas o falsas estas afirmaciones. Explique sus respuestas.
a) Como un sólido tiene forma fija, entonces no puede cambiar de forma.
b) Los líquidos y los gases se mueven con dificultad por el interior de los tubos.
c) Los líquidos y los gases se difunden por el recipiente en el que están contenidos.
Página 18 de 53
2.
Secuencia de contenidos y actividades
2.1
Características de los gases: presión, volumen y
temperatura
Los gases forman parte de nuestro entorno. El más importante para nosotros es el aire, indispensable para respirar y, por lo tanto, vivir, pero utilizamos este y otros gases habitualmente: cuando inflamos los neumáticos o un globo, en las bombonas de butano o de gas
natural, los propelentes en pulverizadores y aerosoles, en los circuitos de los frigoríficos,
en las lámparas...
Algunas propiedades de los gases las estudiamos en la unidad didáctica anterior: no tienen volumen ni forma fija, son fluidos, se expanden por todo el espacio del recipiente en
que están contenidos. A continuación ahondamos en la relación que hay entre la presión
que ejerce el gas, el volumen que ocupa y la temperatura.
Volumen de un gas
Como dijimos, los gases se expanden por el recipiente en que están. Así que el volumen
del gas es el volumen del recipiente. Recordemos algunas equivalencias entre unidades de
volumen:
1 m3 = 1.000 litros
1 dm3 = 1 litro
Gas (óxido de nitrógeno) expandido por todo el recipiente
1 cm3 = 1 mL
Presión de un gas
Ya sabemos que los gases ejercen presión: la presión del aire de los neumáticos, la atmosférica, la del gas dentro de un globo, etc. La presión de los gases se mide con aparatos que
se llaman manómetros. Los manómetros que miden la presión atmosférica suelen llamarse
barómetros; el más sencillo es el constituido por un tubo vertical de vidrio con mercurio
en su interior.
Página 6 de 62
Manómetro
Barómetro
Hay muchas unidades para medir la presión. Damos las más usadas y sus equivalencias:
1 atm = 760 mm Hg = 101 325 Pa = 1013 mb
...donde atm es atmosfera, mm Hg es milímetro de mercurio, Pa es pascal (la unidad del
sistema internacional), y mb es milibar, muy usada en los mapas meteorológicos.
Temperatura de un gas
Los gases, como todos los cuerpos, tienen temperatura, que se mide con un termómetro introducido en el recipiente en el que está el gas. Los termómetros que usamos habitualmente, como los clínicos, miden la temperatura en grados Celsius o centígrados (ºC). Pero el
estudio de los gases requiere que utilicemos la escala del sistema internacional, la escala
Kelvin. El cambio de grados Celsius a Kelvin, y viceversa, lo hacemos con la siguiente relación:
TK = Tc + 273
¿Cuál es la temperatura más baja (fría) posible? Pues es... ¡cero kelvin, como tenía que
ser!
Actividades resueltas
La presión atmosférica en un día de borrasca fuerte puede llegar a ser de 735 mm Hg.
¿Cuántas atmósferas son? ¿Cuántos pascales?
Multiplicamos la cantidad dada por un “factor de conversión”. Un factor de conversión es una fracción que
tiene en el denominador una cantidad con la misma unidad que la que precisamos cambiar, y en el numerador la nueva unidad:
Solución
1 atm
= 0,967 atm
760 mmHg
101325 Pa
0,967 atm ⋅
= 97 981 Pa
1 atm
735 mmHg ⋅
¿Cuántos grados centígrados son cero kelvin?
Solución
TK = TC + 273 → TC = TK − 273 = 0 − 273 = −273º C
Página 7 de 62
Por lo tanto, la temperatura más fría posible es 273 grados centígrados bajo cero.
Actividad propuesta
S1.
¿Cuántos kelvin (observe que no se dice grados kelvin) son 25 ºC?
Página 8 de 62
2.2
Relaciones entre presión, volumen y temperatura
en un gas
La presión, el volumen y la temperatura de un gas pueden cambiar, aumentando o disminuyendo, pero estos cambios están relacionados entre sí. Vamos a estudiarlos ahora, para
ahondar en el conocimiento de los gases.
2.2.1 Variación de la presión de un gas con su volumen
Podemos investigar cómo varía la presión si introducimos gas (vale el aire) dentro de un
recipiente con un émbolo móvil (como el pistón en el motor de un coche o una jeringa)
conectado a un manómetro, manteniendo constante la temperatura.
Vamos cambiando el volumen del gas a medida que apretemos el émbolo; para cada volumen anotamos la presión que indica el manómetro. En una experiencia se obtuvieron los
resultados siguientes:
Ley de Boyle
Ya vemos que cuanto mayor es la presión menor es el volumen: son inversamente proporcionales. Hay una relación matemática entre volumen y presión, conocida como ley de
Boyle:
P.V = constante
También expresada como: P1V1 = P2V2
Lo puede comprobar usted con los datos de la tabla anterior. Multiplicando el volumen por
la presión, observará que siempre da el mismo resultado: eso es lo que quiere decir "constante".
Página 9 de 62
Actividad resuelta
Los gases en el pistón de un motor ocupan 1,05 litros estando a 1 atm de presión. El
émbolo comprime los gases hasta reducir su volumen a la cuarta parte del inicial. ¿Cuál
es la presión de los gases ahora si no varió la temperatura?
Como la temperatura no cambia, podemos aplicar la ley de Boyle:
Solución
P1 V1 = P2 V2 → 1atm ⋅1,05 L = P2 ⋅
1,05 L
1atm ⋅ 1,05 L ⋅ 4
→
= P2 → P2 = 4 atm
4
1,05 L
La presión es cuatro veces mayor que la inicial.
2.2.2 Variación de la presión con la temperatura de un gas
Todos los niños tienen ahora balones con válvula y bombas para inflarlos. Pero cuando
muchos de nosotros éramos niños no teníamos esa tecnología punta, así que para hinchar
el balón y jugar... ¡lo poníamos al sol! Y funcionaba durante un tiempo.
Si tenemos un gas dentro de un recipiente de paredes fijas, ocupará siempre el mismo
volumen (V constante). Vamos calentando el gas y anotamos las temperaturas y las presiones y, después, como antes, representamos los resultados en unos ejes de coordenadas.
Ley de Gay-Lussac
De la gráfica deducimos que la presión es directamente proporcional a la temperatura, que
matemáticamente se expresa con la relación siguiente: ley de Gay-Lussac.
P = constante—T
También expresada como:
P1 P2
=
T1 T2
¡Atención! Para usar esta fórmula, recuerde que la temperatura siempre hay que ponerla en
kelvin; si la pone en grados Celsius el resultado dará mal.
Página 10 de 62
Actividad resuelta
El gas de un depósito está a 20 ºC y tiene 3 atm de presión. Lo dejamos al sol, y su temperatura sube a 60 ºC. ¿Cuál es ahora la presión del gas en el depósito?
Primero pasamos las temperaturas a kelvin:
Solución
2.2.3 Variación del volumen del gas con la temperatura
Si tenemos el gas dentro de un recipiente con un émbolo podemos observar cómo va variando el volumen al ir aumentando su temperatura, manteniéndose la presión del gas
constante:
En una experiencia de laboratorio obtuvimos los datos siguientes:
Ley de Charles
Concluimos que, manteniendo constante la presión sobre el gas, el volumen es directamente proporcional a la temperatura del gas, lo que se conoce como ley de Charles:
V = constante—T (temperatura en kelvin)
También expresada como:
Página 11 de 62
V1 V2
=
T1 T2
Actividad práctica
Infle poco un globo, que la goma esté floja. Métalo en agua muy caliente. ¿Qué ve?
Actividad resuelta
Un cilindro con un pistón se llena con 25 mL de gasolina gaseosa a 25 ºC. ¿Cuánto ocupará, a presión constante, la gasolina cuando esté a 75 ºC?
Solución
Página 12 de 62
2.3
El modelo cinético de los gases
Durante muchos años los científicos intentaron idear un modelo de cómo está constituida
la materia que justificase las propiedades de los gases que acabamos de revisar.
El modelo que propusieron es el llamado "modelo cinético de los gases" o "modelo
corpuscular de los gases" (corpúsculo significa "partícula"), que se basa en las siguientes
hipótesis:
Toda la materia (gases, líquidos y sólidos) está constituida por entidades denominadas
partículas. Las partículas tienen masa pero son demasiado pequeñas para poder ser observadas.
Entre las partículas no hay nada, solo espacio vacío. La distancia media entre las partículas es mucho mayor en el caso de los gases que en el de los líquidos y sólidos.
Las partículas están en continuo movimiento. En los gases se mueven libremente en todas direcciones.
La temperatura es una medida de la energía cinética media de las partículas de un cuerpo. Cuando aumenta la temperatura del sistema, aumenta la energía cinética que por
término medio tienen las partículas, por lo que estas se mueven con más rapidez y pueden separarse más.
Vamos a emplear este modelo para justificar algunas de las propiedades de los gases.
Los gases ejercen presión
Los gases hacen presión debido a los continuos choques de las partículas contra las paredes del recipiente. Cada choque ejerce un pequeño impulso contra las paredes, la suma de
todos estos impulsos constituye la presión.
Página 13 de 62
Los gases se expanden por todo el volumen disponible
El continuo y caótico movimiento de las partículas hace que acaben llegando a todos los
rincones del recipiente.
Los gases se comprimen
Cuando comprimimos con un émbolo el gas, el volumen disminuye porque las distancias
entre las partículas se hacen menores, acercándose más unas a otras.
La presión aumenta cuando el volumen disminuye
Al disminuir el volumen del recipiente, las partículas tienen que recorrer menos espacio
para chocar contra las paredes, así que chocan con más frecuencia (más veces), con lo que
aumenta la presión.
El volumen y la presión aumentan con la temperatura
Con el aumento de la temperatura, las partículas se mueven con mayor velocidad, con lo
que chocan contra las paredes más veces y con mayor impulso (más fuerza), y eso hace
que aumente el volumen del recipiente porque empuja el émbolo, si la presión externa al
gas no cambia. Si el émbolo está fijo y no puede variar el volumen ocupado por el gas, entonces lo que aumenta es la presión contra las paredes.
Si la presión externa al gas es constante, el aumento de
temperatura produce un aumento del volumen del gas.
Si el émbolo no se mueve, el volumen del gas no cambia
y el aumento de temperatura produce un aumento en la
presión del gas.
Actividad resuelta
Por un pequeño agujero en el fondo de un matraz cerrado metemos una pequeña cantidad de gas de color naranja. Pasados unos minutos, ¿qué aspecto cree que tendrá el
matraz? Justifíquelo usando el modelo cinético de los gases.
Solución
Las partículas de gas naranja se mueven en todas las direcciones; por lo tanto, habrá algunas que se muevan
hacia arriba. De este modo el gas se expandirá de abajo hacia arriba, y así mismo ocurrirá en las demás di-
Página 14 de 62
recciones, de modo que el gas acabará llegando a todos los puntos del recipiente.
Actividades propuestas
S2.
Cuando hinchamos un globo, al cabo de algunos días el globo se deshincha o
pierde presión. ¿Será debido a que las partículas de tanto chocar pierden velocidad y, por lo tanto, presión?
S3.
Cuando un neumático pierde presión, le inyectamos más aire a través de la válvula. ¿Cómo podemos justificar el aumento de presión de los neumáticos usando el modelo cinético de los gases?
Página 15 de 62
2.4
Extensión del modelo cinético a los líquidos y los
sólidos
Algunos hechos que les ocurren a los líquidos recuerdan el comportamiento de los gases.
Si dejamos un terrón de azúcar en el fondo de un vaso con agua y no lo removemos nada,
pasado un tiempo toda el agua estará dulce por igual. La difusión del azúcar por el agua
recuerda el movimiento de las partículas de los gases. Esto llevó a los científicos a aplicar
el modelo cinético a los líquidos y sólidos, añadiendo una nueva hipótesis al modelo. Es la
siguiente:
“Entre las partículas hay fuerzas de atracción que tienden a juntarlas. Estas fuerzas
disminuyen rápidamente con la distancia entre las partículas, de modo que solo son apreciables cuando están bastante próximas”.
Las fuerzas son de atracción si las partículas están muy próximas entre sí, y desaparecen en cuanto se alejan un poco. Por el contrario, aparecen fuerzas repulsivas cuando se
acercan demasiado una a la otra. Observe el esquema siguiente:
Las partículas están muy lejos. No notan
fuerza entre ellas.
Las partículas están próximas. Se atraen. Las partículas están demasiado próximas.
Se repelen.
¿Cómo están colocadas las partículas en los sólidos y en los líquidos?
De acuerdo con la teoría cinético-molecular, toda la
materia está formada por partículas en continuo
movimiento, entre las que no hay nada, solo espacio
vacío. Pero, ¿cómo una misma sustancia puede
presentar aspectos tan distintos cuando se encuentra
en estado sólido, líquido o gaseoso? Si las partículas
son iguales, la única explicación es que en cada
estado las partículas se disponen de modo diferente:
las partículas de los sólidos se encuentran muy
próximas, y las fuerzas de atracción entre ellas son muy intensas. Su único movimiento es
el de vibración. Las partículas de los líquidos vibran y forman conglomerados que se desplazan unos respecto a otros. Las partículas de los gases se encuentran muy separadas entre sí, y se mueven a grandes velocidades, prácticamente libres de fuerzas de atracción.
Las partículas en los sólidos están muy
En los líquidos las partículas están próxipróximas, bien ordenadas y fuertemente
mas, pero no tanto como en los sólidos ni
atraídas entre sí. Vibran de un lado a otro tan ordenadas; se atraen con menos fuerza.
continuamente pero manteniendo siempre la Pueden resbalar y moverse alrededor de las
misma posición en la red cristalina.
vecinas (pueden fluir), no teniendo una
Página 16 de 62
En los gases las partículas se mueven
libremente en todas direcciones.
forma fija
Actividades propuestas
S4.
Utilice el modelo cinético de los líquidos para explicar cómo el terrón de azúcar
acaba endulzando el agua de un vaso sin removerla.
S5.
Si el mismo terrón lo echamos en agua caliente, el azúcar se expande por el
agua en menos tiempo. ¿Por qué?
S6.
En una habitación cerrada, con el aire en reposo, el humo de un cigarro acaba
ocupando toda la habitación. Explique este hecho a partir del modelo cinético de
la materia.
Página 17 de 62
2.5
Cambios de estado de agregación y modelo
cinético de la materia
Podemos también usar el modelo cinético para interpretar los cambios de estado sólido a
líquido y a gas.
2.5.1 La fusión: cambio de estado sólido a líquido
En los sólidos las partículas vibran continuamente. Al darles calor, la temperatura aumenta
y las partículas vibran con más intensidad. Al llegar a la temperatura de fusión, las partículas empiezan a separarse unas de otras rompiendo la red cristalina, y se convierten en un
líquido. Durante la fusión toda la energía del calor se usa para separar las partículas; por
eso no sube la temperatura en la fusión.
Sólido
Comienza la fusión
Líquido
2.5.2 La vaporización o ebullición: cambio de estado líquido a gas
En los líquidos las partículas vibran y se desplazan, pero aún están muy próximas unas de
las otras. Al aumentar la temperatura se mueven más aprisa. Cuando se alcanza la temperatura de ebullición, las partículas se separan del todo: son un gas.
Líquido
Gas
Actividad propuesta
S7.
Justifique, usando el modelo cinético, lo que les ocurre a las partículas de un sólido en la sublimación.
Página 18 de 62
3. Resumen de
contenidos
Estados de agregación de la materia
Sonsólido,líquidoygas.Laspropiedadesgeneralesdecadaestadoson:
Sustancias puras y mezclas
Lasmezclasdedosomássustanciaspuraspuedenserhomogéneasyheterogéneas.
Técnicas de separación de mezclas
•
•
•
•
•
•
•
Cribado.
Filtrado.
Cristalización.
Destilación.
Decantación.
Cromatografía.
Separaciónmagnética.
Disoluciones
Hay nueve tipos posibles de disoluciones según que el soluto y el disolvente sean sólido,
líquidoogas.
Concentración de una disolución
Es la proporción relativa del soluto y del disolvente. Entre otras formas, puede expresarse
medianteelporcentajeenmasa,elporcentajeenvolumenyengramosporlitro:
Mezclas
S40. Señale cuáles de las siguientes mezclas pueden ser separadas mediante decantación:
vinagre y agua; agua y alcohol; agua y aceite; aceite y vinagre.
S41. En una planta de reciclaje de basura queremos separar los objetos de hierro que están
mezclados con los de plástico y papel. ¿Qué podríamos hacer para separarlos?
S42. Tiene una mezcla de agua salada y aceite vegetal. Diseñe una práctica de laboratorio
para separar las tres sustancias (agua, sal y aceite).
S43. Indique cuál es el soluto y cuál el disolvente en las disoluciones siguientes:
•
•
•
•
Mezclacombustibleparamotos(gasolina+aceite).
Acero(hierro+carbono).
Alcoholdefarmacia.
Airehúmedo.
S44. Un líquido transparente pardo se calienta hasta que hierve. La temperatura de ebullición
se mantiene constante en el tiempo mientras dura la ebullición. ¿Se trata de una disolución o
de una sustancia pura?
S45. Señale cuáles de las siguientes sustancias son puras y cuáles mezclas: detergente en
polvo, refresco de cola, diamante, bronce, agua del grifo, oro y aguardiente.
S46. ¿Qué ocurriría si se enfría una disolución saturada de sulfato de cobre?
S47. Explique qué métodos usaría para separar las sustancias de las mezclas que se citan:
aceite, agua y sal; etanol, agua y azúcar; arena, vinagre y sal.
S48. ¿Verdadero o falso?
•
Nosepuededisolverungasenagua.........................
•
Enunadisoluciónacuosaeldisolventetienequeser
agua..............................
•
Todaslasdisolucionescontienenagua..........................
ï
Elsolutosedisuelve,eldisolventeno..........................
Concentración de las disoluciones
S49. Preparamos una disolución disolviendo 40 g de cloruro potásico, KCl, en 300 gramos de
agua, resultando 330 mL (mililitros) de disolución. Calcule:
•
•
a)elporcentajeenmasadeladisolución.
b)laconcentracióndeladisoluciónexpresadaeng/L.
S50. La receta de una macedonia de frutas precisa un jarabe del 20 % en peso. Necesitamos 300 g de jarabe.
•
•
a)¿Cuántosgramosdeazúcarhayqueemplear?
b)¿Cuántosdeagua?
S51. Razone si son verdaderas o no las afirmaciones siguientes, referidas todas a una
disolución acuosa del 20 % en masa:
•
•
•
200gdeladisolucióntienen200gdeagua.
En500gdeladisoluciónhay100gdesoluto.
Enunquilogramodeladisoluciónhay800gdeagua.
S52. Halle la concentración de las disoluciones A, B y C con los datos contenidos en la tabla
siguiente en g/L y en porcentaje en masa:
S53. Una botella de leche tiene, en su etiqueta, la información que recoge la imagen,
referida a 100 mL del leche.
•
Expreselaconcentracióndeproteínas,grasasehidratosdecarbonodela
lecheeng/L.
•
¿Cuántosgramosdecadaunadeesassustanciasingiereunapersonaque
bebe550mLdeleche?
S4.
Otra marca de leche informa que su concentración en grasas es de 0.030
mg/mL. ¿Cuál de las dos marcas de leche tiene más grasa en su composición, esta o la
del ejercicio anterior?
S5.
Una botella de agua mineral tiene la información que recoge la imagen.
•
¿Enquéunidadesestánexpresadaslasconcentracionesdelosdiferentes
solutos?
•
¿Porquédiceenlaetiquetaqueestá"indicadaparaalimentosinfantiles".Si
nolosabe,busqueinformaciónenInternetalrespecto.
•
¿Cuántosgramosdecalciohayenlabotellaentera?¿Ycuántosdebicarbonato?
•
¿Quésignifica"Residuosecoa180ºC"?
•
¿Cuántosgramosdemagnesio(Mg)habráenunmdeesetipodeagua?
3
S56. Rosa y Manolo preparan el biberón para su Xelmiriño. Le añaden seis cucharadas de
3,6 g de leche en polvo a un biberón que contiene 180 g de agua templada.
•
a)¿Quéprepararon,unamezclaheterogénea,homogéneaouna
disolución?¿Necesitaalgunaotrainformaciónparapodercontestar?
•
b)Xelmiriñotomó160gdelbiberón.¿Cuántalechetomó?
S57. El grado alcohólico de una bebida es la cantidad de alcohol etílico (etanol) que contiene
por cada 100 mL de bebida. En la etiqueta del brandy de la figura indica que su grado
alcohólico es del 38 %, y el volumen de la botella 70 cL. Cuantos ml de alcohol hay en la
botella de brandy?
•
6. Cuando los fabricantes de aguardiente hacen el aguardiente a partir del bagazo, están haciendo:
•
•
•
•
Unadecantación.
Unacromatografía.
Unadestilación.
Unafiltración.•
7. ¿Qué técnica usaría para separar?
•
Aguayalcohol
....................................
•
Aguay
aceite.......................................
•
Aceiteyalcohol
..................................
•
Arenayserradurasde
madera.............•
8. Calentamos 2 kg de un sólido puro metálico hasta que empieza a fundirse. Si seguimos
calentando:
•
•
•
•
latemperaturasubirárápidamentemientrasdurelafusión.
latemperaturasubirálentamentemientrasdurelafusión.
latemperaturanosubiráhastaquetodoelsólidoestéfundido.
9. Una disolución de azúcar en agua de concentración en masa 30 %:
•
•
•
•
•
•
Tiene30gdeazúcarporcadakgdeagua.
Tiene100gdeaguaporcada30gdeazúcar.
Tiene70gdeaguaporcada30gdeazúcar.
Tiene130gdeaguayazúcar.
10. Queremos preparar 10 litros de una disolución de Betadine® (bactericida desinfectante). La
disolución de Betadine® tiene un 10 % de povidona yodada en alcohol (porcentaje en volumen).
Entonces tenemos que mezclar:
•
•
•
9litrosdealcoholcon1Ldepovidonayodada.
10Ldealcoholcon10Ldepovidonayodada.
10Ldealcoholcon1Ldepovidonayodada.
Descargar