REVISTA MEXICANA DE FislCA 45 SUI'LE~IENTO 2.120-124 OCTUBRE 1999 Nuclear c1usters in cold fission: long-living three-c1uster nuclear molecules A. V. Ramayyal, J.H. Hamilton, I J.K. Hwangl, ami GANDS95 Collaboralions (JI Physics, Vmuierbill Universiry. Nashvil/e, TCllfleSSee 37235, USA 1 Department Recibido el J O de fehrero de 1999; aceptado el 25 de fehrero de 1999 Thc phcnomcnoll of cold (neutronless) binary and ternary fission in spontancous tission nf 2Cf was cxpcrimcntally :.!!i observed by triple garlllna coincidcIll.::ctcchnique wilh Garnmasphere with 72 dctcctors. Many corrclated pairs for oo(h binary and ternary fission were observed in the sponlancolls fission of 252Cf. Yiclds of cald lernary and ca Id hinary lission were cxtractcd from intensitics 01',-[ay transitions originating frolll the dc-cxcitation of primary/sccondary fragrncnts. Thc, spectrum for \JGSr.IOBe.14GBaternary fission indicates a very long life for Ihis triple nuclear ll1olecule. KevYo'ord.\: Spontaneous I1ssion; binary and ternary; 252Cf Los fenómcnos de fisión fría binaria y ternaria ha sido observada experimentalmente en la fisión expontánea de 252Cf usando la técnica de triple coincidencia de rayos gama utilizando los 72 detectores de la Gammaspherc. Muchos pares tanto para la lisión binaria y ternaria que se observaron estahan correlacionados. procedentes de la fisión cxpontánca de 252Cf. Conteos de la fisión fría binaria y ternaria fueron extraídos de Ins intensidades de las transiciones gama, originadas de la des-excitación de fr¡¡gmenlos primarios y/o secundarios. Los espectros de la fisión lernarin \JoSr_lOBe_J4GBa indican una larga vida de esta lTlolecula Iluclear triple. Descriptores: Fisión exponlánea; binaria y ternaria; 252Cf rACS: 27.90+h: 24.75+i: 25.85.Ca 1. Introduction Sincc Ihe discovery 01' nuclear fission, invesligation 01' low cllcrgy tission has remained as a dynamical field of nuclear physics [1-3]. Delailed studies 01' fission fragll1ent charge, J11assand energy distrihutions for a nUll1her of fissile sys. tems cOl1tinue to he an importanl source 01' information to understand the dynall1ics of fission [4]. The total kinetic energy(TKE) al' tission fragll1ents is mainly defined hy the Coulomh (plus nuclear) potential jusI aner scission. Therefore, TKE values, together with rragll1cnt rnass asymmetry, providc informalion on sorne essential characteristics ol' seission configurations. Prornpt fission neulrons and 'Y.rays carry informalion ahout the exeitation energy 01' lhe fission fragmcnts. and are an important source of infonnation ahout lowenergy lIssion [5]. The well known asymmetric mass distrihlltions of f1ssion fragments is generally recognized to he lhe reslIlt (JI'shell cffects (see Re!".6 and references in). An extreme case is that 01" (he himodal f1ssion observed ror the Fm ano Md isotopes 171 where lhe predominant fragmentations are close to lhe double magic 1.12Sn nuclci. Here, two distinct fission channels are observed, one with very high TKE, which practically exhausts the disintegration energy (q-value), associated. wilh two spherical fragments and lhe second one at much lower TKE which proceeu through the usual fission valley with enlongatcJ shapes. The previous techniqllcs of measuring lhe l11asscs. charges and TKEs 01' the fragment's [8] have allowed one to draw qualitative conclusions. In addition, there are very interesting. hut litlle studieJ new cold I1ssion modes (neutronless) which are only a small part 01' the bulk 01' the f1ssion events. In recent times. many new experimental data conceflling the spontaneous cold fragmentations of nuclei have been dctcrmincd. These include exotic decays with emission 01' heavy c1usters having masses from AL = 12 to 34 [9]. The existence of the so-called fusion vallcys or "cold" valleys on the potential encrgy surfaces al' fissionable heavy nllclei {9] pro ved lo be a key ingredient ror the interpretation 01'c1ustcr decays (the 20HPh, 100Sn and 132Sn vallcys). In thcse situations, the final fragmcnts have compact shapes al the scission points and almost loero cxcitation encrgy. Recently, a new expcrimental tcchnique has heen applied to sludy flssion processes 11,2]. By ll1easuring with large Gc detector arrays he intensities and encrgies 01' prompt ,rays cmittcd by fission fragments (both primary and secondary) in (he triple 'Ycoincidence mode, one can extracl the indcpendent yields of differcnt charge splits for sccondary f\ssion fragments fonned after ncutron evaporation and of cold hinary and ternary tlssion modes where no neutrons are emitted, prompt neutron multiplicily dislrihutions, and angular momcnta of (he f1ssion fragments for specific fragment pairs [1,2,10-13]. Thcse ncw types of information give significant new insights ¡nto the fission process. 2, Experimental techniques In our cxpcrimellts, a 25 JlCi SOllrce of 252Cf (3.1 % sponlaneous lission) covcreu with 11.3 mg/cm2 Ni and 13.7 mg/cll12 Al foils \Vas placcd at lhe center 01'Gammasphere. The primary fragments are fonned gcnerally in highly excited sta tes (;::, 30 McV) and cmit sevcral (1-10) ncutrons, leading to seeondary fragments. Thc 'Y-rays cmitted hy these secondary r--.;UCLEAR CLUSTER T,\BI.E 1. Average S IN COLD ,\10/ Ba LONG-LIVING ca Id binar)' lISSiollyiclJs from gafes on AI,IAII Zr / Ce FISSION: } ~'xl' light fr:lglllclll anú two 121 MOLECULES heavy fragmcnllransilions. Al, I _-\11 )~'xp y{l"enj tbl' ](XI1I5:! O.OJl)(:!1 ()(XI.j Te / es 1(NII.j3 0090( 18) 0.128 1021150 0.20(41 0.1133 Ru / Xc 1101142 O.060( 12) 0.044 0.10(2) 0.083 103/149 0030(6) O.O-N 111/141 I0411.j8 0.010(2) 0.012 112/140 0.020(4) 0.007 10411.j8 0.010(2) 0.(XI5 114/138 0.020(4) 0.014 1051147 OO.jO(8) 0.063 1161136 0050(20) 0.027 1Of>!1.j6 0.(J40(8) 0.007 1071145 0070( 14) O.())(l 108/1.\4 0.030(6) 0.087 cluster rat1ioacliviry, In :.!;¡:!cr approximalely sr duccd t\Vo NUCLEAR. } ,( "",,) 11", Pd/Tc rr,lgmcnls are delcctcd in triple coincidence. The ,~~(¡MoAi:hBa pair cOlTesponds lo Ihe situation where no neutrons are emitted and is eallcd eold hinary fragmcnlalion, a type (Jf TIIREE-CLUSTER and lile ~i-Spcctrulll 100 dilTcrcnt is very complex. nuclci are proMorcover il" \~liJ\l(} is Ihe lluclcus of inlcrest, ils 'Y rays are in coincidellce with aH thosc in its cOlllplilllclltary t'í;Ba fraglllcnts. Hcnce a single galc un a 2+ -+0+ transition may not he sumcicllt lo c!illlinate the complexitics arising frolll trallsitions of similar cllcrgies in dillerent isotopcs or in lhe samc isolope and its p¡lrlners. i\ -'-~I-)coincidcnec euhe \\'as huilt hy using lhe RADW¡\RE software. Frolll Ihe cuhe one can sel two gates (AND con<iilion) ami extracI lhe ~l-ray speclrulll. in coincidence willl bOlh gate transiliolls silllu!taneollsly, rOl' cxample, like tlle 2+ -+ ()+ and 4+ --t 2+ lransitions in ¡he same iS(llope, or t\\'o lransitions in lwo partner wherc Ihe tolal yicld was normalizcd to Wahl's tahle (IGI. Presenlly, many 01' lhe speclra nf odd-Z l1uclei are not suHiciently knO\\i'1lso thal olle <.:ould Ilot delermine experimclllally most odd-Z isotopk yields. The colo hinary flssioll yields are shown in Tahle I alollg with the lheorclical values preoieted by Sandu Ieseu el al. I j ji. \n Tablc \. lbe !irs! repor! 01' lbe eold hinary lissioll 01"an (ldd-Z -ood-Z fragmenlation is showll ror lile Te and Cs pair. The lrends. (',g. variatiolls with A and Z, of lhe theoretical1y cakulatcd yields are in good agrcemenl with the experimcntal yields, Uf particular nole, for even Z the odd A-ood A pairs are prcdkted to be larger Ihan lhe evcn A-cven A pairs and this is observcd in cvcry casc. Morcovcr the ¡argest theoretical yield predicled is rol' the odd Z-odd Z 1O!JTc_113CS and this is lrue \vithin lhe experimcntal results generally arc in remarkahle error. Overall lhese agrcerncnt. isolopes. 4. Cold n ternary spontaneous fission 3. Cold binary fission No dircct measurelllenls nI' yiclds of correlalcd pairs in l'old hinary lission have heen made prior 10 our work. Sincc the Ilclltmnless binary cvenls are much sm<lller than Ihose \Vilh llcutmns emillcd, doublc gating techniques have heen elllphlyúl to extracl (he yields rOl' lhe eold hinary lission. Earlier \Ve reported lhe firsl resulls rOl" lhe correlalcd pairs in cold binary lission in :.!ti2Cf[11-1,1] and 2'12pU [l,j]. Subsequenlly we extraclcl! more delailed yields nI" c(lld hinary tission 111] As <In examrk rOl' colL! binary llssion (Fig. 1), a douhlc gate was sel on lhe I XO.() and JJ2,() keV lransitiollS in 1'lhUa. Une can ckady sce lhe 171.6 keV 2+ -+ ()+ transilioll in JOEif\10, the /,ero neulron emissioll partHer or 1 ,l(iHa alllilransitiollS in olher ]\;10 partncrs or in HhBa. Thc 11lll11her 01' nculrons evaporated corresponding 10 each channel is lIlarked 011 Ihe speclrum. The yiclds rOl' cold al~ pila lernary. and cold IOnc lernary llssioll also were cxtracled rrom ¡he ~¡"-~l-'""dala. By detertllining lile inlensitics 01" /' Irallsitions in hoth l'ragmenls ¡¡nd kllowing the hranching ratios hel\Vcen dillerClll ¡ransilions. rclative hinary yields 11] 1 \Vere dctermillcd HOI lernary lission has heen known ror a long time, with the Ihird particle generally heing an n parliclc. However, cold ternal")' fission has not heen dire<.:lly ohscrvcd. In the case of cold (neulronless) alpha lernary f1ssion of2.':'2Cf, one looks at lhe corrclatioll helwcen lwo even-Z rragmel1ls wilh lhe surn ur chargcs Z 0G ;¡nd sum 01"masscs A 248. For exampie, Aí\(;Ba amI ~g2Zr are the partners ror an (t -partiele in cold lernary lissiol1. In Fig. 1, olle sces the 2+ -+ 0+ lransition of energy 171.ú keV 01" 101;1\10, which eorrcsponds lo the zero = = neulron cllallllel. One also sees lhe 151.8 keV (2+ -+ 0+) transition in IIUZr, which corresponos lo colo u-lernary lission. In Fig, 1, rhe 151.X keV transition is nOI as clcar as some 01"tlle other peaks hccause 01"highcr hackground and lhe transilions fmm all Mo partncr nuclei is coincidenec with l-1GBa, Howevcr, rcstricling to Olle (t~channel 2Zr) and I XO.9 kcV gatc on 32ú,2 e0 hy sclting a double as shown in e46Ba) Fig, 2, one can reduce the hackground. In Pig. 2 and in its insel, one clcarly sees the 151.8 keV (2+ --t- 0+) Iransition in IO:!Zr as highlig.hled in Ihe inset. Ir we 1110VCcither gale hy 5-1 () keV lo either side, Ihe 151.H keV transition to show ils prcscn<.:e is not I"mm sOllle hackground Re". !vlc.\". h~\.. 45 S2 (199tJ) 120--124 disappcars circe!. 122 AV RAMAYYA. IH. HAMILTON. J.K. HWANG. AND GANDS95 COLLABORATIONS 10 O- O::; O- S ;;;'8 ~ O L U o ::; ::; S '" ~ N Q) •.....£. e "-4 en ~ '" O- e :J ::; e . e a ,1 '" 15' ::; i1l \1' e e N S ¿ :li O- N ::; ~ ~ '" ~ ::; ~ ¡¡ v ~ S ~ ~ o '" :2-~ o !" K m , ~ in 1046Ba O- ~-,t ::; e ... ~ N '" ~ N" N e N e ... e ,1 m !" ::; ~ ~ '" "'~ ... ... ::; ~ e ." O- O- ~ ~c: N "'''' O S 'N <ri N + o + !" ~::;~ O O- • .ES ~ ::; ~ "'~ ~ 2 O- '" O- ~ ~ ~ '" O U c+ ::; ,,~ '" O6 ...e O- N ~:li ~ o e Qj e e e J5'ii1 '"e $2 Double Cote on 160.9 ond 332.0 keV Tronsitions ::; ~ S ~ "" ::; w ~ 15'0 ,1",,,,,,, r--g~5 ..; !" '" 300 200 ~OO ... 400 E,(keV) FIGURE l. Coincidcncc spcctmm obtained by double gating on Ihe 180.9 kcV nnd 332.0 keV transitions in 146Ba. TABLE 11.Thc alpha ternary isotopic yiclds Yexp oblained pcr lOO fission cvcnts. y"n"l\ the },r"n (\ Partncr llucJci }~'x¡> (%) ~¡¿Kr-ágúNd 0.002(1 ) 0002 j~Sr-~~~Ce 0.008(3) 0.Q10 ~~~Sr-J,~oCc 0.014(6) 0.017 ~~Sr-A~9Cc 0.018(9) 0.016 :~~OSr-A~8Cc 0.021( 10) 0.027 A~lSr-U; Ce 0014(11) 0.010 .\goZr-A(~8Ba 0.038( 12) 0.017 .~glZr-At,7Ba 0082( I O) 0.058 18 Zr-A;\5Ba 0084(29) 0.050 .\glzr-AJ Ba O()(~)(4) 0.017 ,~g.lZr-J,t,l 0.017(8) 0.016 0030(14) 0.017 0.011(6) 0.028 ú _~~7 Ba f\lo-!,:¡ I Xc U2Ru_gGTc In Tahle 11, lhe cold neulronless alpha lernary f1ssion yields ohservcd in lhe spontancous f1ssion of 252Cf are prcsClltetl [22]. The highesl experimental yiclds were found for thc Zr + Ba isotopes. Significant yields also were ohserved for Ihe Mo + Xe and Sr + Ce lernary fragmentalions. The avcrage valucs of the n ternary fission yields ohtaincd hy double-gating on the heavy fragments or lighl fragmcnts are lislcd in Tahle 11. In (he case of cold ternary tission, Santlulcscu el l/l. [17J ("ollsidcred that close lo the scission configuration a few of (he nucleons fonn a short neck. Al a givcn value of lhe ncck radius a t10uble scission takcs place, a third Iighl fragmcnl is formed nelwcen lhe two heavicr ones and from this point slarts the ternary nssion harricr corresponding to a givcn mass antl charge splitting [17J. Thc widlh of the potential harrier hClwccn the heavicr fragments is only 2.5 lo 3 fm with an exit point at lip distance between the fragmenls 01"3.5 lo 4 fm, indicating that iniliJlly the two hcavier fragments are penelrating their relalive potential harrier [17J. Later on as the hcavier fragmcnls move away, lhe potenlial well for lhe light fragment disappears (for tir distances of about 7 to X fm), il n Partrler nuclei 3 1~6~1o-U1Xe \~8M(}_A~oXc ,~áüPd-l.J2 Sn }~,xp (%) tillo' 0.018(7) 0.031 O.(XJ7(3) 0.014 0.(XJ6(3) 0.048 hecomes free bcing repellcd mostly along the y axis hy lhe two hcavier fragments which have already acquired large kinetic cnergics. Consequently, due to the presence of lhe shorl Ilcck the po(cntial harricrs hetwcen lhe Iwo hcavier fragments are slightly ch<mged, Ihe ca1culated cold o-ternary yields of 2r:i2Cf heing similar lo lhe calculaled cold binary yiclds of 24HCm 117] ami ilS calculatcd cold IOBc-lernary yields being similar to lhe calculated cold binary yields 01"242PU. Thc Ihcorclical values [17] are shown in columns 3 and 6 ofTable 11.Since a diffcrenl normalization is used for the theoretical calculations, the (otal theoretical yield is nonnalized lo the lotal experimental yicld, and lhe reported values are Ihe renormalized relative Iheoretical yiclds. In general, there is good agrccment helwcen the relative thcoretical and experimental yiclds. The experimenlal yiclds ror odd-odd splittings are highcr than the yiclds rOl'the even-evcn ncighhours, as foulld in the theoretical calculalions also. Thcsc enhanced yiclds in these cases Illay he hecause 01' Ihe differcnces in level dCllsities near the ground Slales in o-o and the e-e nuclci. Rev. Mex. Fís. 45 S2 (1999) 120--124 NUCLEAR CLUSTERS IN COLIJ FISSION, LONG-LIVING "'so) Double gole on 180,9( ond 326.2( 102Z,) keV V 5000 e e 2 4000 U va. jOOO e'" 2000 :l o o ¡ 1000 T1IREE-CLUSTER NUCLEAR 900 ¡ ¡ 500 '~ " ~ 100 j~ 123 MOLECULES N ~¡ j ! !r~ ¡~ ~ !j'{ !i~l-l --}1 M '9' ~~~l~ 1'15'5 ~ N '15 r;= :rJ ~ - -~",¡¡ '!1 D' ~N 500 400 300 700 900 E, (keV) -+ 0+ IXO.9 kcV transilion in 1468a and the 4+ -+ 2+ --+ 0+ transition in I02Zr. Thc pcaks al 203.2, 307.6. 146 3.'2.0. 42S.2. -t-W.5. 510.8, 51-l.7. 52-1..1and 583.8 kcV are lransilions in ¡'¡üBa hccausc (Ir lhe 324.2 kcY (7- --t .) -) transition of 83 in f-1(iURE 2. Thc coincidcn(.'c ~pcctrum ohtaincd with a oouhlc gatc 011 326.2 kcV lrallsilion in J02Zr. Thc c1cnr peak al 151.8 McV corrcspomh (he 2+ 10 lhe 2+ lhe gateo The cnhanccJ experimental yiclds for the cold (\ .lcrnary J o) Ooo.ble 90Ie en 'lBto( 1OlIBo)cn:I 6\4,1( Iission in \vhich heavicr partncrs are Ba ¡SOlopes could he al. Irihulctl lo lhe static octuplllc dcformatioll ohscrvcd in this region [2], sinec oetupolc shapes at lhe seissiol1 conligurarion L'ould signiticantly lower lhe Coulomh harrier and increase lhe pcnclrabilily hetwcen the final fragmenls. Note thal the cxperimentally determined isotopic yields <lre illtegralcd yields. In lhe spontancous fission experiment 01' :!;'"':!cr Ihe majorily 01' lhe hinary amllernary splittings silions over a wholc rtlnge 01' TXE's fmm zcm up 10 al Ieasl lhe neulroJl hinding energy. These are the !irsl identilicatioll alld determinaliol1 nI' yields 01' lhe panicular corrclaled pairs wilh eold n lernary lissiol1. 5. Cold lOUc Icrnary sponlancous b) Do.ble 9'Jl.e en 116(1£) ond 1l\4.1(-sr) keY tronsitions !Cad 10 highly exciteu f1lw.1nuclei whieh afIer neutron evaporalion are decaying 10 lhe lowesl states hy gamma cascadcs. Less frctllIenlly, lherc are also cold fragmenlalions which leave lhe hnal nuclei in thcir ground 01' lirst rew cxcited states. \Ve detine these (old tission experimental yiclds as inh:gralcd yiclds sincc lhey eolleel the contrihuliollS of all (nclIlt"Onless) lran- associaletl -sr) keY Ironsitions lission The (olal yield of ternary spol1taneous lission \vith lhe lhinl particlc heing IOlk is expecled (o he ::::::I()()liHIt:S 100\'L'rthan to(al (l lernal")' tission yield IISJ. Nexl \ve scarchcd nClllronless lernar)' lission wilh the third parliclc hcavier cluster such as IOBe. Contrary lo n-temary ror cold hcing a Sr: ""¡Ih o JOOO "00 J200 J300 E7 (keV) F((;URE J. a) COillCidcllCC ¡.ray spCClrUIllohtaincd by doublc gat. til1~ (In thl' XI-t.7. 2' ---¡. 0+ trallsilion in 9651" and 181.0 kcV. :2+ ---¡. O' Ir<lnsilioll in I \l)Ba. h) Coincidl'llcc lailll'd hy douhlL' gatling un Ihe SI4.7. 2+ -t ¡'.ray spcclrum 0+ transition amI on lhe hackground al 176.0 keV ncar lhe 181.1 kcV 2+ transilioll in l'lliBa. BG : Background ob- in 9GSr -t 0+ The coincidcnce spcclra sl1mvs lhe 977.5 keV, .1+ ---t 2+ transili(J1l in !H;Sr and lhe IX 1.0 ant..l 332.6 keV peaks il1 146Ba. \Vilh;¡ douhle gate on Ihe 3362 eOBe) and 181.0 et.t6Ba) kcV peaks, lhe X14.7 keV (2+ ---t 0+) transilion This dala eSlablish corrclaled lhe IOBc lernary in 90Sr is sccn. SF for 965r_146Ba pairo The yield lo the lIrsl excitcd state 01' IOBe n c.\Ciled slale energics > 20 f\1cV so -, clIlissioll \\'ould nol he scell. IOBe has all eXl:iled (2+) slale al an cnergy 01" 1'0,. ''''Sr_"uiBa panner is '" ~(2) X 10-4 per lOO SF and lo lhe ground s(alc ::::::O. This yiclLl is 4.4% of lhe col ti (\- J .J6X f\ le V. \\'!len sClli ng a t..Iouhle gale 011 lhe X14.7, and IXI.O keV 2+ --+ 0+, lransilions in %Sr allll]l(¡Ba rcspcl:t¡vely, we see the 977 keV ,1+ ---t 2+ transilion in ~1¡;Sr(Fig. J) ami a peak al ::::::.,36R keV (ohscrvcd al 3362 kcV) wilh no Dorrler hroadening. Assurning thal the peak at .1362 kcV is lile 2+ -t 0+ lransitioll in IOBe. \Ve sel one gate on lhis lransilion ant..llhe other gale on the 2+ --+ ü+ Iransition in HliSr. (crnary lission yield 01' 0.009(4) per 100 events for 146Ba and ""Zr 1121 and 1,O';{,01' the eold hinary [ission yield [111 01' O,O~ (1) per lOO evenls for I4"Ba and IO"Mo, Thc yicld 01' this corrclaled pair with IOBe is 8 ::l: 4% ol' the total IORe yicld [18J. Thc major queslion is \vhy is the 3362 keV line no! Doppler hroad~neJ sincc the 2+ slate Iifctime is 125 fs antl lhe stopping lime 01' a 17 McV IOBe is 1250 fs. A 11011- Rl'\'. Ml'x. F¡.\' . .t5 S2 (1<)99) I 20-1 2-t 124 A.v. RAMAYYA, J.H. HAMILTON, J.K. HWANG, AND GANDS95 COLLABORATIONS Dopplcr shincd peak is <1lsoobscrvcd by Muttcrcr et al. (1 X) with NaI uctcclors in JOBe ternary ¡¡ssion. Onc possihlc cxplanatinn is Ihat after formation 01' 10Be in the ncck !J(j SrJOBc_I.1üSa form a nuclear Illolcculc with lOSe hcld in lhe potcntial \Vell ror a time;::::: 10-12 s during which il l' dccays bcfofC lhe lluclci break up into ternary f¡ssion. particlc detectors LCP ami') rays. so we (,;an galc on Ihe insidc Gmnmasphcrc Acknowledgments Ir Ihis is IfUC, Ill<lny cxciling new possibilities for molecular configuratiolls ami nuclear structures are apencd up. Wc will gain furthcr insight ¡ntn Ihis qucslion in our cxpcrirncl1t with ¡¡ght chargcd Thc work al Vanucrhilt thc U.S. Dcpartmcnl H8ER40407. Univcrsity 01' Encrgy was supported in part by undcr grant No. DE-FG05- 1. G.M. Ter.Akopian et al., Phys. Ri'V. Let(. 73 (1994) 1477. 7. E.R. Ilulcl ell/I., Phys. Rel'. Le1l. 56 (1986) 313. 2. J.H. Hamillon el a/. Prog. Parl. Nucl. Phys. 35 (1995) 635. 8. P.B. Price NI/el. Phys. A502 (1989) 41c. 3. R. Vandenbosch, in Proceedings of lllt' /1Ilemariona! Ctm!er('11("('011Fifiy yellrs Rescarch in Nuclear Fis.\"ioll,Hatill, GerI/Wf1.\' (1989). editcd by D. Hilshcn, H.J. Krappe. and W. Von Ocrtzcn [Nuc/. Phys. A502 (1989) 1]. !J. A. SalldulcsCll and W. Grciller. 1. Phys. G 3 (1977) L 189. 4. F. Gí)nnenwcin, in Tlle Nuclear Fissioll ProceS-\"ocditcd hy Wageman. (eRe Prcss. Boca Raton, 1991) p. 287. e. 10. G.M. Tcr-Akopian ('1 al., Ph.v.\". Re\'. e 55 (1997) 1146. 11. A. Sandu1c.scu l't l/l., Phy.~. Rel'. C 54 (1996) 258. 12. A.V. Ramayya <,1 <tI., PhY.I. Nn'. e 57 (1998) 2370. 13. A.Y. Ramayya et al., PhYJ. Rf'v. Le11. 81 (1998) 947. 5. H. Nifencckar. C. Signarbicux, R. Balxnct, and J. Paslou, Pro(,{,l'ding.\' (l (he 3n/ /AEA SJ1IIfJosiuI1lolllhe Physics lIIul ('lIellliSlr.\"(?f Fissio/l, Rochestl'f; /973 (IAEA, Vicnna, 1976) Vol 2. p. 117. IG. A.e. Wahl ('ll/I., Al. Data Nud. /Jala u,bles 39 (1988) 1. G. J.F Bergcr, M. Girod. and D. Gogny. in ProCl'edings of llli' /11lernaliolla! C0/1ferenci' 011Theoretiea! AjJfJlvaclll's }{em')' hm Reaclion Mi'e/wllisms, ParÉs, FrrlflCl', /984, editcd by M. MartillO!. e. Ngo .. and F. Lepage (NI/e/. Phys. A428 (1984) 2:k]. 18. M. Muttcrer el a/., Proc. oI3rd /11/. Con! UJi Dynamical lIS. /leC1S(1"uc/mrji.nioll. edÍlcd by J. K1iman and B.1. Puslylnik. (Dllhna prcss. Duhna, 19(6) p. 250. 14. G.M. Tcr-Akopiall ('la!., Phy.\". Rev. Letr. 77 (1996) 32. 15. Y.X. Dardcnne el al., Phys Rel'. e 54 (1(96) 17. A. S,m¡JulcsclI l'! l/l.. bll. 1. Modcrll Phys. Rt'v. Me.r. ¡:ú. 45 S2 (19()9) 120--124 206. t.: 7 (1998) 625.