Cajón de Ciencias Propiedades de las raíces Las raíces, al igual que las potencias, tienen sus propiedades. De hecho, aunque quizás no lo hayas visto así en el instituto, las raíces son un tipo especial de potencias. Vamos a explicar primero las propiedades como si no supieses esto último, y luego veremos cómo se convierte una raíz en potencia, para finalmente darnos cuenta de que las propiedades de las potencias y las raíces son las mismas. Producto de potencias con el mismo índice Recordemos en primer lugar, para los despistados, que el índice de una raíz es el número que se coloca encima de la √ . Si se coloca un tres, es una raíz cúbica, por ejemplo. Si no se pone nada, se entiende que es un 2, una raíz cuadrada. Si tenemos una multiplicación de raíces con el mismo índice, podemos agrupar todo el producto en una sola raíz: 3 15· 3 6=3 15· 6 ¡OJO! Esto sólo puede hacerse si tenemos un producto. NUNCA si lo que hay es una suma o una resta. Grábate esto a fuego en la cabeza, porque es uno de los errores más frecuentes. Cociente de raíces con el mismo índice Igual que pasaba con el producto, dos raíces que se estén dividiendo pueden agruparse en una sola raíz si el índice de ambas es el mismo: 4 20 / 4 18=4 20 /18 www.cajondeciencias.com Cajón de Ciencias Raíz de una raíz Si tenemos varias raíces una dentro de otra, se pueden agrupar en una sola raíz cuyo índice es igual al producto de todos los índices de cada una de las raíces que había antes: 20= 20 3 4 5 60 Esto se puede hacer con cualquier número de raíces “encajadas”. Pero de nuevo UNA ADVERTENCIA: si además de la raíz hay alguna otra operación que esté fuera de la raíz “encajada”, lo que acabas de ver NO SE PUEDE HACER. 3 6 53≠ 53 18 (Si la rayita de la raíz sexta hubiese llegado hasta el 3, entonces sí podríamos aplicar la propiedad, porque no habría nada fuera de la raíz encajada). Exponentes dentro de raíces Si tenemos un exponente dentro de una raíz, da el mismo resultado que si el exponente estuviera fuera de la raíz. Esto suena un poco raro, casi a “chanchulleo”, así que vamos con un ejemplo para demostrarlo: 94 = 6561=81 Pero por otro lado, si operáramos con el exponente fuera, haríamos primero la raíz cuadrada de 9, que es 3. Nos quedaría entonces 34, que da exactamente (hazlo si no te lo crees) 81. Esto quiere decir que cuando tengamos exponentes y raíces, podemos operar el exponente dentro o fuera de la raíz, según más nos convenga. ¡ATENCIÓN! (por si lo estabas echando en falta): sólo podemos aplicar esta propiedad si el exponente está afectando a TODO lo que hay dentro de la raíz, como pasaba en el caso de las raíces dentro de raíces1. 3 34 1≠3 314 1 Porque, como veremos dentro de poco, RAÍCES Y POTENCIAS SON LO MISMO. Perdón por ser tan pesado, pero es la mejor manera de meter estas grandes verdades dentro de la cabeza. www.cajondeciencias.com Cajón de Ciencias Sacar factores fuera de una raíz Si dentro de una raíz tenemos un exponente que es mayor que el índice de la raíz, podemos sacar números fuera de ésta. Veámoslo más claro con un ejemplo: 3 28 Pero ese 28 también lo podemos escribir de la siguiente manera: 3 28 =3 23 · 23 · 2 2 Y usando la primera propiedad de las raíces (sólo que al revés), podemos escribir: 3 28 =3 23 · 23 · 2 2=3 2 3 · 3 23 · 3 22 Pero la raíz cúbica de 2 al cubo es 2 (si de nuevo no te lo crees, hazlo con la calculadora), por lo que: 3 2 3 · 3 23 · 3 22=2· 2 · 3 2 2 O lo que es lo mismo, organizamos la potencia de dentro en “grupitos” de exponente igual al índice de la raíz. Por cada uno de los grupos que podamos formar, sacamos una base. Las potencias que nos queden inferiores al índice de la raíz se quedan dentro. www.cajondeciencias.com Cajón de Ciencias Las raíces también son potencias Por si no lo habíamos dicho antes, que quede claro. Antes de que sigas leyendo: si aún no has visto esta parte en el instituto, o si al leerla ves que te lías, déjala a un lado. Con lo que hemos visto hasta ahora, tendrás suficiente. Pero si las has visto en el instituto, o si estás dispuesto a aprender una verdad que te facilitará mucho las cosas con las raíces, sigue leyendo. Las raíces se pueden escribir como potencias de exponente fraccionario. Es decir: 3 4 5=4 5/ 3 La fracción del exponente lleva como numerador el anterior exponente del número, y como denominador, el índice de la raíz. Algo tan sencillo hace que todas las propiedades que hemos visto para las raíces puedan explicarse a partir de las propiedades de las potencias que ya te sabes, con lo cual todo ocupa mucho menos espacio en la memoria. Vamos a demostrarlo. Producto de potencias con el mismo índice Habíamos dicho que si tenemos una multiplicación de raíces con el mismo índice, podemos agrupar todo el producto en una sola raíz. Hagamos lo mismo pero con exponentes fraccionarios. Recuerda que una de las propiedades nos permitía multiplicar las bases de dos potencias con distinta base pero igual exponente: 3 15· 3 6=3 15· 6 151/3·61/3=(15·6)1/3 Para el cociente de raíces con el mismo índice (que ahora se traduce como mismo exponente) se haría lo mismo. Raíz de una raíz Vamos a ver el ejemplo que poníamos para este caso, sólo que cambiando las raíces por exponentes fraccionarios: [(201/5)1/4]1/3 www.cajondeciencias.com Cajón de Ciencias Pero esto es la propiedad “potencia de una potencia”. Recuerda que lo que hacíamos era multiplicar los exponentes. Nos da entonces 201/60, que, si lo pasas de nuevo a raíz, coincide con el resultado original. Exponentes dentro de raíces Si todo lo anterior te quedó claro, esto es todavía más fácil. 94 =94 / 2 4 9 =91/ 2 4=9 4/ 2 Sacar factores fuera de una raíz Y si entendiste este último paso, lo que queda es una nimiedad. Porque una vez colocada una raíz como un exponente fraccionario, éste puede simplificarse como cualquier fracción (en el ejemplo anterior 94/2 = 92) o, si el numerador es mayor que el denominador, puede separarse en dos fracciones: 28/3 = 22·22/3 www.cajondeciencias.com