the role of reuse and wastewater treatment

Anuncio
rexuS:
ofthewater-energy
thechallenges
Meeting
treatment
andwastewater
theroleofreuse
withenergyrequired
forwater
areintertwined,
O Waterandenergy
production,
soreusing
forenergy
andwaterrequired
treatmeni,
r
s
o
n
e to address
water
and
e
andclosinq
wastewater
and pttrnconHel
Lunnovl,xwlte-xocHoo
reducingresources.vnlrHrtHn
is
ofwastewater
furtherthereusepotential
explainhowexploring
keytofutureurbanliving.
rTrhe Sun is the source ofall
I energy on Earth, and watet is
the basis ofall life on out planet.
The relationship between these
vital rnedia only becomes clear
on closer inspection: energy ftom
solar radiation fuels the natural
'rr?ter cycle. Gigantic quantities
ofseawater are desalinated by
evaporation and transported as
clouds, returning to eaith as
fieshwater plecipitation.Without
the input ofenergy from the sud,
the entire water cycle would
quickly come to a standstill.
\Vhen warer expertstalk about the
nexusofwater and energythey do not
usuallyinclude thesenaturalglobal
without which lile on Earth
processes,
would not be possible.ltis becauseof
this common onrissionrhar,witlin the
lastdecade,the terms'waterfootpdnt'
and'virtual water'havearousednore
and more interest.Florveveqin general,
usedfbr
the cechnicalprocesses
energyconverslonrequrrewaler,
while water usercquiresenergy.Even
at rhislevel,thenexusofwater and
energyisinexrricable,and the link
belween the t\,vois stronger tl, an nright
appearat {irst sight.
Directly and indirectly,water is
essentialfor checonvelsionofenergy.
Water is used!o generateelectricily
by hydropoweqwaveor tidal polver.
Huge quantitiesofwater areneeded!o
dxploreand extractfossilfuelsand for
power plants,which usestean to drive
turbinesand cooling weter to dissipate
heat.In addition,the cultivarionof
encrgycropsfbr biogasand biofuel
producrion alsor.equires
water.
There is alsonanifold trseof
energyin the rvatercycle:enelgy
is requiredfor lvater and rvastewater
distlibution, usageand treatment,
with householdsrequiring rhe
largestshare.On the other hand
water and wastewatercontain energy
in severalforms,which can be used
in generatingelectricityand heat.
To sum up: energyis neededfor
lvater cyclenTar,agemer,!, water is
neededfor energyproduction and
water reusecan help to seveboth.As
with water reuse,theunlocking and
enhancedreuseofthe elcrgy con
tainedin waslewateris a key tool in
solvingthe waler energynexusthat
urbanisedcentresfaceworldwide.
nexus
Thewater-enetgy
Solving the rvatet energynexus
to preserveour envlronnent ls
undoubcedlythe challer,ge ofthis
cennrry Populationgrowth and
increasingliving standrrdsheve
depletedresourcesand caused
10000000
I 000000
100000
biodiversitylosses,
and evenclinate
change.Itis thereforevital to rcvise
our nodels of development,especially
in terms ofholistic managemenc
of
water and energy,
The traditionallinearapproachto
wa[er managementoflen doesnot
recogniseor undersrar,d,
asit should,
the inceractionsberweenwater and
er,ergy.Wirhincreasingwater scarcity
and soaringenergycosts,thestrong
links betrveenwater and energy
arebecoming ilcreasingly obvious.
The effectsofglobal warming and
climacechangereinfolce the need
for a holistic approachto managir,g
energyand rvater- alolg with rTutri
ents in an inregratedsystemthat fits
rvith gr,owingurban development-
for life
Energy
The rotal solarpower supplyto the
earthis in the rangeof10 nrillion
-Watts
per person[V/cap),most of
rvhich is driving rhe globa1natural
freshw:rtercycle (Kroissand Svardal,
2011). However,sol:rrirradiation
and freshwater availabilityare
extremelyvariableover tine and
region,and population gro*th is
often not adequatelymatchedby
water or energyavailabiliry
As illustraredin Figurc 1 the current
nreanglobal primary power consumption is about 3000W/cap, and up to
6000W/cap for developedcountries.
Some 1000W/cap ofenergy consurnptionis usedfor transportatiol and
aln-rost
200W/cap for food produc
tion. By comparison,the watel suPply
uses10 to 50W/cap,while highly
effrciencbiologicalnutrient removal
wastewatertrcatmentplantsneeda
powerinput ofbetweer, 0 and 20
'W/cap.
Pumping energyrcquirenents
for water systenr and energyrequirementsfor wastewaterpolishingbefore
recyclingstronglyvary dependingon
the specificlocal situation,butarein
tl, e sanreorder ofmagnitude.
Energy
forwater
t0000
'|000
o
E 100
Food
wsbr
Global$lar Glob.l |naan6lob.l ftean Trafc
pdmary
prim.rY
tampo.t prodlclion 3upply lreatnent
iftadidon
po*r
pows
The energyrequiredcoconveyand
levelsis in the
trcat water to acceptable
rangeof0.05 to 5 kVh/m', depending
on the water source(fieshwacer,
tigure
1:Global
0nmary!ower seawatero[ wastewater)and specific
regionalparameterssuchasclimate,
consumption
water availabiliry r,vateruse and
andpowertor
watersupply
.populationdensity.Thetypical
andI/astewater speci{icenergyconsumptionofthe
(adapted major elenenls of!he urban water
treatment
phltlinAehkdo&
cA @ z.etururt, o"""tinrtion
lEraot
e Z.ffWml stt" wati,,Projec!
Cornel, 2010;Voutchog2010).
'Water
end wastewaterEeatment
facilitiei energyconsumpcionvaries
acrossa similarrangefiom 0.2 to 1.41.5 kWh/mr dependingon the pumping head,leveloftreatment and plant
capacity.Waterconveyancecan reach
r,aluesof 1. 1 kWh/m' and may have a
signifrcandy higher energy footprint
in specificcases,such
aslong-distance
transportation: for instance,the
StateWater Project in California,
for example,uses2.5 kWh/nr.
Adranced pastenater treatment
for nutrient removal'and water reuse
requires more enelgy. Nevertheless,
water reuseis one ofthe most cost
and energy eflicient alqernativewater
resourcescomparedto desalination
and long distalce water transpertation.
Energy efhcient advancedwater
recycling plants such asthe
Groundwater Replenishment System
(GWRS) project in OrangeCouncy,
California, are producing rerycled
rater ofdrinking water quality with a
relatively low energy footpiint of0.53
kWh/rnr (Mehul, 2010). Comparing
this to one ofthe most energyefficient
desalinationplants,Ashkelonin Israel,
which hasan energy consumption of
2.9 kWh/mr (Voutchkov,2010) and a
sinrilar treatrnent capacity (265,000
m3ld and 330,000m3ld,respectively),
lhe energy footprint ofadvanced water
reuseis 5.5 times lower.
Energy optimised nutrient removal
with anaerobic digestion, asfouird for
example at the Strasswastewater
treaffnentplant inAustria (220,000
peopleequivalent(PE)),notonly hasa
relatively low energy footprint of0.35
kWh/rn- but alsoproduceselectriciry,
achieving energy self+ulliciency
Q..lovaket aI.,2011).
Until recendy,seawaterdesalination
wds limited to regions with a predomi
nandy desertclimate.Thelatest
technologicaladvancesand en
in water producassociated
decrcase
tion costsand energy demand have
exp:nded the tecbaology's use to
coastalareasffaditionally supplied with
ftesh water resources.Desalination's
energy consumptlon is still higher
than ocher water supply alternatives,
but the implementationofhigh
efticiency reverseosmosis(RO)
rnembranesand energy recovery
deviceshas enabled the specilic energy
consumptionto be reducedto2.5-2.8
kWh/m3 at large desalination plants,
and cut annualisedspecfic costs.
Globally, Iainwater haryesting
@WH) technologies are becoming
increasingly popular a.sthe desire for
buildings to become rnore adaptable
. and resilient to climate change and
population growth increases.It is
('
035kwh/rr, St""" eneqysolf€uffichtltIIIWIP,luofia I
O.Sf*Umftt[89-SE&q!9!4,
"t
€4
i
fl:
E
3z
g
$r
tlb.
otr[Ifio
frbl
lvrtu Pnll|trin.ryld.ldirq /r.dvdd 6'dvdld
lrubtgrt dl.fihton ttqb|nt
ftlht!
tludg. drd!6$t
nuficdoi
2r ing equipment and schenes charac. Figure
Typicalenergyterisedby high energyconsumption,
footpridof tpically in the rangeof0.3-1.2
themajor
elenenls kWh,/mr with a signiiicant carbon
andprocesses
in footpdnt.It shouldhoweverbe noted
watercycle that the majodty ofrainwater harvestmanagenenl iflg s]stems arc at small scale,being
(ldattedfromiicda used for individual or high-rise buildandComel,2010,ings, so a direct cornparison with large
Wilson,2009,facilities is not appropriate.Innorztive
Voutcikov,
2010 gravity-driven RWH slstems,rccoverandlazarova ing kinetic energy from the water flow
etat,2012).or using solar energy,rnay help reduce
energyconsumptionand improve the
sustainabiJiryof rainwater harvesting.
Waterforenergy
The water footprint ofenergy (that
is, the volume offreshwater used in
energy production) is not well documencedand understood.Nevertheless,
in the framework ofsustainable
development, the water footprint of
conventional :nd renewable energy
sourcesis becomingone ofthe major
criteria ficr assessingtheir sustainabili+
W'ateris a crucial component in
producing power and renewable
energy (such asgeothermal power,
heatpumps,osmoticpower andbioethanol) .Wich the growing interest
in renewable bioenergy its high
water demandpresentsanother
challenge,particularly
in conditions
ofwater scarciqr
'
As shown in Figure 3, the water
footprint offossil fueJsis relatively low,
in the order of0.38 to 0.72rn!/MWh
energy for gas,nuclear and coal
(Gleick,1994).Thewater usedby
power plants for driving turbines arrd
cooJing is sirnilar, around 1 to 3
m3lMVh. Nwertheless, the significance ofthis water requirement was
highlighted during the Eurcpean
'huadred-year
summer'in 2003,when
numerous power plants were forced to
reduce their output or even shut down
becausethere was insufficient cooling
water available.
BR W|!rRe|||. Bnck:h $.irbr
Rftr d-.lin.do.
&dln.ton
R:tnrel
hrrvltf|rg
al energy sources,at up to 250
mrlMwh, equivalent to 6 8m'/GJ
(Mekinnen and Hoekstm,2011).The
shift towards bioenergy requires more
water,up to 600 and 1130m3lMWh
for biogas and biodiesel from crops
respectively(Gerberu-Leenes
et al.,
2009).Dependingon the methodsand
rypes ofsubstrate used,the water
demandis between68 and 443
nrlMWh for biogasproduction,
between 144 and 1440rn-lMWh for
bio-ethanolproduction,and betr,veen
360 and 2160 nflMWh forbiodiesel
production.Evenin regionswith a
comparatively large rainfall, irrigation
water might be needed to cultil'ate
energy croPs.
An imporant factor for water
consumptionin energyproduction is
the quality and a ilabiJity ofused
water Someprocesses
poilote water
more than others, and in different
ways.For example, cooling lowers
mosdy changethe temperatureofche
wate! whereasthe water usedfor coal
exEactionor plant opention (ash
hardling or flue-gas desulphurisation
processmake-up water) might be
contaminated with suspendedsolids,
acidsor heavymetals.ln termsof
ar,ailability,er,aporation should be
assessed.ln
addition,water for cullivat
ing crops is no longer directly available
once used,in contrast to water fiom
one-pxs cooling slstems.
The rnost water efiicient way to
generatebioenergy is to use total
biomass,including the parts without an
economic \,2lDe,to gene$te heat.
Genenting electricityis the second
bestoption. In principle,genenting
energy from already availableresidues,
for instance ftom the food industry,
should have priority over the
production of energycrops,because
the wster demand is not the only
maj or factor - further iniuences on
the ecos)stem can be considercd,
such asdeforestationJo gain further
nexus
Solving
thewater-enelgy
Integratedresourcemanagementin
the Cities ofthe Future or eco-cities
representsa major pandigm shift in the
way new cities will be built or older
ones retrofitted.The aim is to achieve a
changeftom the current unsustainable
statusto sustainability,neet the net
zero greenhouse emission targes, ald
reuseand recycle water and recovet
resources,including nutrients
(Novomy et al.,2010).A closedurban
v/ater-energy cycle can be achieved
thrcugh a holistic approach of\tater
management'combined with heat and
energy recovery
Decentralisedor semi-centralised
water distdbu4on systemswill be more
efiicient for future cities when water
reuseis inevitably considered @ieker
et al.,2010).Watersuppliescanbe
tailored to match demand more closely
in centralisedwater inftasffuctures,
adapting water quality to the given use.
With substituting fresh water with
appropiiately treated recycled water, it
is possibleto save30 50% ofdomestic
water demand.The implementatron of
the semi-centralised approach to urban
infrastructures would not only a1low
substantialwater and energy saving,but
would also provide new opportunities
for energy recovery from biowaste
throughout biogasprcdsction and for
the'useofnutdents in sewagedudge to
produce biosolids for agriculture and
otheruses.
It is importan! to sEessthat alternative water resourcesare not in compebition with each odrer or with
conventional water supply sources.
-They
should insteadbe consideied as
essentialcomponentsof an inlegrated
water menagement Portfolio that
bdancestheir usedependingon local
conditions to improve weter and
energy management and efticienry and
securea reliable and sustainablelongterm weter suPply.The sYnergies
benveen desalination and water reuse
have to be strengthened asthere should
be an incentive to keep.desalinated
watel in the water useloop aslong
component ofa sustarnablewater
resourcesmanagement plan, does nbt
provide dre gamevalue chain irnpact in
terms ofreclaiming the energy already
embodied in the water product.
For alternative water resources,
choosing the best option for water
management meansdeveloping
and applying a multi-criteria analysis,
or the triple bonom line approach,
basedon economic, environnental
and socialimpacts.
r0 000
4W
Ito
5rs
E
e
I
lwo- ryo!.. 8l9dl6.d
G.s ud€r Corl _sohr-Cnr|e
coF ctopr
aspossible,minimising freshwatei
to the sea.lnthe Cities of
discharges
the Futurc, all weter resources,including rainwater and seawategifavailable,
should be comidered in solving the
water-energy nexusSustainability in water rcsource
planningrequiresconsiderationof the
embodied energy in the water cycle,
and in water recycling in particular
(Wilson,2009;Meda and Cornel,
2010).Waterreuseenablesenergyuse
within the water cycle to be optimised,
particularlywithin decentralisedand
semi-autonomousurban slstems,and
at a treafinent level that adheresto the
'fit for purpose'principle.Recycled
water needsto be delivered at a cost
that isjustifiedby its purpose,so
energy-intensive processesshould
be limited unlessexceptionally high
water quality is requircd.
It is impoitant to sfiessthat the value
ofrecycled water includes the embodied energy that is reclaimed from the
water rycle.when the capitd and
operational costsof embodled energy
in recycled water are accounted for, dre
overwhelming savingsfrom operational energy recovery substantially
ofiiet the costsofwater reuseinfrastructure flJifilson, 2009).Reclaiming
treated westewaterpromotes eni/ironmental benelits by emuring better
water quality and optimising energy
use within the water cycle.Water
consen€tion, while an important
Toward
energy-positive
wastewatet
tteatmeni
Wastewater treatment plants have
the potential to become environmental
pladorms, and to provide an energy
source for tomorrow's eco-cities as
part ofa systemcharacterised
by the
srnallestpossible ecological footprint
(GWRC,2011).
It is important to stressthat energy
self-sufficiency for wastewaterfteatment faciliEescannotbe considered
asan objectivein itself,but asa component ofa globalwater management
shategy that takesinto considera[on
regional and local specilics aswell as
environmental,social, and econornic
issues,Imprcung wastewetertreaunent
performance is and should be the '
prirnary objective, followed by
choosing the best availablepractices
and technologies for enhanced energy
efticienry and the bestuseofsludge
for energy produchon and rccovery.
To be more attrachre, innovative
techaologies for energy recovery
must be cost-effecdve, reliable,
easyto operate and should have no
adverseimpacts on water quality
or the envrronment.
An analysisofcurrent practices
shows that energy self-sufticiency
tigure4: for wastewatertreatment is a feasible
Lefi:Strass goal. However, for existing plants
IYWIP
intustia this requires a long optimisation
(Cr€dit
Bernhardprocess,relatively high levels of
y{eti) investnent ald the use ofinnovative
Right:
AsSarnra technologies in new; more energyWMBlordan efticient facilities (GsrF.C, 201 1;
(CrsditDegemonl) Svardaland Kroiss,2011).
Figure3:lvaie]
foolprintofenergy
prodrclioI
(Adapted
lrom
Gleik,lgg4,
terbens-Leenes
ct
al,2009and
iieconnenand
[oskslra,2011).
,
I
Rawsewage
R o b L r s tb c n c h m a r k i n g p r o s r a r r r r e s
lrl)d glridcliucs lor cncrlr' oprirnis.rtiolr
h l ' c b c c r i n r p l c n r c n t c dn r E L r r o p c
s i n c e t h c 'e r r l v 1 9 9 ( h ( A u s r i i r . F r r n c c ,
Gernranl. SrvirzerhrLl :rrd SrvcLlcu),
d e n r c n s n - e t i r gI c o n s i d e r r b l cp o t c n t i : r l
f - o l c n e r g , vo p t i n r i s a r i o ni n e x l s t i r r g
pl:rnts ofbetr.een 20 anct 50%
( L i n d t n e f e t x ] . . 2 0 0 8 ; W e ! te t r l . .
2 0 0 7 ) . S i n r i l i u e r e r s , vr e d L r c t i o n
p r - o g r a n r r e sh i l r , eb e e r l r u l c h c d i n
A u s t r r l i : r .t h e U S u d C a r : r d u ( W E l l F
2 0 l { ) ) . A s I l e s u l r .r c v c l e l \ r a s r c w i r r c r
trc.!rellr phllts i]l Europc hlvc
achieve.l thc- soirls ofhigh crcrgv
cllicier)c\ arld cncruv scl1]snt'licicncl..
Tod.nl t\\.o lnuniciprl uasrervrter
t r c r t r n . - n tp l a n $ i n A u s t r i a r r e e l l c r q v
seli sLrfflclerrr the 220.00(l l'jE Str':rss
p l a D t ,( F l g r r t e{ t : r )r n d t h e 5 ( 1 . ( l 0 0 l ' ] E
\Xrolfgrngsc'c'lschl phnt (Wctt ct.rl..
2 ( ) 0 7 :N o \ r k e t a l , 2 1 ) l 1 ) . r n c lt h e r e r r e
irurllbcr ofothcr ongoing prcjecrs.
Iioth ofdrcAustli:rn energl seli
s L r f l L c i e npt1 : r n t sh l v e a c t i v l r e d s l u d e c
p r - o i : e s ew
s i d r r r r r r i e r t r f i r ) o \ ' : r l( $ , i t h
1 c s r h l r l r r q t o t r l p h o \ p h o r u s / 1 ,r n . 1
ovcr.(j0% nitroecr rcrlxrval) and
.ncrgv oPtimis;rtion ovcr a period of
l o L r r r d 2 0 , v c : r r s . T h ck c , vc n e r ' g 1
optinli\.rior nrL'r\Lrfesfor rhese
t t ' o p h n t s i n c l u d e o p t i l r r a lr e r r t i o u
c o n t . o l . h i s h e r r e c o v e r vo f p : l r r i c u l r t c
cuborr f;our thc pr irn;rr,vsertlellsto
p r o v i d c n o r c o r g . u r i cr r a t t e l f o r
. r n : r e r o b i cd i s e s t i o n .o p r i n r l s e c l
n r e r o p h i l i c i r r i r c r o b j cs l r r d g cd i g c s t c l s ,
e ] l e r s r e f f l c i e r r rc o r r b i n c d h c l t r d
p o \ \ , e r( a l H P ) L r n i $ . r n d u s t ' o f r h c
I ) F M C ) N p r o c c s sl o r c l c r m m o n i f l c a
!lor ofthc sl dgc .lc\\'.rtcring filtr-etc
(Novrk ct i]..20i 1).
\ r . , . 1 . . J . i., . 4 . , . , . . . r i ^ i,.. " - , . ^ , . r - , 1
ir thc litcraturc on the desielr arrd
,:,pcrrtron of ncw energy-sullicient
wr\tcwxtcr trcxtnlerlt planrs.'f he As
S . u n r ' .pr h n t i n J o r d r n ( F i g u r e - l ) 1 sI
vcr\' sood e:ianrple. achie!'irle r trrgct
of over 90% oIre]llsufncicucv ill
e n e r g J s i r r c ej t s c o l r n l l i s s i o r i l l e i n
2 { ) { ) i i( F i c v c z ,2 t ) 0 9 ) . T h i sn e n ' 2 . 2
million 1'[ capaciw hciliq'trcrts
2a)7.0(l(lnr'/d ot $'aste\,irrcr lbr
the inhrbitantsofAnrnl:r md thc
s u r l o u r d j n e l r r - ] s ,p r o d u c r n g . r q L r . r l i t v
cll]llcut ibr rcusc in igricultulc.
Thc plant has an rctir.:ted sludge
procL\s Nith ritrcqcn rcnovrl and
d i s r n l c c t i o r ru s i n g c h l o r i n e . o d o u r
t r - c , r t r r c nat | d a n a e r - o b i d
c i e e s r i o no f
t h c n r i x e d s i u d e e . l ' h e e r e r : l t v. l e r r n r r d
f o r . h i \ p l a n t ( 8 5 % t o 9 5 % ) i s r r r c tb y
n e x t s e l r e r i t i o l l r e c h n o l o g i c ss L r c hx !
h v d r a L L l i ct u r b i l e s r l c l b i o g r s - d l i v e n
c o g e t r e f a r i o D . T h er l r c e l rc l r c rl j v
c o r r s L 0 r r p t i o pr lc r p o P U l : r t i o 1e1g r i v a
I e r ) ti s 2 1 . 3 l i w h / p c | 1 , , , v(rt h e p o p u l r
t i o r r c c p i v a l e n t r e l a r e dt o 1 1 0
g ( l ( ) l ) , / P E . d u , i r h ; rn r e a n
Figure
5:Energy
96 kwh/cap.yr
(68 k\4hlcap.yr)
C00halance
sciematic
for
influeni
typical
wastewater
treatmenl
Ilants
168 kwh/cap.yr
(adapted
from
(146kwh/cap.yr)
Corneletal,20ll
72 kwh/cap.yr
andLazarova
etal,
(78 kwh/cap.yr)
2012],.
Effluentand
respiredCOD
StlrssWWTPIsenergyconsLlrrptiol.
\ )ich is 19.9kWh/PE.verr(Novrk ct
:r1,2{)11).but
theAs Sflrrn pliru
.rlsoh:rsdisinlecrion:rrclodour
trc;rtmcDt
l:]cilitles.
Encrqt' rccovclv fiorr servagellorvs
in thcAs S.urlra
pliDt :linrsto recovcr
thc potcntial(kiretic)errergycrrrbod
icd irr rvastervarer
Hor',,evcr,
tltc cncrq'v
IWA
WorldCongress
onWater,
Climate
andEnergy
Biogas
Electriciiy
43 kwh/cap.yr
(38 kwh/cap.yf)
15 kwh/cap.yr
(12 kwh/capyr)
53 kWh/cap.yr
(30kwh/cap.yr)
Digestedsludge
28 kWh/cap.yr
(26 kWh/cap.yr)
Lossesand water
neat
,vickl ofthis energ"- sourrc is rcl.rrivelv
l i n i t c d a r d d e p e n d so r r l o c . r lc o n d i
tion\, piuljclrhrlv clcvrtion ditlirercc
arrrl llo$,s Cherrric:rll,,-bound erer15'
lionr the oreilrric lllxrter in \\'astc$,rtcr
l u s t h c h i q h e s tp o r e r r t i r l l b r r c c o v c l v
( M c d . r . r n dC o r r c l , 2 { ) 1 0 ) . H c r c . t h c
e n e | g v b r l r l ) c c d c - p c n , : losn t h c o r a r r r i c
c o n c c r t r r | r o r ) o f t L r cw : ] \ t c \ \ n t e r .o r r
f]Mt
\-t
WorldCongress
onWater,
Climate
andEnergy
"i*:trJ#i:L"
The naugurallWAWorldCongresson Water,Climateand Enefgywlll be heldfrorn 13 to 18 tu]ayif Dublin,
lreand.Over1000delegates,
profess
onalsin thesethreekey interlinked
areas,willmeetto d sc!ssthe
stateof-the-ariand debatekey ssues.
RayEarle,
ihe congress
chair,explains
thatthlsls a groundbreak
ngevent:'Thlsis theveryfirst
t me that we havebroughtthesethreelmportantissuestogether.We havehada lot of singleand some
biatefaeventsonthewater-enefgynexus,bltthisistheflrsltimeweareookingatwater,energyand
c]|mate
change.'
Awholesetofdlsclpneshaveto cometogether,
he notes,rangingfrom
reseaTchersto
busnesses,
thinktanks,deveopers,agricutura concerns,
constructors,
reta ers,andtheservice
sectoramongothers.
'Thsisthefrsttirnewehaveookedattheseissuesinahos|cway,'lvl.Earleadds.Heseesthe
needforjoinedupthlnkingonthesethreevitalafeas,
tocreatepolicyandadvocacy,
which soneof
lWAskeyroes.
'Thereal
driverls literalysLrrv
va ,' he notes.'Thef nanca al'rdenvironmental
cr sesgo hand n hand.
The UN saysthattheworldwilldoubleiis population
by2050,withthe pressures
ihatwillbr ngiorwater
andsanltat
on,andat thesametimecl matechangewilibe bfingjngnaturaidtsasters.'
Heobserves
thattheseissuesarefundamentalenergysLttmateyfrornthesunandwaterfrom
rarn.'lt is aboutgettingbackin harmony
withnature,howdo wegetmoreefficient,
cleanerand more
goingforwardandwe haveto do it now'
sustainable
Thlsis themainthemeof theconference,
heexpains,warnngthatthecurreftpathbe ng
'Weare us ng resources
takenls unsustainable.
that we are borrowlng,
that we shouldhavetell
forfuturegenerations.'
To reversethe currert leves of oveTconsumptionwe haveto ookat howto harnesssoar energy,
hydroelectricity
andw nd powern a clean,efficient
andsustainabie
way,headds,acrossrneefr re
processof generatiof,stofageand transmsslon,and usingth s greenenergyto rnovewaterarourd
and provlde
the powerrequired
for saf tation.
l\,4r
Eare warns:'Wewon'tsLrrviveunlessweookaitherequirementsofthefood
chaI andecosystems
anda the requirements
forwaterandenergy.
lfwedon'tgetjoinedupthnkingalloftheprotocoswill
reman dysfunctiona, lherew ll be moremortaliiy,we will losethe foodchainwe dependon and therewill
be morenaturaldsasters.We havegoiio get backto softengineerng
and naturasolutons-'
'lt hasto happennow
Thisevent,he explains,
ts invaluable.
lt s
absoutelyacrisissituaton-economically,
envronmenta
lyandin
planstrateg
termsof sustarna
bility.'lt wi be mportantto
ca yfor
climatechange,he noies,andto accountfor ts consequences,
property
forlfstance,the poteniial
andenvironmental
impacts
of floodng.
Headdsthatbothadaptation
afidm tigation
Ieed to beaddressed,
noting:'Wewafi a verystrongdec arationlrornlhe congress,sothat
the IWAcan playa strongadvocacyrolefor futurecongresses
and
dec s on-makers.'Bylis Sledmafl
f i c c o u n o , v i ss p c c i f L cp e r c . r p i t as ' . r t c l
. o l r s u n r P r i o l l ,t h e t , v p co f s c N c rs .t l r c
pelccntrge rrd rlpc ofindusn ul
c l l l L r c r t si r n d o t h c r l o c r l c o r r r l l t l o r r s .
F i g u r e i i l l L r s t f : r t ct \ \ o c \ r r p l c
c r r egr r b r h n c , : s( C o rr r c lc t r l . . 2 ( l l i r
L u z i r o v . ro t 1 1 . . 2 0 l l ) . I n b o r h c . t r c st h c
t r c i r t ] r r e nP
a r ' ( ) c c \ s ci su c t h c \ i n ] c .
i r r c l r r r l i l r gp l r r n : r r , rs' c t t l i r g . n i t I i t i c l t i o n
r r l c r i u i f l c r t i o n . . r n : r c r o l r i cd r r r l g c
s t x b i l i s i r ! l o nr n . l u s c o i b i o g r s . T h c
r l r r i l r r s s u r n p t i ( ) l si r c t h c ( l O i ) l o . l | ] s
o f - l l i r r d - 1 2k g r c . r p . r ' : r, r c t h r n c
ploductiou o10.35 I (ll Ir/qalOl.)
r n r l . r r L c t l r r D ee r e r i l p o t . r ) t i i r l o j
l 0 k W h , / r r ) ' . 1 ) e s p i t ci h c s l i g h t h r r o r c
corccrrurterl rl;rstorrter irr thc ilst
i n s t i r c c . t h c e n e r s v L r . r L ; r r ricsec l u i t e
s i r n i h r : 5 7 / " ( c ) 6 k W h/ c r p . r ' c r r ) t s
t r . r n s i i r r c t lt o t h c ' c l i g * t , : r . u r d o r r l v
2 6 f ' ( 1 3 k w h / c x p . \ ' t i s t r ; u r s i il c d
i n t o m c t h . u t e .U s i n g d r e s r n t c
. rlr
corvelsion cillcicrcv of 32%,o
3.9% ofthc crrbodrcd chenric,rl
c r r c r g v i s r ! ' c o \ ' c r c dr s c l c c t r i c i l v
L r o u r r r el n e r g y i r w . x t c l . r t c r i s
r t i l l . r r , r e l o b i cd i g c s t i o r t .E r r L r g i r g
rnclgv cllLcicrt rr,.1 erelgr
p r o r l L r c i rg t e c h r o l o g i e s .s u c h
r s r r ) i . r o b l l L r e lc e l l s .n r i c r o b i r l
c l c c t ,o l l s i sc e l l s . u r dn i c l o b i r l
r t c \ r l i n r t i o n c c l 1 s . : r r fcr p c c t c d t o b c
t i . r s i b l ei n t h c n c . r ' t i r t r u c .
M r r i r r i s i n g $ c c r c l g , r ' g . r n rh , o n r
c . r c ho i t h , , ' p o t e r t i . r l v r u r c c s o f c n c l g l
s l r r q s r r r l g e n . r . r t i o n ( s c cb o x ) t o L r 1 l ]
r l l o i r w l s t e ' t , r r e l n - c . r t n r c r rptl . r n t s ,
p r r t i c L r J r r l vd r e l ; r l g c s to n f \ . r o r - f . o l c r
r I r L lf v | l ) n r . l l l v t o g e r r e r r r er l l o f d r c
c n c r g r r r c c c l e tl o r p l , r r t o p e m r i o n . r n d
c r c r r r i c l l . r r c r r c r q ) s L r p h L si r f i n r e s .
Whilc in its inlincr'.rt prcscnt.
susrrirrblc n rrtc't'rter r'e:rrnrent
. r n d r c L r s ch : l c c o r r c o i r g e a n d
. r r cl i l c l v t o q . r i r g r c . r t c ri n r p o l t r n c e
i n t h c p l r ) r ) i l ] 1 l o l _ i l l ( c g r ' r r c r$l r t c l
anrl cncr'{vrrn:rrgcnrcrt s_vstcrrr
i n t h c f i r t L u r . A s* i t h l r t c r r c r r s c .
t h c ' L u r l o c k i n g. u l l c r r l t r c c c l r c u s c
oflhe elrcfgv contxinfd in t'.rstct':rtcr
is.r Lcv tool ir soh'irll the nercr'
e n e r g v c \ u s r L r . l tu $ i ] l ) a e r r a l . e s
ice tolldrvirlc.
10-200k
RENEWABLE
ENERGIES
5-10%
FROM
ENERGIES
SEWAGEFLOWS
2 - 10o/o
SLUDGES
40 -+ 60-80%
ENERGYSAVINGS
(finebubbleconlrolled
ae.ation, (wind power,photovollaic.sola.
ihermal power, geoihefmal
energyefficienimotorsand
numns)
(hydro'iurbines,
healPumPs,
in sewerheatexchangers)
(anaerobic
sludgedigestion,
pfe-tGatment
to increase
d;gestability)
remarks
Figure
6:Major Concluding
'I
h e c u r l c r r t c o n f l q L r r . r t i o ror f u r b a n
components
olthe
'positive
enefgY \ . r t c r l l r i r r i r i l l r n e n r \ \ ' \ t c m \ r c . ] r ) st h r t
plant'-zones s i g n i f r c . r t q r r r r l r i e ro l \ \ ' l t c r x l r d
where
theenergy r n r r ! ' \ : l r c c o r l s u r r r c dr u L l n u n i . ' n t su l e
efficiency
ol i n c * r . i c r l . l v r l : r r i r q . d . H i s r o f i i j i l l \ :
waSlewaler r r r t c r ' . r n r lc r c r g r h l r l c b c c l l n r l n l g e r l
treatment
can i r c l e p e n r l t n d y rb u t i r t h c C l i n o f t h e
heimproved.F L r t L r rreh e n h o l c l a t c r c y c l c s h o r r J d
b c n r . r n . r g c ci rl : r s u r t . r i r : r b l c* : r v t h r t
l i n r r t r r : r e r g l c o n s L r n r p t i o n: L n d
r r r . l \ r n ) r s c c\ r r c f g v 1 e . o \ ' e f\ ' .
( 1 5k W h / c r p . ) ' t .
A firn,:Lr c trl corrrporelrtol
pronrising
tcchrolos
Thcrrrost
s L r r t r i n a b l e$ r t c l r n . r r r . r l 1 c r r l dl ri e
r sirl
t b r r e c o v c rr r r g t h t ' c h e n r i c . r l hp r o p t l L r l b l n d c s i g r r . T h i sc o r s i s L so f
d j s ! ri b L r t c d\ \ ' . r t c rs L r p p l i c \s\ h e r c
. clLrdurg
r r r u l t i p l cr r r t . r - r - e r o u l c c si n
I r i r \ v r t c r h r r v e s r i n s .u l e c o l l c t t r d
: r c r o \ st h c ' u r b r l r r r e i r o n r i n i n i s c
p aniwillrequire
p L u p i n g l c q u i L c r r r c r r t sr r. r l r v h c r - c '
treatment
a g obalanaysisof lhewastewater
0pt misingtheenergyof a g venwastewater
o n h . r f i r c t i o n o i t h c r \ r t c r s 1 l 1 p l vi s
andthe bestintegrat
on of theenergy
waterqualityrequirements
trainin termsof thecLrrreft
treatment
s t h r e e f o d r tm
o p f o v e e n e r g y e f f c e n c y , t o r n a x i m s e t h e u s e o f s l u d g e l o r e n e f g y t r c . r t c t lt o p o r i r b i cs t r n c l : r r c l s . At ht c c r r t l
ssues.Theam
o i t i r c c h . r i r , s . r r t e N r t L ' r|-r c : r l r l l ] J r l t
Fo!r ma n components
ior designand
producton,andto recover
sources.
energyfrom nternalor exlernal
i r c l L r d c sr L c c c r r n
r l i s e d ; r n dc c L r t r . r l i s c d
h iat vL er sbeese)n
o p e r a t i o n o f a ' p o s t v e e n e r g y (ptahnatt i s , a p a n t t h a t p r o d u c e s m o r e e n e r g y t h a n
c o n r p o r ) ]rJ) t \ t o o p t i r r r i s ! c' r c f s \ '
et a , 2012):
dentf ed (F gure6, Lazarova
r'.'rolelr .urcltutcr l cr.rse,V/.i\ tc$,rlciand bestpracllces
tor owenergyconsumplon (upto
Energy
savngsfroin mp ementngtechnologles
h . r st o b c c o r r s i , . l c r cnr lo t o l r l v : r \ x
20% energyrecovery):
. Useof bestavallabe energyrnanagernent
practces,suchas optimsaton of aeratioasyslerndesign,
f o t c n u r l l l t r n ) . l t i v c \ , J t c r r e s o ! u - c cf o r
\ , l f l o u s \ \ n t c r f e u \ . : p l r r F o s c s , L n rl tl \ o
efflcent aeraton control,and useof premum eff c encyrnotorsand variabe frequencydrivesfor arge
org.trric
J s J s o r u a eo t n L r r f i e r ) t s . u r d
aerators)
purnpsandaeraton devces(suchas b owersand mechanical
. nnovatrve
c o r \ r l f t r L r s .\ h r . h : 1 1 cp o t c r l t l , rL
ol theconcentrated
wastestreamhandlngtechnooges,Suchass deskeamtreatment
\ourac\ oi elrefg\:
on to reducetheenergyusedin biologica
d geston bydeammonificat
returnflowfromanaeroblc
Thc potclrirl opdons fir solvrrg
treatment
wastewater
. Nextgeneraton treatmenttechnologies
t l r c \ y . r t c r c r l c l l i \ ' 1 r e \ u sc . u ) D . i r L \ o
wastewater
lreatrneni
for domestc wastewater
or decentrallsed
c o n s i r l c r c dl r o n r r h e p o i n t o f v i c t o i
and reusesyslems
r h c e o n c c p t o 1 : d r cu r b l n n r c t . r b o h s n r ,
s t i c h c ' q u r r r cas c i n t o r l i l i r g w r t e n r .
Energyrecoveryfroms udge(up to 60-80%energyrecovery)l
primarysettingeificiency
n i r h r s i n r i l . r t i n g: u l 1 c \ c r c t i r ) g l i r u c
. Bestpractcesto mprovedigester
designandoperationr
enhanced
. lnrovatvetech,roogiesfor sludgepre treatment
t r ( ) r ) sA. s r r i r l i l i l r ! ! l ) o d ) ' .i r i s c s s c r r t i r l
beforeanaerob
c d g€stiof;co d geston
(cogeneratiolr,
. Combifedheatand powergeneration
gasase ectricity
to h.lt rcoclirg loops in ortlcl to
fuelcels,
frorndigester
rrr\inrisc thc eDer$ obriinfd ti1)rn
mlcroturbines)
or mechanca enefgy(directdrlveor st rlingengnes),gasf cation
. Directreuseof b ogasafterpuf I cationt0 the gasgf d
t h c i n p L r t \( f i ) o ( 1c. u e f i l r ' ,\ ' r t c I r n d
. llse of b osords I agrlc!tureor asa so dfue
r L r ni e n t r ) b c t i r l c t h e r o r i c re s i c l u c ' s
( p o 1 1 u t : L n.tusr d c r r c r g i n g c o n t r n r i
.,rntr) r'e erclc tccl. 1Vlor c'o!er'.
Energyrecoveryfromsewagef ows therrna, hydrauic, potentlal(up lo 10%energyrecovery)l
. Useof specf c ocalcondtions(topography,ocationand infraslrllcture)
c l o r r l r ] cl o o p h r | r ' i c l s v i t c r t s c . u t
to recovereneagylrom the
tirr bcttcl sourcc
bc irrtrorlLrced
p ant'sinf uentand/ or etfluent
r rrnt igoe
. I n n o v a t v e w a s t e s t r e a m e n e r g y h a r v e s l i n g t e c h n o l o g e s s u c h a s h y d r o t ! r b i n e s a f d h e a t e xscchp a
r .r. s
r s l e 1 1r r t i x b c . r t
l c c o v c rv r n d b i o g l s p r o r l u e t i o u .
Thc Sur ls thc rollce oirllcrtcrgr,
sources
suchassolat,w nd or geolhermaenergy(upto
energyfromextefnal
ProdLrction
of renewable
o n E . u t h . r n r l u r t e r - i r t h c L r . r s iosf r L L
10%efergyrecovery),
. l l s e o f a l t e r n a t i v e r e n e w a b l e e n e r g y t e c h n o l o g i e s t h a t a r e f e a s b e f o r t h e s t e s p e c f c c l r n a t el i t i o n o r r r p l r r c t l t i r o u r c o n r r r i n l t u t ,
. r sn . r t c l p r o f i ' s i o r r l t . r ' e s e r l c h e l s
wh ch requre re ativelyowin t a capiiacostsandsitelootprnt,
andfinanca ncentlves,
conditions
perod
rrLl Llecision m.rl,crs. to s.rti'gurr-drhe
and havea shoirreturnon nveslment
. lfnovative
ruirr rlrivels oflifc on orrr pllrct
microw nd turb nesandcombned
ta c{herfilaSystems,
suchas pholovo
technologies
treatment
energy
fromwastewater
Gaining
Reterences
BickerS,ConteLP anrlWaget M Qat0),
SuituraLized suppb,dntltrcdtnentsfst.,B:
ituelnkd hlfrnstrrcrrcolutia'ts JarJast!rctur\
6 | (1 1),
ututu drcrs.Water
S.ien@ETuhnoLosy,
2905-2913.
Comel4MedaA d BiekcrS (2411),
trie ts.ltd
Wdltcujdtet
rs a \oM( of utryl,
otiWatetSdenee.
Etiitt t:
lcnji.evdkr.Tieatisc
Pt Wildercr,Else etverkg
FieNczE (2009),As Sdrra WI,VTP:
t vadt dter
torLjaftl!the e erfy s+s"frd
trcatunltpldnt.IWA ConJerereon l,l/atdn d
Enug,, Capcfidlcn,Dcntna&,29 ta 31
OdaL)er
2409.
Cdrrus betl\W HaeklttaAY anl t an dt
MeetTH (2009),Thc idterJoatprht t'I
aJthe NdtioiaLA.ddeny
hiaencrg,.
P/j.eediitss
9f S.ienreof the U"i@t1Stnte\afA,rctid
( P N A S ) . 1 4 5e 5 ) .
Ckitk PH (1994),Watetd d.n.t&,.Annudt
Reietu Enug, Etu,irornent.19.
CII/RC (2011),WdtuA eneryyin
the rbanwatu q,.le:i'|ryftt'ingenev qtheiery
ij1nniipal vasteuatut@tne t. Repon
preparcdby rhe NanydttgEttrnonncnt Ewat'lt
RtsedfthI nitune (NEWRI), PUB Sinra]].re
and Clnbdlwatcr RcsedrchCo.tlition
(G\4/RC) , Snryaporc.
KroissH andSnrdal K (2011), EneW dnd
ltasterntethearnox.11lt IWA Confuenrcon
Delign,Operdti.nard Eoqol ns of Laryc
WdtteutdterTicatnvntPkt^, Scpt.nbu I ta 9,
About
theauthors 2A| 1, Buddpelt,Htlluary.
Lazarova L a . d r c M V C h a oK H a d C o E I P ( 2 0 1 2 ) ,
Valentina
isSenior
Project Waterenewinten.tioti!in pdterrcule.IWA
ManageratSuezPublishinr,lanion, U K.
H, ond KroksH QA08),
Environnemenl. Lhdtuet S, SclLddr
But chna rbits of larscnn nic| dl uask water
l(warg-Ho
Choo
trcdtmeltplntltsneatingorer 140,400 PE il
isanAssociate A ltia.Water Seicrc ETi&nolog,,57(10)
Professorat
1187-1493.
l(yungpook
MeddAdnd Canel P (2010),EneW dtitl
llational
t|dtct:ftLatianship!
ad ffiouerypotential.IWA
University,l(orea.WdtLrard Eftryy onJcrc"tt,A detddtx,'fhc
Peter
Cornelis
a
Professorat
Iechnische
lJniversitat
Ilarmstadt,
Germany.
Ncthe dnds,l0 to 12 Narcnber2010.
Nau',tkO, Keil S an.l Finkn C Q01t),
Exdnryh: of atrl, selJ-sqnek' tluuti.ipal
nuttientrenoutlplants.Water
SeicceE
'ltdlnoLory,
54(1) 1-6 .
NorohiyV (20 10),Wot'!t
energ nexft n)wdftls
zeropoLlution
a
CHC uissions oJ
.futuffc(e.o)dtics.WatetttltdltnrcturcJw
stahabtuConnuniics (HnoX, No]|dt/] V
a Nd!o, tr c.l,, IWA lruqintin*, Lrldoil,
pp15 58.
Sr.t.ldl K aM tuoissH (201 1), E ergl
|cElit" n1xJor ua!|e )aterteatxux.ILtte|
S.ie'ift e'fl.hmlag, 64(5) 13 5 f | 3 5 I.
VorxhkovN (2014),Stauaterdesdlitldtioti:
turcnt tre isa chaLLengts.
DLsdhnion - d
Filtrdtian+ Se4tatiarPubliatio'l,5(2).4 7.
WERF (201A),O,e hu' oJstokekeryy
rcd dio trogrms andr delircs.fatthe
u)dltcu)iterlelor. Cdntwell ct dl,WERF Report
Ofi/S O 6 R07b,Wdtct Eht i n n tlentdl Research
Fofidatiot a|d IWA Pbblilhntf,120pp.
WettB, BulMucr Kalid FiuuL C 0047),
EnetlaysctJtfficienq, asaftasibL..an.LptJor
ua\tewnt.r hedh etu synons.Pto.&dinfs IWA
LeddingEtlgeTeehtblor:tColfere ee,Si rapare,
Se|itetbet2047,!p21 to 21.
REGISTER
NOW
IWAWorldCongress
on Water,Climateand Energy
ReEister
Nowto SecureDiscountedFees
-sponsor
or Exhibitat the Congress
pleasevisitwww.iwa-wcedublin.org
Formoreinformation.
from acrossthe globeto exchangeideas,
The Congresswill attract over 1000 like'mindedwater,climateand ener€lyprofessionals
linkednatural,utilityand
explorethe stateof the art and debatethe keyissuesunderlyingthe scienceand practiceofthese inextricably
infrastructuralissuesof our time. It will featurea largeindustrypresenceand trade exhibition.
ContactCongresssecretariatat:
2012, c/o KeynotePCo
IWA-WCE
Suite26, AngleseaHouse,CarysfortAvenue,
Blackrock,Co Dublin,lreland
tel: +353 1400 3660 Fax:+353 1400 3692
Email:info@iwa-wcedublin.org
T
rI
:-.i9
Rr?HSl:v
tFaS
rlr
ireIondinspires.comO.v".€gln
=== ESHltr'
upo ."!N[ffi'"'s'
Descargar