Laboratorio 2

Anuncio
FISICA GENERAL II – 2011
Guía de Trabajo Practico No 1
MEDICIÓN DE VISCOSIDAD EN LÍQUIDOS
Método 1: El viscosímetro de Ostwald
Introducción:
El fundamento de la mayor parte de los viscosímetros que se utilizan en la práctica es la
fórmula de Poiseuille, que nos da el caudal Q (volumen de fluido por unidad de tiempo)
que atraviesa un capilar de radio R y longitud l entre cuyos extremos se ha aplicado una
diferencia de presiones ∆p
(2)
donde η es la viscosidad del fluido. Esto es
(3)
Como R, l y V son constantes para un tubo determinado, los agrupamos en la constante
(4)
y por lo tanto se tiene
(5)
Si el líquido fluye únicamente por acción de la gravedad en un tubo situado verticalmente,
la diferencia de presión ∆p es la que ejerce la columna de líquido, esto es, ∆p = ρgh, siendo
ρ la densidad del liquido y h la altura de la columna. Por lo tanto
(6)
Si el capilar no fuera vertical habría que tener en cuenta el ángulo que forma con la
vertical. Pero como h y el ángulo son valores constantes para un tubo determinado
podemos escribir:
(7)
1
El valor de K´ depende por lo tanto de la geometría de cada viscosímetro en concreto y
suele darlo el constructor. También puede determinarse utilizando un líquido de viscosidad
conocida. Normalmente se determinan las viscosidades relativas referidas al agua. Para el
agua se tendrá:
(8)
De la expresión (8) se puede determinar K’ e introducir en la expresión (7) para
determinar la viscosidad desconocida del líquido en estudio.
enrases
A
Figura 1. Viscosímetro de
Ostwald.
Como la viscosidad depende de las fuerzas intermoleculares y estas se modifican con la
temperatura la viscosidad de un líquido también varía con la temperatura.
El viscosímetro de Ostwald (Fig.1) es un aparato relativamente simple para medir
viscosidad, η, de fluidos Newtonianos. En un experimento típico se registra el tiempo de
flujo, t, de un volumen dado V (entre las marcas a y b) a través de un tubo capilar de
longitud L bajo la influencia de la gravedad.
Procedimiento
Con una pipeta introduzca alcohol en la ampolla A hasta más de la mitad de la misma.
Insufle aire de modo que le líquido llene el volumen V quedando un poco más arriba del
enrase a.
Deje escurrir el líquido poniendo en marcha el cronómetro en el momento en que la
superficie del líquido pasa por a y deteniéndolo en el momento que pasa por b.
Realice al menos 10 determinaciones del tiempo que tarda el líquido en escurrir desde a
hasta b.
Vacíe el viscosímetro y séquelo.
2
Después de que el viscosímetro se halla secado y alcance nuevamente la temperatura
ambiente repita el procedimiento con agua destilada y determine la viscosidad relativa del
líquido respecto del agua.
Recuerde que si realiza varias medidas la dispersión de las mismas debe tenerse en cuenta
en la estimación del intervalo de incertidumbre.
2. Determinación de la viscosidad absoluta del agua a una temperatura dada respecto a la
ambiente.
3. Determine la temperatura ambiente, y repita la medición con agua a otra temperatura
diferente.
Método 2: Viscosímetro de Stokes.
Introducción
Sobre una esfera en movimiento e inmersa (la figura muestra una esfera que cae) en un
líquido, actúan las siguientes fuerzas, como se observa en la figura, el peso, el empuje
(Arquímedes) y la fuerza de roce que aparece al desplazarse el cuerpo en el medio.
Donde ρc es la densidad de la esfera, ρf la densidad del líquido, r el radio de la esfera, η es
la viscosidad del líquido y v la velocidad de la esfera.
Dependiendo de las diferencia de densidades entre la esfera y el líquido, será el sentido de
. Al ser Fη proporcional a la velocidad, después de un tiempo transitorio, la suma de
fuerzas vale cero y la esfera se mueve con velocidad constante, que se llama velocidad
límite vl.
3
Entonces, midiendo esta velocidad límite, sabiendo las densidades involucradas y
conociendo el radio r de la esfera es posible determinar la viscosidad del fluido.
Parte I
En este práctico vamos a usar, en esta primera parte, como esferas a burbujas de aire
introducidas en la base del recipiente, como se observa en la figura.
Por lo tanto debemos medir r y ρc, además de vl,
Medición de r
Como una buena aproximación podemos pensar que el aire a presión atmosférica como gas
“ideal” (quiere decir que las moléculas que lo componen, no interactúan entre sí). La
ecuación que relaciona la presión, temperatura y volumen de un gas “ideal” es la siguiente
Donde
P = presión del gas
V = Volumen del gas
T = Temperatura del gas expresada en grados K
4
R = constante de de los gases = 8.3143 JK-1mol-1
n = número de moles
La jeringa está graduada de modo que es posible conocer a priori el volumen V0 de aire a
introducir. De acuerdo a la ecuación de los gases, si el aire en la jeringa está a la presión
atmosférica
Una vez introducido el aire en el fluido
Donde
.
Entonces, si la introducción de aire en el líquido se hace rápidamente, se puede suponer
que en el proceso no se intercambia calor con el entorno, (lo que se conoce como proceso
adiabático). En ese caso, la ecuación que describe el proceso es
De donde
donde γ = 1.4
De modo que midiendo V0, P0 y h es posible determinar Vh y luego r.
Determinación de ρc
Volvamos a la ecuación de los gases ideales: Como V0 está determinado a priori, podemos
despejar n (el número de moles en la burbuja)
Asumiendo que el aire es 80% nitrógeno y 20% oxigeno ⇒
1 mol de aire =0.8 x 28+0.2 x 32= 31.2 gr. Entonces
y
Determinación de la velocidad límite υl
5
La velocidad límite se determina midiendo el tiempo que tarda la burbuja en recorrer una
distancia determinada en la probeta, una vez que ha alcanzado el estado estacionario.
Procedimiento Experimental
Se medirán 4 tamaños de burbujas, 0.025 ml, 0.05 ml, 0.075 ml y 0.1 ml. Se introducirán en
glicerina cuya densidad es
en:
.El procedimiento experimental consiste
Introducir la aguja sola hasta el fondo en el tapón de goma. Inmediatamente, seleccionar el
volumen de aire a introducir en la jeringa. Conectar la jeringa a la aguja y presionar el
émbolo rápidamente. Si sale mas de una burbuja, esperar que las burbujas desaparezcan y
repetir el procedimiento, (esto es, retirar la jeringa de la aguja y volver a seleccionar el
volumen). Para cada uno de los volúmenes, se introducirán 10 burbujas y se medirá el
tiempo que tardan en recorrer la distancia predeterminada en la probeta.
Si por alguna razón se demora el procedimiento, sacar la aguja del tapón para que no
empiece a perder líquido.
Comentarios
1) Mas arriba se demostró que el volumen, y por lo tanto el radio de la burbuja depende de
la presión. Implícitamente hemos asumido que el radio no varía durante el experimento.
Determine la validez de esta hipótesis calculando el error introducido en esta suposición.
2) También hemos asumido que la burbuja se encuentra ya con la velocidad límite cuando
empezamos la medición de tiempos. Verificar con las ecuaciones del Apéndice si esta
suposición es correcta.
3) Es importante el valor de la densidad de la burbuja?
Parte II
En la segunda parte del práctico se dejaran caer en el líquido, esferas de acero de diámetro
D = 3.17 mm y se procederá medir los tiempos de descenso entre marcas de la probeta (10
veces). De este modo, se volverá a medir la velocidad límite y a recalcular la viscosidad
del líquido. Analizar y comparar los resultados obtenidos por ambos métodos.
Apéndice
Ecuación de movimiento de una esfera en un fluido
6
donde
y
. Integrando se obtiene
Obteniendo
Donde
La velocidad tiende asintóticamente a vl.
Si integramos nuevamente
Como se observa, el término exponencial decae rápidamente y la posición resulta entonces
proporcional al tiempo.
El aire limpio y puro forma una capa de aproximadamente 500 000 millones de toneladas
que rodea la Tierra, de las su composición es la siguiente
Componente
Concentración aproximada
Nitrógeno
(N)
78.03% en volumen
Oxígeno
(O)
20.99% en volumen
Dióxido de Carbono
(CO2)
0.03% en volumen
Argón
(Ar)
0.94% en volumen
Neón
(Ne)
0.00123% en volumen
7
Helio
(He)
0.0004% en volumen
Criptón
(Kr)
0.00005% en volumen
Xenón
(Xe)
0.000006% en volumen
Hidrógeno
(H)
0.01% en volumen
Metano
(CH4)
0.0002% en volumen
Óxido nitroso
(N2O)
0.00005% en volumen
Vapor de Agua
(H2O)
Variable
Ozono
(O3)
Variable
Partículas
Variable
8
Descargar