Ground segment. Operations and architecture

Anuncio
Taller de Diseño de Picosatélites (CUBESATS)
y Estaciones de Tierra
Segmento de Tierra
Ana Laverón Simavilla
E-USOC/Dpto. de Vehículos Aeroespaciales
ETSI de Aeronáuticos, UPM
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. AuthorsNames
1
Contents
• Introduction
• Basic description of the Ground Segment
• Design considerations
–
–
–
–
–
–
–
Coverage required per S/C
Type of orbit/mission
Number of S/Cs
Number of P/Ls and data processing needs
Manned or unmanned missions
Number and location of Ground Stations
Security issues
• Ground Segment requirements
• Cost reduction scenarios
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
2
Contents
•
•
•
•
Ground segment definition and functions
High level architecture. Core elements
Alternative architectures for different missions
Ground segment phases
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
3
INTRODUCTION
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
4
Space system
• Space segment
• Ground segment
– Infrastructure and systems needed to operate the space
segment
– Link between the final users and the space segment
• Users segment
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
5
Relevance of the Ground Segmet
•
Importance of Ground Segment in Satellite Communications
– Until not long ago, satellites were based on a relatively simple
architecture, i.e., the bent-pipe design
– The introduction of some satellite constellations and on-board
processing started to become really complicated for the satellite industry
• Some architectures have very complex Space Segment
• Some architectures adopted simpler Space Segment and more
complex Ground Segment
– According to ESA
• 80% of the satellite communications market is in the ground
segment - sale of satellite terminal equipment and provision of valueadded services
• 20% space segment itself - satellite production, launch and
operations
– The satellite and space industry lives in a contradiction: while people’s
attention is often focused on the space segment, it is the ground segment
that does a lot of the work that adds value to satellite communications
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
6
Relevance of the Ground Segment
• Criticality of SW design
Ground
Space
Requirements
Functionality
Real-time embedded
Interoperability
P/L specific
Autonomy
Reuse bus
Architecture
Distributed network
Processor constrained
Integration
More COTS
Standard bus interfaces
More external interfaces
Team
Dispersed
1 or 2 teams
Different processes
Code size
2.0-4.0 M SLOC
0.01-0.5 M SLOC
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
Ground Software
is Highest Risk!!!
8
BASIC DESCRIPTION OF THE
GROUND SEGMENT
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
9
Space system main blocks
Ground segment
Operations support
Spacecraft operations
Payload operations
Space
segment
End users
Mission operations
TM/TC
Users data
Data
management
TM/TC
Ground
Station
TM/TC
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
10
Ground Segment main elements
•
•
•
Ground Stations
– Tracking
– Reception of TM (HR & LR from P/L & S/C)
– Uplink of TC (P/L & S/C)
Control Centers
– Mission Control
– P/L Operations
– S/C Operations
– Coordination of Ground Stations
– Data archiving
– Data processing
Final users
– Telecommunication users
– Scientists
– …
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
11
Data management paths
Ground segment
Command &
Tracking data
Requests
Operations support
Mission data
H&S TM
End users
Mission data
Data Relay
Space
segment
Mission data
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
12
DESIGN CONSIDERATIONS
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
13
Design considerations
• Coverage required per S/C
• Type of orbit/mission
• Number of S/Cs
• Number of P/Ls and data processing needs
• Manned or unmanned mission
• Number and location of Ground Stations
• Security issues
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
14
Design considerations
• Coverage required per S/C
• Type of orbit/mission
• Number of S/Cs
• Number of P/Ls and data processing needs
• Manned or unmanned mission
• Number and location of Ground Stations
• Security issues
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
15
Coverage required per S/C 1/6
• Coverage: frequency and amount of time per orbit that a S/C
needs to be linked to the GS
– It depends on many factors
• Amount of data to be transferred
– TC and housekeeping TM is not an issue
– P/L data can be an issue
– Data rate of the downlink
• S/C Autonomy
– Lack of onboard command storage
– Requirement to receive mission data
• Manned missions
• Need of continuous access, e.g. telecommunications S/Cs
• Phase of the mission (e.g. LEOP)
– It can determine the number and location of the Ground Stations
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
16
Coverage required per S/C 2/6
• Coverage study
– Circle of accessibility: it depends on the Ground Station (,
minimum elevation) and the S/C (h, altitude)
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
17
Coverage required per S/C 3/6
Coverage area from Torrejón and Maspalomas (=5º)
– Solid lines – INGENIO (Sun-synchronous, 667,78 km)
– Dashed lines – PAZ (Sun-synchronous, 510 km)
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
18
Coverage required per S/C 4/6
– Passes over the station (e.g. EURECA daily passes)
• Number of consecutive passes
• Duration of the passes
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
19
Coverage required per S/C 5/6
Three first orbits of ERS-1 ( i=98.5º, h=785 km) during the
Launch and Early Orbit Phase (LEOP)
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
20
Coverage required per S/C 6/6
• How can the coverage influence the Ground Station
design or selection?
1.
Determine the P/L data to be transfered (e.g. Biomass)
a) P/L data rate (e.g.: 102 Mbps )
b) Duty cycle (e.g.: 20%)
2. Select a Ground Station location (e.g. Svalbard, Norway for
Biomass)
a) Study the coverage
i.
ii.
3.
4.
Frequency of the passes
Duration of each pass
From 1. and 2. determine the downlink data rate needed (e.g.
100-250 Mb/s)
Does the selected Ground Station meet the requirement?
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
21
Design considerations
• Coverage required per S/C
• Type of orbit/mission
• Number of S/Cs
• Number of P/Ls and data processing needs
• Manned or unmanned mission
• Number and location of Ground Stations
• Security issues
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
22
Type of orbit/mission 1/6
• Each type of orbit/mission can make use of different
communication links, each type of link require
different Ground Station setups
– LEO, MEO
 Store and forward link
 Crosslink in communication satellite systems
 Make use of available communication services
 Air Force Satellite Control Network (AFSCN)
 NASA Tracking and Data Relay Satellite System (TDRSS)
– Molniya
– GEO
 Store and forward link
 Ground Station relays
 Crosslink in communication satellite systems
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
23
Type of orbit/mission 2/6
– Space Science missions
 Store and forward link
 Make use of available communication services
 ESA Tracking Stations Network (ESTRACK)
 NASA Deep Space Network (DSN)
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
24
Type of orbit/mission 3/6
• LEO with store and forward
link
– High transmission delay for
communications with 1 S/C
(Starsys)
– Constellations with many
gateways (Globalstar)
– Reduced transmitter power due
to low altitude
– If the data amount is high
• Many Ground Stations
• Very high data rates
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
25
Type of orbit/mission 4/6
• LEO with crosslink
–
–
–
–
–
–
Used in communication satellite systems
Large coverage area
Possibility of polar coverage
Highly survivable due to mutiple paths
Reduced jamming susceptibility due to limited Earth view area
Reduced transmitter power due to low altitude
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
26
Type of orbit/mission 5/6
• GEO with GS relay
•
•
•
•
•
•
No need to switch between satellites
No need of antenna tracking
High-cost launch
High-cost satellite
High-coverage
No polar regions coverage
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
27
Type of orbit/mission 6/6
• Molniya orbit
–
–
–
–
–
Coverage in high latitudes
Low-cost launch
Complex network control
Need for GS antenna pointing
Need for S/C handover
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
28
Design considerations
• Coverage required per S/C
• Type of orbit/mission
• Number of S/Cs
• Number of P/Ls and data processing needs
• Manned or unmanned mission
• Number and location of Ground Stations
• Security issues
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
29
Number of S/Cs
• Overlaps of S/Cs at the same Ground Station
• Gaps between S/Cs passes
– Should be enough to enable the change from one S/C to the
other
• Complex operations
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
30
Design considerations
• Coverage required per S/C
• Type of orbit/mission
• Number of S/Cs
• Number of P/Ls and data processing needs
• Manned or unmanned mission
• Number and location of Ground Stations
• Security issues
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
31
Number of P/Ls and
data processing needs 1/3
• The data user’s requirements determine the
complexity of the distribution systems
– Acceptable error rate
– Acceptable delay receiving the
• TM – “TM available in less than 3 hours after
sensing” (impact on coverage requirement)
• processed TM in different levels – “Level 3 TM
available in less than 5 hours after sensing” (impact
on data handling and P/L CC)
• Number of final users
• Location of the final users
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
32
Number of P/Ls and
data processing needs 2/3
• If the S/C has several instruments each user will
probably need
–
–
–
–
all the data from one of the P/Ls
a small portion from the other P/Ls
a portion of housekeeping TM
a portion of Flight Dynamics TM
• Different users will need data processed in different
Levels
• The data processing for higher levels require the
knowledge and cooperation of scientists
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
33
Number of P/Ls and
data processing needs 3/3
•
Committee on Data Management, Archiving and Computing
(CODMAC) Data Level Definitions
– Level 0: reconstructed, unprocessed instrument/payload data at full resolution;
raw engineering measurements (any and all communications artifacts, e.g.
synchronization frames, communications headers, duplicate data removed)
– Level 1: reconstructed, unprocessed instrument data at full resolution, timereferenced, and annotated with ancillary information, including radiometric and
geometric calibration coefficients and georeferencing parameters, e.g., platform
ephemeric, computed and appended but not applied to the Level 0 data
– Level 2: derived geophysical variables at the same resolution and location as the
Level 1 source data
– Level 3: variables mapped on uniform space-time grid scales, usually with some
completeness and consistency
– Level 4: model output or results from analyses of lower level data (i.e., variables
derived from multiple measurements)
•
Some others
– Raw TM: as downlinked from the S/C
– Level 1B: Level 1 data processed to sensor units
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
34
Design considerations
• Coverage required per S/C
• Type of orbit/mission
• Number of S/Cs
• Number of P/Ls and data processing needs
• Manned or unmanned mission
• Number and location of Ground Stations
• Security issues
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
37
Manned or unmanned mission
• Security requirements
• Safety requirements
• Safe return of astronauts
• 24x7 Ops coverage vs. Automated Ops
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
38
Design considerations
• Coverage required per S/C
• Type of orbit/mission
• Number of S/Cs
• Number of P/Ls and data processing needs
• Manned or unmanned mission
• Number and location of Ground Stations
• Security issues
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
39
Number and location
of Ground Stations
• Existing or new
• Dedicated or shared
• Fixed or mobile
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
40
Design considerations
• Coverage required per S/C
• Type of orbit/mission
• Number of S/Cs
• Number of P/Ls and data processing needs
• Manned or unmanned mission
• Number and location of Ground Stations
• Security issues
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
41
Security issues
• End-to-end lines
• Use of the www
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
42
GROUND SEGMENT
REQUIREMENTS
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
43
Ground segment requirements 1/2
• Ground segment requisites
– Support the operations, data processing and handling with
• High reliability
• High availability
• High fidelity
• High flexibility
• High security
– Cost reasons will reduce some/all of the above characteristics
of the GS
• Cost considerations
– Operations 30-40% of the overall programme
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
44
Ground segment requirements 2/2
• Type of requirements
– No loss of data
• No missing passes
• No missing data
– Fast return of critical data
– Regular return of bulk data
– Rapid response for critical commanding
– Ease of access to data
– Data management security
• Compromises to reduce redundacies and cost
– Acceptance of small loss of passes (1 in 1000)
– Acceptance of small loss of data (<1%)
– No rapid return of non-urgent data (data available <3 hours after
sensing)
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
45
COST REDUCTION SCENARIOS
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
46
Cost reduction scenarios 1/3
• Reliability
– Some small passes loss and data loss should be accepted as
they should not risk the mission, and enable important cost
reduccions in redundant HW, SW and operations costs
– This is not applicable to manned missions
• Data availability
– Real-time and near real time data is expensive, and should be
reduced to the critical phases of the mission
• Commisioning
• Troubleshooting…
– Processing and transferring the data in very short times is also
very expensive by means of human resources (24x7) and
communication links (bandwidths)
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
47
Cost reduction scenarios 2/3
• Data management security
– Security policies are also very expensive and its need should be
evaluated carefully
• Dedicated communication links
• Operation support tools in secure networks
• SW development
– Increasing the ammount of COTS SW should reduce the
development costs
– Reuse of SW from previous similar missions should also be
increased
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
48
Cost reduction scenarios 3/3
• Increase autonomy of operations to reduce manpower
costs
–
–
–
–
–
–
–
–
–
Tracking
Automatic retuning of the frequency set-up
Automatic reception and storage of downlinked TM
Automatic conversion of critical raw data to engineering units
Automatic checking of critical data
Automatic dialing to on-call engineers
Automatic distribution of data to end users
Automatic production of summary TM quality
Uplink of automated procedures
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
49
GROUND SEGMENT DEFINITION
AND FUNCTIONS
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
50
Ground segment
Definition
ECSS-E-70 all ground facilities and personnel involved in the preparation
or execution of mission operations
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
51
Mission operations
Comprise the subset of mission engineering activities
identifiable for:
– flight operations
– ground operations
– logistics engineering
required to operate the space segment.
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
52
Ground segment composition
Ground Segment Domain
Ground Segment
Entity A
Ground Operations
Organization
Element
Element
Element
Space
Operations
Organization
Element
Element
Element
Organization A
Entity B
Ground Systems
Space
Segment
Facility A
Element
Element
Element
Element
Element
Organization B
Element
Element
Element
Facility B
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
53
Mission operations and mission success
•
Ground systems and operations are key elements of a space system and as such play an essential
role in achieving mission success.
•
Mission success is defined as the achievement of the target mission objectives as expressed in terms
of the quantity, quality and availability of delivered mission products and services within a given
cost envelope.
•
Mission success requires successful completion of a long and complex process covering the
definition, design, implementation, validation, in flight operations and post operational activities,
involving both the ground segment and also space segment elements.
•
It involves technical activities, as well as human and financial resources, and encompasses the full
range of space engineering disciplines. Moreover it necessitates a close link between the design of
the ground segment and the space segment in order to ensure proper compatibility between both
elements of the complete space system.
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
54
Ground systems
Definition
ECSS-E-70 All ground infrastructure elements that are used to support
the preparation activities leading up to mission operations, the
conduct of mission operations and all post-operational activities
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
55
Functions of the Ground Segment
• Maintain RF communications links
• Provide S/C control to ground operators
• Process and archive telemetry (Tracking, Health &
Safety)
• Provide P/L control to ground operators
• Process and archive telemetry (P/L data)
• Support Mission Operations
• Provide P/L data to the end users
• Provide communications between CCs
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
56
Functions of the Ground Segment
• Provide S/C control to ground operators
– Number of S/C and orbital configurations
– Tracking methods
• Range and range rate
• Antenna viewing angles
• External tracking network
• Spacecraft autonomy
• Provide P/L control to ground operators
– Number of P/Ls
– Number and location of P/L control centers
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
57
Functions of the Ground Segment
• Process and archive telemetry (P/L data)
–
–
–
–
Number and location of expert centers
Amount of data generated by the P/Ls
Delay between data acquisition and data submittal to users
Processing complexity
• On board
• On ground
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
58
Functions of the Ground Segment
• Provide P/L data to the end users
– Number and location of users
– Amount of data to be delivered to the users
– Direct link or processed data
• Communications between CCs
–
–
–
–
–
TM
TC
Voice
Video
Mail
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
59
HIGH LEVEL ARCHITECTURE.
CORE ELEMENTS
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
60
Ground system elements
• The facilities point of view
• The data flow point of view
• The SW elements point of view
• The functional point of view
• …
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
61
Ground system elements
MPS
STC
EGOS
ESA Ground Operations Software System
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
62
Ground system elements
1.
Mission control system (MCS)
2.
Mission exploitation system (MES)
3.
Ground station system (GSTS)
4.
Ground communication subnet (GCS)
5.
Space & Ground simulation system (SGSS)
6.
Electrical ground support equipment (EGSE)
Ground Segment
GCS
Mission
Control
System
(MCS)
Ground
Communications
Subnet (GCS)
Ground
Station
System
(GSTS)
Space &
Ground
Simulation
System (SGSS)
Space
subnet
link
Space
subnet
link
GCS
Mission
Exploitation
System
(MES)
Space
Segment
GCS
Electrical Ground
Support
Equipment
(EGSE)
Platform
Payload
AIT subnet
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
Assembly
integration
and test subnet
63
Ground system elements
1.
Mission control system (MCS)
2.
Mission exploitation system (MES)
3.
Ground station system (GSTS)
4.
Ground communication subnet (GCS)
5.
Space & Ground simulation system (SGSS)
6.
Electrical ground support equipment (EGSE)
Ground Segment
GCS
Mission
Control
System
(MCS)
Ground
Communications
Subnet (GCS)
Ground
Station
System
(GSTS)
Space &
Ground
Simulation
System (SGSS)
Space
subnet
link
Space
subnet
link
GCS
Mission
Exploitation
System
(MES)
Space
Segment
GCS
Electrical Ground
Support
Equipment
(EGSE)
Platform
Payload
AIT subnet
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
Assembly
integration
and test subnet
64
Mission control system (MCS)
Elements required to control the mission and to exploit the
products, which are:
- Operations control system (OCS)
a. Flight dynamics (FDS)
- Payload control system (PCS)
- Data distribution
- Data base
- Mission exploitation system (MES)
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
65
Mission control system (MCS)
Operations control system
(OCS) supporting
a. Flight operations
b. Ground operations
c. Mission control
d. Analysis of performance of
the mission
e. Analysis of the performance
of the system
f. Control over the system
configuration
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
66
Mission control system (MCS)
Flight dynamics system (FDS)
a. Prediction of orbital elements
b. Attitude determination
c. Manoeuvres planning and
specification of all the
operational stages
- LEOP
- DRIFT
- Commissioning
- Nominal operations
d. Prediction of antenna
visibility
e. Acquisition and processing of
external geophysical and
dynamical data
f. Prediction of relevant
operational events
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
67
Mission control system (MCS)
Payload control system (PCS)
supporting
a. Planning of the payload
elements
b. Monitoring and control of
the payload elements
c. Performance evaluation of
the payload elements
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
68
Ground system elements
Relations between main MCS elements
le le
du du
he he
sc k sc
ry
TC lin
to s
e
h i s su l t
ac
Sp
TC re
TC
Tr
ac TM
An N
ki n
te av
g
nn ig
da
a atio
ta
po n
int el
ing em
co e n
m ts
m
an
ds
OCS
Navigation requests
FDS
MPS
Flight schedules, updates & plans
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
69
Mission control system (MCS)
Data distribution
- Repository of all the data
collected during the mission
lifetime
Mission data Base
- Definition of all the mission
data
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
70
Data distribution system (DDS)
• Instrument data processing for 3 instruments
Mission Data
1 Mbps
Instrument A
Data Buffer &
Deconmutator
User A
Conmutator
500 kbps
520 kbps
Recorder
520 kbps
Decrypter
10
kbps
1 Mbps
Instrument
Data
Deconmutator
Instrument B
Data Buffer &
Deconmutator
User A
Conmutator
700 kbps
722 kbps
Recorder
722 kbps
8
kbps
12
kbps
Instrument B
Data Buffer &
Deconmutator
1 Mpbs
User A
Conmutator
1018 kpbs
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
Recorder
1018 kpbs
71
Data distribution system (DDS)
• Data processing
Ground Segment
FOCC
FO Data
HK Data
MCC
P/L CC
SC Data
HK Data
Deconmutator for
Instrument A, Data
Buffer, & Processing
Decrypter
FO Data
Deconmutator for
Instrument A, Data
Buffer, & Processing
Calibration/
Data
Instrument A
Expert Center
1 Mbps
Instrument
Data
Deconmutator
Data for
Other
Instruments
Instrument A
Data Buffer,
Deconmutator
& Processing
Instrument A
Data Buffer,
Conmutator &
Processing
Instrument A
Data for other
instruments
Other
Instruments
Data
Instrument A
Data Buffer,
Conmutator &
Processing
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
Requests/
Processed
Data
Users
community
72
Ground system elements
1.
Mission control system (MCS)
2.
Mission exploitation system (MES)
3.
Ground station system (GSTS)
4.
Ground communication subnet (GCS)
5.
Space & Ground simulation system (SGSS)
6.
Electrical ground support equipment (EGSE)
Ground Segment
GCS
Mission
Control
System
(MCS)
Ground
Communications
Subnet (GCS)
Ground
Station
System
(GSTS)
Space &
Ground
Simulation
System (SGSS)
Space
subnet
link
Space
subnet
link
GCS
Mission
Exploitation
System
(MES)
Space
Segment
GCS
Electrical Ground
Support
Equipment
(EGSE)
Platform
Payload
AIT subnet
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
Assembly
integration
and test subnet
73
Mission exploitation system (MES)
Provide users with mission products
-
Raw data (images, TM)
Rectified data (geometrically and radiometrically) using
satellite housekeeping TM and other PL housekeeping TM
Long term archive, for generation of products and for
dissemination to users
Statistic about the quality of the data, and reports of
the mission performance
Supporting the users establishing high level production
plan
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
74
Ground system elements
1.
Mission control system (MCS)
2.
Mission exploitation system (MES)
3.
Ground station system (GSTS)
4.
Ground communication subnet (GCS)
5.
Space & Ground simulation system (SGSS)
6.
Electrical ground support equipment (EGSE)
Ground Segment
GCS
Mission
Control
System
(MCS)
Ground
Communications
Subnet (GCS)
Ground
Station
System
(GSTS)
Space &
Ground
Simulation
System (SGSS)
Space
subnet
link
Space
subnet
link
GCS
Mission
Exploitation
System
(MES)
Space
Segment
GCS
Electrical Ground
Support
Equipment
(EGSE)
Platform
Payload
AIT subnet
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
Assembly
integration
and test subnet
75
Ground Station system (GSTS)
It is the direct interface with the space segment while in
orbit, and with the MCS.
It provides support functions for controlling the space
segment elements and exploiting the mission products
Logical instances:
a. GSTS-SSC: in support of space segment control for the
platform and payload
b. GSTS-ME: in support of mission exploitation
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
76
Ground station system (GSTS)
− RF chains (uplink/downlink) dealing with
the transmission/reception of signal
to/from the space segment
Ground Station
Antenna
− Baseband units performing
modulation/demodulation of the signals
to/from the space segment
RF Equipment
TM/TC Processors
− RF and baseband units performing the
tracking
Station M & C
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
77
Ground station system (GSTS)
• Routine navigation of a spacecraft around the Solar System
relies on two tracking methods: ranging and two-way Doppler
- Precisely measuring the time it takes radio signals to travel to
and from a spacecraft gives the distance from the ground
station;‘two-way range’. (Random errors down to 1 m)
- measuring the signal’s Doppler shift provides the craft’s
velocity along that line-of-sight; ‘range-rate’. (Random errors
down to 0,1 mm/s)
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
78
Ground station system (GSTS)
• The other two position coordinates, against the sky
background, are obtained only indirectly from the motion of
the ground station as the Earth rotates
• The craft’s velocity components in the plane-of-sky are not
measured and can only be found from how the position
changes from day to day
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
79
Ground station system (GSTS)
• Angular spacecraft positioning can be measured using two
widely separated antennas to simultaneously track a
transmitting probe: Differential One-way Range (DOR)
– Delta-DOR corrects errors “tracking” a quasar in a direction
close to the spacecraft for calibration. (Errors down to 500
billionths of a degree/nanoradian)
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
80
Ground station system (GSTS)
− Processing elements to perform the
handling of the data sent by the MCS that
has to be transmitted to the space
segment
Ground Station
Antenna
− Processors dealing with the formating of
the data structures (packets) to be
transmited to the MCS
RF Equipment
TM/TC Processors
Station M & C
− Processors/processes dealing with the
monitoring and control of the network
elements
− Calibration units to verify the station
performances
− Test units
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
81
Ground station system (GSTS)
− From the reception stand-point
Ground Station
a.
b.
c.
d.
e.
Antenna
RF Equipment
Conditioning
Filtering
Sychronisation
Demultiplexing
Packetization
of the downlinked data
TM/TC Processors
Station M & C
− From the transmition point of view
a. Check data streams generated within the
GS
b. Modulate the signals
c. Amplify the signals
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
82
Ground system elements
1.
Mission control system (MCS)
2.
Mission exploitation system (MES)
3.
Ground station system (GSTS)
4.
Ground communication subnet (GCS)
5.
Space & Ground simulation system (SGSS)
6.
Electrical ground support equipment (EGSE)
Ground Segment
GCS
Mission
Control
System
(MCS)
Ground
Communications
Subnet (GCS)
Ground
Station
System
(GSTS)
Space &
Ground
Simulation
System (SGSS)
Space
subnet
link
Space
subnet
link
GCS
Mission
Exploitation
System
(MES)
Space
Segment
GCS
Electrical Ground
Support
Equipment
(EGSE)
Platform
Payload
AIT subnet
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
Assembly
integration
and test subnet
83
Ground communications
subnetwork (GCS)
It connects all operational ground facilities.
a. Commnunications equipment to send/receive data
b. Communication lines and services
Other subnetworks are:
a. Space link subnet
b. AIT subnet
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
84
Ground system elements
1.
Mission control system (MCS)
2.
Mission exploitation system (MES)
3.
Electrical ground support equipment (EGSE)
4.
Ground station system (GSTS)
5.
Ground communication subnet (GCS)
6.
Space & Ground simulation system (SGSS)
Ground Segment
GCS
Mission
Control
System
(MCS)
Ground
Communications
Subnet (GCS)
Ground
Station
System
(GSTS)
Space &
Ground
Simulation
System (SGSS)
Space
subnet
link
Space
subnet
link
GCS
Mission
Exploitation
System
(MES)
Space
Segment
GCS
Electrical Ground
Support
Equipment
(EGSE)
Platform
Payload
AIT subnet
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
Assembly
integration
and test subnet
85
Space and ground
simulation facility (SSF)
- It supports the validation of critical operational data
a. Databases
b. Procedures
Radiometer
auxiliary data
- It supports training activities
Gr
ou
m nd s
on e
ito gm
ri n e n
g
t
t
en
m
g g
se r i n
e
to
ac oni
p
S m
et
g mn
e
s
s
ce
Spa mmand
co
Ground
s e g mn e
t
c o mma
nds
SSF
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
86
Ground system elements
1.
Mission control system (MCS)
2.
Mission exploitation system (MES)
3.
Ground station system (GSTS)
4.
Ground communication subnet (GCS)
5.
Space & Ground simulation system (SGSS)
6.
Electrical ground support equipment (EGSE)
Ground Segment
GCS
Mission
Control
System
(MCS)
Ground
Communications
Subnet (GCS)
Ground
Station
System
(GSTS)
Space &
Ground
Simulation
System (SGSS)
Space
subnet
link
Space
subnet
link
GCS
Mission
Exploitation
System
(MES)
Space
Segment
GCS
Electrical Ground
Support
Equipment
(EGSE)
Platform
Payload
AIT subnet
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
Assembly
integration
and test subnet
87
Electric ground support
equipment (EGSE)
It is part of the overall ground support equipment (GSE),
supporting the verification of the space segment during
assembly, integration and test (AIT)
It supports operations in the use of the GMs
MDB
M&C
Simulator
EGSE
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
88
ALTERNATIVE ARCHITECTURES
FOR DIFFERENT MISSIONS
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
89
• James Webb Telescope GS (launch 2013)
• MSG GS
– Facilities diagram
– Functional block diagram
• ISS GS
– Columbus GS
– ATV GS
• COTS GS
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
90
JWT GS
Science and Operations Center (SOC)
S ban
- Recorder data
- Nominal TM stream
X-band
d
Ephemerides
-
Commands
Observations
Observation plan
FSW loads
Ranging/tracking
Contingency TM stream
DSN schedule
Commands
FSW loads
Recorder data files
Observation
plans
Flight Operations Center
(FOS)
Command & Telemetry
System (CTS)
Actuators
Cmds
Proposal Planning
System (PPS)
Recorder
Data
files
Proposals
Payload control
system
TM
Goldstone
- Recorder data files
- TM stream
- Ranging/tracking
Observatory
test-bed (OTB)
Camberra
Ephemerides
Madrid
Cmd
Level 0 processing
of recorder data
Project Reference
Database
Management
System (PRD MS)
FSW loads
PRD Data
TM
PL image
data
Data Management
System (DMS)
Data
products
PRD Data
PRD Data
- Commands
- Ranging/tracking
New development
Ranging/tracking
Ephemerides
Jet Propulsion
Laboratory
(JPL)
Flight Dynamics
Facility (FDF)
Flight SW
development labs
JWT & NGST development
Other developtmens
- Cache recorder data
- Schedule DSN resources
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
91
MSG GS
• Facilities diagram
- Tracking
- TM/TC (back-up)
EGSE
Back-up and
Ranging Ground
Station
(BRGS)
LEOP
- TM/TC
- Tracking
Primary Ground
Station
(PGS)
Back-up Satellite
control center
(BSCC)
Central Facility
(CF)
Image Processing
Facility
(IMPF)
Rectified
images
Satellite M&C
Data Acquisition
and Dissemination
Facility
(DADF)
Products
Meteorological
Products
Extraction Facility
(MPEF)
Products
Rectified images
Space and
Ground Simulation
Facility
(SGSF)
Raw & rectified images
TM
MSG Archive and
Retrieval Facility
(U-MARF)
Ground Segment M&C
Communications backbone
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
92
MSG GS
• Functional block diagram
ete
rd
a
tre
m
TM
TC
g
Rangin
Ra
m
dio
s
ata
LEOP
TM
Image acquisition
and processing
S/C
Monitor
& Control
Radiometer aux. data
Flight dynamics data
EGSE
TC & TM
Simulation
data
TC
Space and
Ground Segment
Simulation
Rectified &
raw data
Metereological
product extraction
Retrieval
of products
Products
Archiving
&
Retrieval
Retrieval
of products
Schedules
& actiivities
Calibration
data
Rectified
data
Retrieval of data
Mission Planning
& Scheduling
GS
Monitor
& Control
Operations
preparation
End user support
center
Simulation
data
M&C
Retrieval
of products
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
93
ATV GS
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
94
Columbus GS
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
95
GROUND SEGMENT PHASES
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
96
Ground segment phases 1/3
0/A
B
Mission analysis and feasibility
Ground segment preliminary design
- Identify characteristics,
constraints, conceps.
- Assess feasibility (GS
perspective)
- Precise definition of the GSB to confirm
feasibility, prepare choice of suppliers,
start the implementation
- The GS is decomposed into its main
elements
PHASE
OBJECTIVE
ACTIVITIES
REVIEWS
INPUTS/OUTPUTS
GS Requirements Review
Mission RD
GSRR
GS Preliminary Design Review
Mission Ops Concept (D)
Customers RD (D)
EGSE Requirements from the SSC
Space-to-Ground ICD (D)
GSPDR
Customer RD
GS Baseline Definition
System definition
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
97
Ground segment phases 2/3
PHASE
C
D
GS Detailed design
GS Production and Validation
OBJECTIVE
ACTIVITIES
REVIEWS
Production
- GS Design to
element level
and start
implementation
-Definition of the
ops. Org. And
start of
production of
mission
operations data
Procure GS
facilities and
elements
Integration and technical
verification and validation
Includes
preliminary
validation of
mission data
GSCDR
Operational validation
Train personnel
Validate full GS
ORR
Ground Segment Implementation
Operations
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
98
Ground segment phases 3/3
PHASE
OBJECTIVE
ACTIVITIES
REVIEWS
E
F
Operations execution
Disposal
LEOP & commissioning
Acquire mission
orbit/configuration
and quality space
segment
Routine operations
Operate and
exploit mission inorbit
IOQR
IOORs
Space and
Ground Segment
disposal
MCOR
Operations
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
99
GS preparation process
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
100
BIBLIOGRAPHY
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
101
Bibliography
1.
Ground systems and operations – Part 1: Principles and requirements
2. Ground systems and operations – Part 2: Document requirements definition
3. James Webb Space Telescope Project. Mission Operations Concept Document
4. MSG Ground Segment Design Specification (GSDS)
5. EGOS, ESA Ground operations Software System, SpaceOps 2004, N. Peccia
6. Space mission analysis and design, J.R. Wertz and W.J. Larson
7. Spacecraft systems engineering, P. Fortescue and J. Stark
Taller de Diseño de Picosatélites (CUBESATS) y Estaciones de Tierra. Ana Laverón Simavilla
102
Descargar