Disminuciones momentáneas del valor RMS del voltaje provocadas

Anuncio
Causas y efectos de DMV (sags)
Disminuciones momentáneas del valor RMS del voltaje provocadas por
Cortos circuitos
Arranque de motores
Sobrecargas (variación sostenida)
Equipo sensible afectado:
ASD
Equipo encargado del control de un proceso
Computadoras
Caracterización de DMV (sags)
Duración : Depende de
La inercia de la carga(arranque de motores)
La duración de la falla( tiempo de operación del equipo de protección)
Valor de la componente fundamental de voltaje
Valor RMS
VRMS =
1
N
n
∑v
i =1
i
2
VRMS (k ) =
1
N
i=k
∑v
i
i =k − N +1
2
VRMS (kN ) =
1
N
i =kN
∑v
2
i
i =( k −1) N +1
“Deep sag”: Disminución importante en el voltaje
“Shallow sag”: Disminución leve en el voltaje
Voltaje pico
“Missing voltage technique”:Se realiza una comparación del voltaje
de prefalla con el voltaje en condiciones de falla (sag)
Cálculo aproximado de la DMV
Vsag =
ZF
E
ZS + ZF
Vsag =
zl
Z S + zl
E
Zs
l = Dis tan cia entre la falla y el pcc
pcc
Vsag
z = Im pedancia por unidad de longitud
Zf
Carga
Cálculo de la DMV (Arranque de motores)
Vsag =
ZM
ZS + ZM
2
V
Zs = n
S source
2
Vn
ZM =
β SMotor
S source
Vsag =
S source + β S motor
E
Zs
β=
Ist
Inom
pcc
Vsag
Carga
ZM
ZM= RM + jXM
RM,XM se calculan para lograr
una corriente de arranque de 5 veces
la nominal @ voltaje de 1.0 pu con fp=0.2
Referencia (2)
Cálculo de la DMV (Sistemas interconectados)
Corto circuito trifásico a través de impedancia de falla (Zf)
La disminución del voltaje en una zona del sistema dependerá
en gran medida de la “distancia eléctrica” entre este punto
y el punto donde ocurre la falla
Obtención de la matriz Zbus a partir de la matriz Ybus
Z bus = [Ybus ]
−1
Matriz de
admitancias Zbus
Zg1
V1
V2
Z1
G2
I1
V1
V2
Z1
I2
Zg2
Z2
Z2
Z3
Z3
V3
V3
I3
Yii = ∑ y´s conectadas al nodo i
Yij = − ∑ y´s conectadas entre nodos i y j
 I1  Y11 Y12 Y13  V1 
 I  = Y Y
 V 
Y
 2   21 22 23   2 
 I 3  Y31 Y32 Y33  V3 
V1   Z11
V  =  Z
 2   21
V3   Z 31
 Z 11
 ..

Zbus =  Z k 1

 ..
 Z N 1
Z12
..
Zk2
ZN2
Z12
Z 22
Z 32
..
..
Z 13   I 1 
Z 23   I 2 
 
Z 33   I 3 
Z 1k
..
Z kk
Z Nk
..
..
Z1N 


Z kN 

.. 
Z NN 
Determinación de los voltajes en condiciones de falla
I1
I2
V1
V2
Z1
Z2
Z3
V3
I3
[V] = [ ZBUS] [I]
 Z 11
 ..

Zbus =  Z k 1

 ..
 Z N 1
IFk =
V pf
Z kk
Z12
..
Zk2
ZN2
..
..
Z 1k
..
Z kk
..
..
Z Nk
Vf j = Vpf
Z1N 


Z kN 

.. 
Z NN 
j
 Z jk 
1 −

Z
kk 

Determinación de los voltajes en condiciones de falla
Z bus
Nodo
1
2
3
4
1
0.00
0.20
0.37
0.40
0.2436
0.1938

= j 0.1544

0.1456

Nodo de Falla
2
0.16
0.00
0.35
0.34
3
0.21
0.24
0.00
0.46
0.1938 0.1544 0.1456
0.2295 0.1494 0.1506
0.1494 0.1954 0.1046
0.1506 0.1046 0.1954
4
0.25
0.23
0.46
0.00







Efecto de la conexión de los transformadores
Duración de la DMV
Medición de la duración por instrumentos analizadores
Número de ciclos durante los cuales el valor RMS del voltaje
se encuentra por debajo de un nivel establecido (treshold).Este
valor normalmente se define en 90%
Duración de la DMV
La duración de una DMV está dada principalmente por
el tiempo en que se libera la falla. Generalmente las fallas a
nivel transmisión son liberadas más rápidamente que las
fallas a nivel distribución
Tiempos típicos de operación
Fusibles: menos de un ciclo
Fusibles de expulsión: 10-1000 ms
Relevador de distancia con interruptor rápido: 50-100 ms
Relevador de distancia en zona 1: 100-200 ms
Relevador de distancia en zona 2: 200-500 ms
Relevador diferencial: 100-300 ms
Relevador de sobrecorriente: 200-2000 ms
REFERENCIAS
http://www.true-power.com/downloads.htm
Power System Analysis
Grainger, Stevenson
Bollen, Math
Understanding Power Quality Problems
IEEE Press 1999
Voltage Sag Analysis Case Studies
Jeff Lamoree, Dave Mueller
IEEE IAS
Dynamic sag corrector: A new concept in Power Conditioning
Divan, Sullivan, McGranaghan,Zavadil
Power Quality Magazine
Descargar