TEORÍA DE MECANISMOS PRÁCTICA 7 Departamento de Ingeniería Mecánica Universidad Carlos III de Madrid Hoja: 1/24 PRÁCTICA 7 CÁLCULO DEL PERFIL DE UNA LEVA INTRODUCCIÓN El desarrollo de esta práctica consistirá en el estudio de perfiles de levas sobre una maqueta simplificada que simula el mecanismo de accionamiento de una máquina o herramienta para mecanizar tornillos a partir de una barra hexagonal. OBJETIVOS Los objetivos perseguidos en la realización de la práctica son los siguientes: Comprobar el funcionamiento de un mecanismo real materializado en una maqueta simplificada cuyo movimiento está basado en las LEVAS como elemento mecánico de transmisión. Aplicación directa del estudio teórico de levas realizando un estudio cinemático del movimiento de una leva que consistirá en el desarrollo del diagrama de desplazamientos y trazado de su perfil teórico y real. Estudio dinámico en levas con la obtención del ángulo de autorretención de una de las levas que componen la maqueta. Para ello, tras haber efectuado el estudio teórico de levas y las construcciones gráficas para la obtención de los distintos tipos de perfiles, se procederá a efectuar una aplicación directa donde se apreciará el cometido de este elemento mecánico que forma un par de orden superior. TEORÍA DE MECANISMOS PRÁCTICA 7 Departamento de Ingeniería Mecánica Universidad Carlos III de Madrid Hoja: 2/24 LEVAS Dentro del esquema general de la máquina como conjunto mecánico, las levas pertenecen al sistema de los elementos transmisores (figura 1). SISTEMA TRANSMISOR SISTEMA MOTRIZ Elementos transmisores (LEVAS) Elementos portantes móviles Elementos de conexión SISTEMA RECEPTOR SISTEMA DE SUSTENTACIÓN Figura 1. Principales sistemas de una máquina. Una leva es un elemento mecánico que transforma el movimiento según una cierta ley. El conjunto de transmisión está formado por dos elementos (figura 2): Leva y palpador o seguidor (a veces existe un tercer elemento, el rodillo de contacto). La ley de la leva puede definirse como la función que refleja la relación entre el desplazamiento de la leva (lineal o angular) y el del palpador (lineal o angular). Figura 2. Mecanismo leva-palpador. TEORÍA DE MECANISMOS PRÁCTICA 7 Departamento de Ingeniería Mecánica Universidad Carlos III de Madrid Hoja: 3/24 CLASIFICACIÓN DE LAS LEVAS Y PALPADORES Clasificación según la geometría de la leva. Figura 3. Clasificación de las levas atendiendo a la forma de estas. a) De rotación o de disco. d) Espacial glóbica. b) De translación o de cuña. e) Espacial frontal esférica. c) Espacial cilíndrica. f) Espacial frontal cilíndrica. TEORÍA DE MECANISMOS PRÁCTICA 7 Departamento de Ingeniería Mecánica Universidad Carlos III de Madrid Hoja: 4/24 Clasificación según la geometría del extremo del palpador. Figura 4. Clasificación de las levas atendiendo a la forma del extremo del palpador. a, g) Palpador de rodillo. d) P. de cara plana inclinado. b, j) Palpador puntual. e) P. de cara curva simétrico. c, h) P. plano o de cara plana recto. f, i) P. de cara curva asimétrico. TEORÍA DE MECANISMOS PRÁCTICA 7 Departamento de Ingeniería Mecánica Universidad Carlos III de Madrid Hoja: 5/24 Clasificación según el movimiento del palpador. Palpador con movimiento de translación: o Excéntrico (figura 2). o Axial (figura 3-a) Palpador con movimiento de rotación u oscilante (figura 4-g). Clasificación según el plano movimiento de la leva y del palpador. Mecanismo leva-palpador plano: Los movimientos de la leva y del palpador se realizan en un mismo plano o en planos paralelos (figuras 3-a y 3-b). Mecanismo leva-palpador espacial: Los movimientos de la leva y del palpador se realizan en planos diferentes no paralelos (figuras 3-c y 3-d). Clasificación según el cierre del par superior. Enlace leva-palpador con cierre por fuerza (figura 2). Enlace leva-palpador con cierre por forma (figura 3-c). TERMINOLOGÍA En la Figura 5 se muestra una transmisión con un mecanismo de leva plano con palpador de rodillo. La terminología asociada al mismo, es la siguiente: Circunferencia base: Es la circunferencia más pequeña, de radio R b , que puede trazarse con centro en el eje de rotación de la leva y tangente a la superficie física de ésta. En el caso de un palpador de rodillo es más pequeña que la circunferencia primaria, siendo la diferencia el radio del rodillo R r . Circunferencia primaria: Es la circunferencia más pequeña, de radio R p ,que se puede trazar con centro en el eje de rotación de la leva y tangente a la curva de paso. Esta sólo se aplica en el caso de palpadores circulares o curvos. Curva de paso: Es la trayectoria que describe el centro del rodillo en la referencia solidaria a la leva, al completarse una vuelta de esta. Corresponde a la curva offset TEORÍA DE MECANISMOS PRÁCTICA 7 Departamento de Ingeniería Mecánica Universidad Carlos III de Madrid Hoja: 6/24 (perfil teórico de la leva), separada una distancia igual al radio del rodillo R r del perfil real de la leva. En el caso de un palpador puntual (R r = 0), el perfil teórico coincide con el perfil real de la leva. Punto de trazo: Es un punto del palpador que al realizar la inversión cinemática describe la trayectoria que constituye el perfil de la leva (cuando el palpador es puntual) o la curva offset al perfil (curva de paso o perfil teórico de la leva) cuando el palpador es circular. Ángulo de presión: Es el ángulo φ entre la normal común a los perfiles de la leva y del palpador en el punto geométrico de contacto y la dirección de la velocidad de dicho punto del palpador. Si el palpador es de rodillo debe considerarse la dirección de la velocidad de su centro. Excentricidad: Es la distancia ε entre el eje a lo largo del cual se traslada el palpador y el centro de rotación de la leva. Su valor puede ser nulo (ε = 0, palpador axial o alineado). Sólo está presente en palpadores con movimiento de traslación. Figura 5. Terminología de los mecanismos de leva-palpador. TEORÍA DE MECANISMOS PRÁCTICA 7 Departamento de Ingeniería Mecánica Universidad Carlos III de Madrid Hoja: 7/24 ESTUDIO CINEMÁTICO Diagramas de desplazamientos. El movimiento del palpador o rodillo, al recorrer una trayectoria obligada, es prefijado por el tipo de perfil de la leva que se adopte, es decir, la ley del movimiento viene dada por el perfil de la leva. Al representar la ley de desplazamiento gráficamente (Figura 6) en un sistema de coordenadas, colocando la variable independiente en el eje de las abscisas y la variable dependiente en el eje de las ordenadas, se obtiene el diagrama de desplazamiento. En el diagrama de desplazamientos, se representan el desplazamiento angular o lineal del palpador (eje de ordenadas) en función del desplazamiento angular o lineal de la leva (eje de abscisas). A partir del diagrama de desplazamientos, se determina el perfil de la leva: • Teórico. • Real (Considerando el radio del rodillo). Figura 6. Diagrama de desplazamientos de una leva de rotación y palpador de translación. Curvas de acuerdo. En el diagrama de desplazamientos deben trazarse curvas de acuerdo entre los recorridos efectuados durante los períodos de subida, detención y retorno (Figura 6). Las curvas de acuerdo seguirán una trayectoria determinada según el movimiento de que se trate (dependiendo de la velocidad de giro de la leva). TEORÍA DE MECANISMOS PRÁCTICA 7 Departamento de Ingeniería Mecánica Universidad Carlos III de Madrid Hoja: 8/24 Figura 7. Curva descrita por el palpador durante un movimiento uniforme. MOVIMIENTO UNIFORME: Si se pretende que la elevación del palpador provocada por el giro α1 de la leva, se efectúe con movimiento uniforme (velocidad constante), este tramo de perfil de leva, tendrá que venir representado en el diagrama por una recta. El inconveniente de los choques de la transmisión entre tramos contiguos se puede subsanar suavizando dichas uniones por medio de una línea recta modificada (figura 7), suavizando el desplazamiento por medio de un acuerdo de radio R. Velocidad de giro de la leva, aproximadamente, 1000 rpm. Figura 8. Curva descrita por el palpador durante un movimiento uniformemente acelerado. MOVIMIENTO UNIFORMEMENTE ACELERADO: La curva que produce un movimiento parabólico del palpador, y que lo caracteriza por su aceleración constante, se obtiene por el procedimiento geométrico siguiente: se divide el segmento total de elevación del palpador en un número igual de partes igual al que ha dividido el eje de abscisas. Si, por ejemplo, el número de divisiones es seis, en abscisas, el segmento total en ordenadas de elevación del palpador, se dividirá también en seis segmentos, dando a cada uno de éstos una longitud proporcional a los números 1, 3, 5, 5, 3, 1. Por estos TEORÍA DE MECANISMOS PRÁCTICA 7 Departamento de Ingeniería Mecánica Universidad Carlos III de Madrid Hoja: 9/24 puntos se trazarán rectas horizontales, que cortarán a las correspondientes verticales por 1, 2, 3, 4, 5 en puntos, que unidos darán la curva de perfil parabólico (Figura 8). Velocidad de giro de la leva, entre 1000 y 6000 rpm. Figura 9. Curva descrita por el palpador durante un movimiento armónico simple. MOVIMIENTO ARMONICO: Para conseguir un movimiento armónico simple del palpador, se hará la siguiente construcción de perfil: tomando la elevación del palpador, como diámetro, se trazará una semicircunferencia, dividiéndola en un número de partes igual, al que se ha dividido el eje de abscisas del diagrama, obteniendo así una serie de puntos a partir de los que se trazarán rectas horizontales, que cortarán a las correspondientes verticales trazadas por los puntos del eje de abscisas, en puntos de la curva del diagrama de desplazamientos (Figura 9). La velocidad de giro de la leva puede ser mayor de 1000 rpm. Figura 10. Curva descrita por el palpador durante un movimiento cicloidal. TEORÍA DE MECANISMOS PRÁCTICA 7 Departamento de Ingeniería Mecánica Universidad Carlos III de Madrid Hoja: 10/24 MOVIMIENTO CICLOIDAL: Se puede conseguir un movimiento cicloidal del palpador generando una trayectoria similar a la descrita por un fasor complejo rodante, de radio r = L/2π , donde L es la elevación requerida (Figura 10). Para construir la curva de desplazamiento, se divide la ordenada cero en el mismo número de partes iguales que la abscisa. Sea P el punto generador, coincidente con el punto O, en el inicio. Entonces, cuando el círculo generador ruede verticalmente hacia arriba, a la tangencia con la ordenada, por ejemplo en el punto 2, se traza una línea horizontal por el punto P, en la ordenada correspondiente al punto 2. Permite una velocidad de giro de la leva más que en los casos anteriores. ESTUDIO COMPARATIVO DE LOS DISTINTOS MOVIMIENTOS En primer lugar, es necesario hacer constar que, aunque al diseñar un mecanismo de levas es preciso estudiar con detenimiento los distintos diagramas de las funciones de desplazamiento, velocidad, aceleración y choque, que originen los perfiles estudiados, se puede, no obstante, hacer una distinción previa entre mecanismos de alta y baja velocidad ya que en los primeros, es fundamental el estudio de aceleraciones y choques, por la posibilidad de rotura por fatiga, mientras que los proyectados para funcionar a bajas velocidades solamente suele interesar el análisis de desplazamientos y velocidades. Las conclusiones finales, tras el estudio de las ecuaciones analíticas que definen el movimiento, para cada uno de los tipos especificados, son las siguientes: Mecanismos de levas, diseñados para funcionar a baja velocidad, la curva de acuerdo entre los tramos horizontales, correspondientes a los periodos de reposo del palpador, debe adoptar un perfil uniforme y parabólico. Mecanismos de levas, diseñados para altas velocidades de funcionamiento, el perfil más indicado será cicloidal, debido a que la sobreaceleración de primer orden (choque), alcanza valores finitos, como puede observarse y consiguiéndose, bajar el nivel de ruidos y prolongar la duración del mecanismo. En la figura 11 se ofrece el estudio comparativo, para diferentes características en velocidad, de los comportamientos en aceleración y choque o sobreaceleración. TEORÍA DE MECANISMOS PRÁCTICA 7 Departamento de Ingeniería Mecánica Universidad Carlos III de Madrid Hoja: 11/24 Figura 11. Estudio comparativo de los diferentes tipos de movimientos. TEORÍA DE MECANISMOS PRÁCTICA 7 Departamento de Ingeniería Mecánica Universidad Carlos III de Madrid Hoja: 12/24 ESTUDIO DINÁMICO. Condición de autorretención. La condición de autorretención determina el valor máximo de α (ángulo de presión, variable en cada instante) para que la leva no se autorretenga. El citado ángulo está formado por la resultante de la fuerza debida al resorte, más la de inercia de la varilla, oponiéndose ambas al movimiento de ésta, con la fuerza que define la acción de la leva sobre la varilla. El valor máximo de dicho ángulo (figura 12) se obtiene mediante un balance de fuerzas sobre la varilla portadora del rodillo palpador, resultando la expresión: tg α lim = a µ ⋅( 2⋅ x + a − 2⋅ µ ⋅ b ) Siendo: αlim Î Angulo máximo de autorretención a Î Altura de la guía µ Î Coeficiente de rozamiento 2 b Î Ancho de la varilla x Î Distancia variable del punto a la guía, de modo que para obtener el valor del α máximo, habrá que sustituir aquí el valor del x mínimo. La fórmula anterior se puede simplificar a: tg α lim = 1 µ ⋅ (1 + 2 ⋅ x / a ) Figura 12. Parámetros de una leva de rotación con seguidor lineal de rodillo. Considerando un rozamiento pequeño (µ << 1) y que el término (2 ·µ2 ·b) se aproxima a cero, donde a y µ son fijos y x debe ser mínimo. TEORÍA DE MECANISMOS PRÁCTICA 7 Departamento de Ingeniería Mecánica Universidad Carlos III de Madrid Hoja: 13/24 APLICACIONES PRÁCTICAS DE LAS LEVAS Árbol de levas para accionamiento de válvulas en automoción. En la figura 13 se muestran las partes de un accionamiento, con un árbol de levas de las válvulas de admisión y escape de un motor como los usados en automoción. La leva es la encargada de abrir y cerrar las válvulas de admisión y escape, durante el ciclo térmico del motor del automóvil. Figura 13. Accionamiento de las válvulas de admisión y escape con el árbol de levas. Guiado de avance en sistemas máquina herramienta para destalonar fresas. Para quitar material en el dorso y los lados de las fresas donde se quiera un perfil constante de corte, se emplea un torno como el de la figura 14, donde el carro transversal ha sido sustituido por el dispositivo que se muestra en la maqueta. La leva hace avanzar radialmente la herramienta según una cierta progresión para hacerla retroceder bruscamente hasta su posición inicial. Figura 14. Máquina herramienta de destalonar fresas. TEORÍA DE MECANISMOS PRÁCTICA 7 Departamento de Ingeniería Mecánica Universidad Carlos III de Madrid Hoja: 14/24 EQUIPO Y MATERIAL NECESARIO Para la realización correcta de la práctica es necesario el siguiente equipo: Maqueta representativa de un mecanismo de accionamiento de una máquina herramienta, para mecanizar tornillos a partir de una barra hexagonal. Instrumentos de cálculo y dibujo. DESCRIPCIÓN DEL MECANISMO. Se parte de una maqueta (figura 15) que simula el mecanismo de accionamiento de una máquina herramienta para mecanizar tornillos a partir de una barra hexagonal, en la que se ha prescindido del sistema de alimentación de la barra-pieza, así como del movimiento relativo de rotación pieza-herramienta. Figura 15. Reproducción a escala de una máquina de generar tornillos. TEORÍA DE MECANISMOS PRÁCTICA 7 Departamento de Ingeniería Mecánica Universidad Carlos III de Madrid Hoja: 15/24 Un eje motor (simulado por la manivela de entrada), acciona simultáneamente cada una de las cuatro levas (tres planas y una cilíndrica) cuya misión se explicará a continuación. Las operaciones a realizar para la realización del tornillo son tres: cilindrar (en dos pasos), roscar y cortar (figura 16). Figura 16. Herramientas de cilindrado, corte y roscado y dimensiones del tornillo. La intervención de cada uno de los útiles, que efectúan las operaciones de cilindrar, roscar y cortar, viene posibilitada por la actuación de la leva correspondiente, donde cada leva ha sido colocada debidamente para intervenir según una determinada secuencia y cuyo perfil ha sido determinado para cumplir su función. Las funciones de cilindrar, roscar y cortar serán guiadas por levas planas, mientras que el posicionamiento de la barra vendrá determinado por una leva espacial cilíndrica. TEORÍA DE MECANISMOS PRÁCTICA 7 Departamento de Ingeniería Mecánica Universidad Carlos III de Madrid Hoja: 16/24 Las distintas fases del proceso de fabricación del tornillo vienen condicionadas por los desplazamientos de los palpadores sobre las levas lo que conlleva una cuidada secuenciación (figura 17). Las fases, durante un ciclo completo, son las siguientes: 0–1 Acercamiento de la herramienta a cilindrar 1–5 Primer paso del cilindrado 5 – 5½ Separación de la herramienta a cilindrar. 5½ - 6 Colocación de la pieza 6 – 6½ Acercamiento de la herramienta a cilindrar 6½ - 10½ Segundo paso de cilindro 10½ - 11 Separación herramienta a cilindrar 11 – 11½ Acercamiento de la herramienta de roscar y colocación de la pieza 11½ - 15½ Roscado 15½ - 16 Separación de la herramienta de roscado 16 – 16½ Acercamiento de la herramienta de cortar y colocación de pieza 16½ - 20½ Cortar 20½ - 21½ Separación de la herramienta de cortar 21½ - 22½ Colocación de la pieza 22½ - 24 Previsto para el avance de la pieza TEORÍA DE MECANISMOS PRÁCTICA 7 Departamento de Ingeniería Mecánica Universidad Carlos III de Madrid Hoja: 17/24 Figura 17. Curvas de desplazamientos de las cuatro levas. TEORÍA DE MECANISMOS PRÁCTICA 7 Departamento de Ingeniería Mecánica Universidad Carlos III de Madrid Hoja: 18/24 MÉTODO OPERATIVO Para la correcta realización de la práctica, se deben desarrollar los siguientes puntos: 1. Comprobar detenidamente sobre la maqueta las distintas fases de fabricación de tornillos a partir de una barra hexagonal, que fueron ampliamente explicadas en el apartado referente a los objetivos de la práctica, y que se resumen en: Cilindrado en dos pasos (leva verde) Roscado (leva azul) Cortar (leva roja) Acercamiento de la pieza (leva cilíndrica) 2. Dibujar el diagrama de desplazamientos en la leva de cilindrar (verde), a partir de los puntos más representativos, considerando que el seguidor efectúa un movimiento de aceleración constante 3. A partir del diagrama anterior, determinar gráficamente el perfil teórico y real de dicha leva 4. Calcular el máximo ángulo de presión en la leva de roscar (azul), utilizando la fórmula especificada en el apartado referente al estudio dinámico de levas ELABORACIÓN Y ANÁLISIS DE LOS RESULTADOS La obtención de los resultados correspondientes a los enunciados anteriores se llevará a cabo del siguiente modo: TEORÍA DE MECANISMOS PRÁCTICA 7 Departamento de Ingeniería Mecánica Universidad Carlos III de Madrid Hoja: 19/24 1. Para comprobar las fases del proceso de fabricación se deberá accionar el mecanismo mediante una manivela situada en la maqueta que lleva incorporada una aguja indicadora del número de grados girada por ésta, que al ser solidaria con el eje rígidamente unido a las distintas levas que consta el mecanismo nos dará valores necesarios para la construcción del diagrama de desplazamientos y del perfil de la leva. 2. La realización del diagrama de desplazamientos se realizará tomando como valores de giro αp de la varilla seguidora los correspondientes a giros de la leva (φ) de 15º en 15º, que se medirán en el disco graduado, tomando además aquellos otros puntos del perfil que sean significativos aunque no coincidan específicamente con la división anterior. Los valores de αp se calculan mediante un método aproximado, basado en el teorema del coseno, aplicado al triángulo formado por la varilla rígidamente unida al eje, portadora de la herramienta de cilindrar, y el lado de longitud constante cuyos extremos son el apoyo de la herramienta y el centro del eje anterior. De este modo, los puntos representativos se obtendrán fácilmente, construyendo la tabla de resultados que se muestra en la siguiente página, donde: L0 (mm): Longitud inicial de la varilla portadora de la herramienta de cilindrar (leva verde), desde el apoyo de la misma al extremo de la herramienta, entendiendo por inicial la medida cuando la aguja marque 0º en el disco graduado. Li (mm): Valores sucesivos de la distancia desde es apoyo al extremo de la varilla, para las distintas posiciones angulares de la leva, es decir para los distintos valores de φ. R (mm): Longitud de la varilla solidaria al eje (se supone constante para todas las posiciones de leva). Nº de medida 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 φ (º) TEORÍA DE MECANISMOS PRÁCTICA 7 Departamento de Ingeniería Mecánica Universidad Carlos III de Madrid Hoja: 20/24 L0 (mm) Li (mm) αp(rad) = (Li − L0) / R αp (º) TEORÍA DE MECANISMOS PRÁCTICA 7 Departamento de Ingeniería Mecánica Universidad Carlos III de Madrid Hoja: 21/24 3. La determinación gráfica del perfil se lleva a cabo con el proceso dibujo siguiente: Trazar una circunferencia de radio OpOl (Distancia del centro de la leva al punto de apoyo de la varilla que porta el rodillo seguidor) y situar el seguidor en uno de los puntos de la circunferencia. Trazar una circunferencia con el radio básico del perfil teórico de la leva . Dividir la circunferencia en un número de partes graduadas igual al número al elegido. Trazar la varilla L desde Op a la circunferencia básica. Con centro en Op y radio L, trazar un arco y situar en él los ángulos αp calculados. Llevar circunferencias con centro en Ol desde cada uno de los ángulos αp del arco interior y obligar a la varilla “L” a ir siguiendo a la leva, en cada uno de los sectores en se que se dividió la circunferencia, señalando esos puntos como los significativos del perfil teórico de la leva. El perfil real se obtiene restándole al anterior el radio del rodillo. 4. Aplicación directa de la fórmula siguiente a la leva de roscar (leva azul): tg α lim = 1 µ ⋅ (1 + 2 ⋅ x / a ) TEORÍA DE MECANISMOS PRÁCTICA 7 Departamento de Ingeniería Mecánica Universidad Carlos III de Madrid Hoja: 22/24 EJEMPLO Determinar el perfil teórico y real de una leva de rotación con guía circular, cuyo seguidor de rodillo adquiere un movimiento uniforme acelerado. Tomar, como mínimo, 12 puntos de precisión equidistantes. En la rotación de la leva: De 0º a 120º, la varilla gira 15º elevándose De 120º a 180º, la varilla permanece en reposo De 180º a 270º, gira otros 15º elevándose De 270º a 360º, desciende 30º hasta la posición inicial. Distancia entre centros de rotación de leva y varilla: 80 mm. Longitud de varilla: 60 mm. Radio circunferencia básica del perfil teórico: 34 mm Radio rodillo: 3 mm. Datos: Figura 18. Diagrama de desplazamientos (ley de la leva). TEORÍA DE MECANISMOS PRÁCTICA 7 Departamento de Ingeniería Mecánica Universidad Carlos III de Madrid Hoja: 23/24 Figura 19. Perfil teórico y real de la leva. TEORÍA DE MECANISMOS PRÁCTICA 7 Departamento de Ingeniería Mecánica Universidad Carlos III de Madrid Hoja: 24/24 CUESTIONES 1.- Comprobar detenidamente sobre la maqueta las distintas fases de fabricación de tornillos a partir de una barra hexagonal, que fueron ampliamente explicadas en el apartado referente a los objetivos de la práctica, y que se resumen en: Cilindrado en dos pasos (leva verde) Roscado (leva azul) Cortar (leva roja) Acercamiento de la pieza (leva cilíndrica) 2.- Dibujar el diagrama de desplazamientos en la leva de cilindrar (verde), a partir de los puntos más representativos, considerando que el seguidor efectúa un movimiento de aceleración constante (analizar primero el ejemplo de las páginas 22 y 23). 3.- A partir del diagrama anterior, determinar gráficamente el perfil teórico y real de dicha leva. 4.- Calcular el ángulo de autorretención en la leva de roscar (azul), utilizando la fórmula especificada en el apartado referente al estudio dinámico de levas y sabiendo que el coeficiente de rozamiento es µ = 0,4.