REVISTA EspAÑOLA DE MICROPALEONTOLOOIA Vol. XX, mlm. 3, 1988, pp. -491.51-4 EUSTaQUIO MaLINA Departamento de Paleontología Universidad de Zaragoza 50009 Zaragoza, España GERTA KELLER MARINA MADILE Departmellt 01 Geological and Geophysical Sciences Princeton University Princeton, NJ 08544, U.S.A. Dipartimento Sciem.:e del/a Tena Universitá di Firenze 50121 Firenze, Italia LATE EOCENE TO OLIGOCENE EVENTS: MOLINO DE COBO, BETIC CORDILLERA, SPAIN Quantitative analysis of upper Eocene to Oligocene planktonic foraminifers and calcareous nannofossils in the Molino de Cobo section, Betic Cordillera, Spain indicate three major extinction evenLS: 1) in the upper Eocene at the extinction of Globigerapsis index, 2) at the Eocene-Oligocene boundary and 3) al tbe lower/upper Oligocene boundary. The Globigerapsis index extinction event in Ibis area coincides with the dramatic abundance decline of the discshaped discoasters (D. saipanensis, D. barbadiensis). This faunal and floral assemblage change coincides with a carbonate dissolution interval. The Eocene-Oligocene boundary extinction event involves five planktonic foraminiferal species, which contrary to common belief did not go extinct simulta~ neously, but stretched out over a 3m intervalo This extinction event is probably related to the isotopic enrichment that signals the development of the psychrosphere, or two layer ocean with cold bottom and warm surface water. The lower/upper O1igocene faunal tumover event involves the extinction of surviving Eocene species and the evolulion of late Oligocene to Miocene species. A short hiatos may be present at this intervalo This faunal turnover is most likely related to global cooling and a major sea level drop. El análisis cuantitativo de los foraminíferos planctónicos y nannofosiles calcáreos del Eoceno superior y Oligoceno del corte. de Molino de Cobo (Cordillera Bética, España). pone de manifiesto tres importantes eventos de extinción; en el Eoceno superior, en el límite Eocene/Oligoceno y en el límite Oligoceno inferior/superior, respectivamente. El evento del Eoce.no superior implica la súbita desaparición del genero Globigerapsis. el cual constituia el 20 por 100 del tolal de la población. Los discoaster en roseta (D. saipanensis y D. barbadiensis) también declinan dramáticamente en este momento. Estos cambios en las asociaciones de foraminíferos y nannofosiles, coinciden estratigráficamente con un intervalo de disolución. El evento de. extinción del límite Eoceno/Oligoceno involucra a cinco especies de foraminíferos planctónicos, las cuales contrariamente a la creencia más generalizada no se extinguen simultáneamente, sino que se producen en un intervalo de 3 metros. Este evento de extinción está probablemente ligado al desarrollo definitivo de la psicrosfera. El último evento coincide con el límile Oligoceno inferior/superior y supone un importante relevo; la extinción de especies supervivientes del Eoceno y la evolución de especies del Oligoceno superior y Mioceno. Este relevo está seguramente ligado a un enfriamiento global y a una importante caída del nivel del mar, habiéndose detectado además, un breve hiato dentro de este intervalo. 491 MOLINA, KELLER, MADILE INTRODUCTlON The late middlc Eocene 10 Oligocene represcnts a time of majar paleoenvironmental and paleoclimatic changes as observed by a series of stepwise extinctions (Keller. 1983. 1986) accompanied by a longlerm c1imatic cooling trend and a permanent dTay in bollom water temperatures ncal' the Eocene·Oligocene houndary (Shackleton and Kennclt, 1976; Keigwin, 1980; Keigwin and Keller. 1984; Millcr and Thomas. 1985; Kcigwin and Corliss, 1986; Oberhansli and Toumark.ine, 1985; Williams el aL, 1985). 'Lowering of sea level and widespread hiatuses are frenquently associated with these faunal and climalic cvenls (MilJer el aL, I98S; Keller el aL, 1986, 1987; Haq el al., 1987). Faunal changes gene rally parallcl climalic trends. Late middle Eoeenc tO Oligoeene wano water asscmblages are sueeessively replaeed by planktonic foraminifera (Ke!lcr, 1983, 1985, 1986), ealcareous nannoplanklon (Haq and Lohman, 1976; Haq el al., 1977; Pereh-Nielsen et al., 1986), ostraeod faunas (Steincck et al., 1984) and mollusks (Hut el al., 1987). The climatie eooling trend is gene rally eonsidered lO be related lo Ihe developmenl of the drcum-Anlarelie eurrenl and subsequent eooling of Antareliea initialed by lhe northward movement of Tasmania and Auslralia by mi~dle Eoeene time (Wcissel and Hayes, 1972; MeGowran, 1973; Kennctt, 1977). The recent diseovcry of t.hree micrOlektite and relatcd mierospherule layers in low latilude upper Eocene marine sediments (Keller et al., 1983, 1987; Glass et al., 1985), however, has suggested that some faunal turnovers and climalic coolings may have becn triggcred 01- acc!cl-alcd by cxtraterrest,·ial impacl events. Invcsligation of microplanklon in marine sectians containing one 01' more of these microtcklite or micl"Ospherule layers re"caled lhal no planktonie foraminiferal specics extinetions coincide prccisely wilh these cvents, but five radiolarian spccies cxlinction al·e associalcd with one lnycr (Maurasse and Glass, 1976; San- 492 filippo et al., 1985). One olher microspherule layer is associated with a catastrophic decline in the planklOnic foraminiFer Cenus Glabigerapsis fe. semiínvolutus, e. luterbacheri, e. howei) and t.he extinction of lhis group occurs shortly aboye lhis layer (Keller, 1986; Keller et al., 1987). These investigations indieate that species exlinetions aione may be a pOOl' measure of the effect on a population after a sudden environmental jolt such as ao impacI by an eXlraterres· lria! body. Species popuJatioos are geoeraUy rare at time oC evolution and extinetion and reaeh Iheir apex sometime in between. ·Sudden adverse environmental eonditions may decimate a species population lO the point where only Cew individuals survive, bUI do not reeover as a stable population, and eventually become extinel. Quantitative population sludies based on relative abundances of individuals in a species may thcrefore provide a more accurate measure oC the covironmental effects (Keller, 1986). It is therefore important to search for good physical (microtektites) and biological (fossil) evidenee in late Eocene seclions, to document whether species eXlinetions as well as major fauna! tumovers and climatic changes are triggered by largc body Eanh impacts. The upper Eocene sedirncnts of the Molino de Coba scction of the Betic CordilJera of Spain (Figure 1) offer a unique opportunity to iovestigale biotic cvents during late Eocene to early Oügoeene time. We have studicd the planktonie foraminifers and ealcareous nannofossils of this scction quamitatively lO determine the slratigraphy and population changcs in lerms oC relative abundanees of dominant species. We have been able lO document three majar faunal evcnts which apparcnlly correlate with a late Eocene evcnt, Ihe Eocene-Oligocene boundary evenl and the carly/late Oligocenc sea-Ievel drop. Faunal evenls al thcse lime have also becn obscrved in lo\V lalilude seetions (Kcller, 1983, 1985, 1986) and are lhus believcd to represenl global events. MOUNA, KELLER, MADILE LOCATION AND LITHOLOGY GeographicaJly, thc Molino de Cobo section is located in (he Cañada de Jaen Ravine, in the lownship cf El Gobernador (Granada Province), 2 km northeast from the village and 200 ro west froro the Molino de Cobo farmhouse. The section is exposed a]ong the Granada-Madrid railway tracks accessible by a path fTom the Gobernador viUage lo the Pedro Martinez train stalion. Geologically, the Molino de Cobo section is located in the Subetic Zone of the Betic Cordillera. The section is part of lhe Cañada FormalioÍl {Eocene-Aquitanian} of the Cardela Graup. Sediments of the Cañada Formation are over SOO ro thick and consist of detritic Iimestone of turbidite origin, interbedded with tbid hemipelagic mar!s. Upper Eocene to Oligoeene sedimeots of the Molino de Cobo section eonsist of 194 m of interbedded bioclaslic calcarenites and macis that dip 30 degrees north forming the southern f1ank of a wide syncline. The eontinuation lowards the oucleus was named Cañada de J aen (El Gobernador) seetion and biostratigraphically studied by meaos ef planktonic forami· nifers (Malina, 1979). The sediments are lithologically similar lo tbe nearby coeval Fuente Caldera section (Comas et al., 1984-85; Molina, 1986), excepl lhat tbe turbidite facies are.less extensive and 00 olithostromes are present in the Molino de Cobo section. The bioclastie calcareoites are 30-90 cm lhick and range from packestones to pseudograinslones with frequent marly inclusions. The bioclasts consist mainly of smaller and larger bentbonic foraminifera and calcareous algae primari1y of pe· necontemporaoeous platform origin, although sorne middle Eocene species have been found. The autochthonous hemipelagic Olarly interbeds mnge between 1-5 ro thiek and do not eontain displaced larger benthonic foraroini· fers. Reworked rniddle Eocene planktonic foraminifers and calcareaus nannafossils are few to cornman in sorne mar! beds. METHOD5 . out< ... , Figure I Location map oC the Molino de Cobo section i!'l Andalucia. southcrn Spain. Sediment samples were disaggregated by soaking in water ayer night with the addition af a small amOUnl or 10 OJo hydrogen peroxide. Iri· durated samples wece also heated to aid the djsaggregalion process. Samples were then washed over 63 and 150 rnieron screens with tap water. Quantitative eounls for faunal anaIysis wece obtained from aliquots (using a Olodified Otto microsplitter) of approximately 300-500 specimens of the size fraetion greater (han 150 microns. AH spccimens were then picked from the aliquot and mountcd on a microslide for identification and 'pennanent re493 MOLINA, KELLER, MADlLE cardo The sample was a150 scanned for rare species and the smaU size fraclion was exa. mined far smaller species. Thin sections were marle cf the calcarenitie limes tone beds lo study the larger foraminifera and examine the lithology. Calcareous Dannofossils were studied from the marly beds. A small quantity af a c1ean rack chip was crus· herl with a pestle in a mortar contain.ing diso ti1led water (ph 6/7). A drop cf the suspension was then smeared on a cover slide, dried and emhedded on a slide with Pyccolite. A semi· quantitative analyses cf the abunrlance cf dominante species was estimated using the Back. mano and Shackleton (1983) method. Abun. dance is expressed in number of specimens per mmJ al a magnification cf x 1250. BIOSTRATlGRAPHY PLANKTONIC FORAMINIFERA A planktonic foraminiferal biostratigraphic analysis of the Molino de Cobo section was earlier published by Martinez-Gallego (1974). We have resampled the section at closer intervals and studied tbe planktonie foraminifera and caleareous nannofossils based on both standard biostratigraphic techniques (first and last appearances of index species) and quantitative faunal analysis. These combined methods pennit a higher resolution time control and in addition provide paleoecologic and paleoclimatic 'information. Quantitative faunal ana· Iysis can also minimize problems of reworked older faunas and contamination by isolating these species. II also permits a more accurate assessment of the magnitude of an cxtinction event by providing information 00 the relative portion of individuals of the population affected. Our faunal counts are shown in Table 1. Figure 2 shows the stratigraphie ranges of species indieating where they are abundant, common or few. Figure 3 i1ustrates relative pereeot abuodances of dominant species. We have uscd the standard low Iatitudc zonations of 494 BoIli (1966) and Blow (1979) as well as a revised middle latitude zonatioo for this region by Molina (1979, 1986). BolJi's 10w latit~de zonation is applicable, except tbat the boundary between Cassigerinella cllipolensis-Pseudo-hastigerilla micra and Globigerina ampliapertura Zones could not be recognized due to absence or rarity of P. micra. Blow's zonation was a1so sometimes diffieuh to apply because of absenee or rarity of species and difficulty in identification of sorne index species. In sorne cases (Zones PIS-PI6) the species ranges also appear diaehronous. We therefore prefer Bolli's (1966) zonation to correlate to low lalilude sections and Molina's (1979, 1986) ronatioo for middle latitudes. Although the aim of this paper is nol lo discuss the taxonomic problems of tbe planktonie foraminifers, sorne enteria of identificalion should be clarified. The species eoncept that has been followed in this work is lhe sarne as proposed by the European Working Group on Planktonie Forarnioifera (Robasynski et al., 1984). Thus, no subspecies have been coosidered. The species are general1y defined by typological eriteria. and are often morpbotypes with rather arbitrary boundaries due lo their interspecific variations. For stratigrapbic purposes morphotypes with bioslratigraphical signifieance are choscn. Tbus, sorne of thesc species may not be tme biological species. Other speeies rnay inelude a wide variety of morphotypes of uncertain affinities such as Catapsydrax unicavus 5_ 1. which ¡neludes C. pera and eertain .Clobigerinasa with small abortive final chambers. Taxonomic problems in this paper a1so eoneero the genus Pseudohastigeril1a.. Pseudohastigerina. micra is a laterally eompresscd forro which spans the Eocene/Oligocene boundary and is an important stratigraphic marker. In 1979 Blow proposed the name P. danvillensis for this form which we eonsider a junior synonym. Two similar but much smaller morphotypes of the species P. naguewichiensis and P. barbadoensis are also present, but can be distinguished only with the scanning electron MOLINA, KELLER, MADILE microscope: We have IUlhped these two smaJl species as P. naguewichiensis. Also because of their small size and difficulties in identification with the stereomicroscope, biserial Chiloguembelinas have been lumped as Ch. cubensis s. 1. Upper Eocene The Jowennost 20 m (up to sample 2'4, Figure 2) oF the Molino de Cobo section correspond to the Gfobigerapsis semiinvolurus Zone. The top of this zone is defined by the extinction of G. semiinvolwus. Blow's (1979) PIs/PI6 Zone boundary based in the first appearance of Cribrohantkemna inlfara occurs at 13m from the base of the section where also Globigerina gartanii which defines Blow's Zone P17 was found. Both these species first appearances seem diachronous between middle and low latítudes (Boersma and Premoli-Silva, 1986). Species charactenstic oF the Gfobigerapsis semiinvolutus Zone are G. semiinvolutus, G. howei, G. index, G. luterbacheri, Glaboratalia cerrOl1l.ufensis, GI. pomeroli, Globigerina rransdanubicá, and abundant G. linaperta (Figures 2, 3, Plates 1,2). The uppennost pari of the Eocene sediments (20 m· 68 m) correspond to me Globororalia cerroazulensis Zone. The top of this zone coincides wilh the extínction of the GI. cerroazulensis group. Molina (1979, 1986) subdivided tbis interval into Cribrohantkenina inflata and C. lazzarii Zones based on the last occurrences of these species respectively. These species have only been rarely observed in low latitude sections (KeUer, 1983, 1985). Because the last appearance of Gl. cerroazufensis and C. lazzarii do not occur at the same time, there is a sligbt difference in age of the Eocene/Oligocene boundary between MoJina's (1979, 1980) and BolH's (1966) zonal systems. Characteristic species of me uppermost Eocene are Glaboro- talia cocoaensis, Gl. cuniaJensis, GI. increbescens, Gl. nana, Cribrohantkenina lazzarii, Hant~ kenina alabamensis, H. brevispina, Pseudohastigerina micra larger than 150 microns, Globi- gerina ampliapertura and G. gnlavisi (Figures 2, 3, Plates 1, 2). The maio biostratigraphic event io the upper Eocene occurs at the top of the Globigerapsis semiinvalutus Zone (sample 2, 4) where this species goes extinct. In the middle latitude Molino de Cobo section G. semiinvolutus is not as abundant as in low latitude sections (Keller, 1986), therefore, the population change associated wilh tbe extinction of this species is less pronounced. Tbe Globigerapsis group goes extinct 23 m aboye the last appearance of G. semiinvolutus in the Molino de Cobo section and is associated with carbonate dissolution. This is considerably' higher than observed. in low latitude sections where G. index, the last surviving Globigerapsis species, Frequently disappears sbortly above G. semiinvolutus (Keller, 1986). Oiachroneity of last appearances of these species must be assumed between middle and low latitudes. In sorne low latitude sections (DSDP Sites 216 and 292) a microspberule layer of impact origin is found near the extinction of G. semiinvolwus and tbe Globigerapsis group disappears shortly thereafter (Keller, 1986; Keller et al., 1987). In OUT original sample analysis glassy microspberuJes were also found in tbe Molino de Cobo section in sample 4 near the extinction of the Globigerapsis group (Kel1er et al., 1987). However, in samples coIlected subsequently at the same locality we failed to find microspheruJes. It is possible that we missed coUection the ¡ayer, or lhat the microspherules carne from surface contamination of a yet unknowo source. Above the decline in tbe Globigerapsis group and the dissolution interval in ¡he Molino de Coba section there is a major decrease, relative to other species, in tbe abundance of Globigerina linaperta and an increase in G. galavisi, G. ampliapertura, G. officinalis, G. ouachitaensis, Gfoborotalia nana and Gl. increbescens (Figure 3). This suggests a major paleoecologic shift possibly toward cooler climatic conditions which has also been observed in low latitude section (Keller, 1986). A general cooling trend 495 MüLINA, KELLER, MADILE during the late Encene is indicated in the oxygen isotope record (Corliss el aL, 1984; Ober- hansli and Toumarkine, 1985; Williams el aL, 1985; Keigwin and Corliss, 1986). Eocenc-Oligocene Bounda!")' The Eocene-Oligocene Boundary is defined by the simultaneous extinction of the GlaboroTafia cerroaz.ulensis eroup (GI. cerraoazulensis, GI. cocoaensis, Gl. crmialensis) and the genus Hantkenilla and Cribrohanlkenina. To determine the nature of these extinctions in the Molino de Cobo section a 3 m interval across the boundary was sampled al approximately 25 cm intervals. This expanded bounclary section revealed that these species extinctions did nol occur simultaneously (Martinez·Gallego and Molina, 1975; Molina, 1979, 1986). The G/oborotalia cerroaztllensis group disappeared before the genus Hantkenina (H. alabamensis, H. brevispilTa) 'which disappeared before the genus Cribrohanlkenj¡1Q fazzariO (Table 1, Figure 2). Thus, Ihe Eocene-Oligocene boundary extinctions appear to have occurred more gradually than prcviously assumed. re. Although five species extinctions occurred across the Eocene-Oligocene boundary, the overall effect on the faunal assemblage appears not to have been very dramatic. This is best illustraled by the relative abundances of the dominanl species in Figur~ 3. The' spedes going extinct were general1y less than 10 % of the total fauna at the time of their demise; the same' has been observed in low latitude sections (Kel1cr, 1983, 1985, 1986). No new species evolved at lhis time (Figure 2). No majar spedes abundance ehanges are observed (Figure 3), although lhere is a general increase in the deeper water spedes Calapsydrax and Gioboquadrina venezuelana. This inerease in the deeper water dwellers has also been observed in low lalitudes (Keller, 19B3, 1985, 1986). There is, however, a cucious morphologic ehange in the size of Psel/dohastigerina micra at the Eocene-Oligoccne houndary which has also been ohserved in the nearby Fuente Caldera seclion (Molina, 1986) and in low latitude sections (Kel1er, 1983, 1985). Psetldohastigerina micra is common to abundant in upper Eocene sedimenls in the size fraction greatcr than 150 mierons, hui disappcars from lhis size fraction aboye the Eocene-Oligocene boundary (Figure 3). In low latitudes this species is still common lO abundant in the smaller than 150 micron size fraction along with P. barbadoensis (Keller, 1983, 1985), but in Ihe Molino de Cobo section P. micra is very rare whereas P. nagtlewichiensis s. L (which ineludes P. barbadoel1sis) is common (Table 1, Figure 2). The common presence or absence of P. micra in Ihe larger than ISO micron size fraclion is a seconclary indicator lo differentiate upper Eocene and lower Oligocene sediments. Oligocene According lo Bolli's (1966) zonation the Oligocene is divided inlo the Cassigerhwlla cllipolel1sis-Pselldohasfigeril7a micra Zone defined by the extinction of P. micra, and the Globerigeril1a amplil1.perll1Ya Zone defined by the first appearance of Globorotalia opima opima. As noted earlier P. micra is very rare in the Oligocene of the Molino de Cobo section and is therefore not useful as index species. The altemative middle lalitude zonation of Mo· lina (1979, 1986) provides better control here. The lowermost Oligocene Globigeril1a gorta¡¡¡iIG. faptlriemis Zone boundary is defined by the firsl appearance of G. taptlriel1sis and correlates to the P17/P18 Zone boundary of Figure 2 Range chart of planktonic foraminifers from the Molino de Cabo section. Relative thickness of range lines indica tes abundant, common or few specimens. 496 MQLINA KELLER MADILE ~ EOCEHE UPPER ~ PAIABOHIAH G. 5EMlN\IOlUTil <. C. INFLAIA •- G. SEJ4iNWW¡A OLlGQCENf RUPELIAH G. TAPU- G.GOIITA l-.zv,..,¡ "" .-, .-• . LOWER UPPER " .,• m 1:1$ --- -- - ---_u • , ,• > /N. lllellA ~~~ ~ ¡flól" w - e 1- -,- f-' - -. _ ---,---- f- ---- -1- + .----- u ~- - 1- __ u _ ------- --- f---- ---- - - --- -----I-u- -~ ___ n n 1------- - - -- - - .. ~ ---- ------- - u - - --- ---- -- -- f-- _ - - - n - • -- -- • • -- - --. - _ u 1- - ---o - - - ---- -- -- -- --- -r-u 1--- ,. G. 6. G. G. G. n - --- - 1- - ---- -" - - -- -- -- - ~ •• -• - f- f1- - - -• - - -o 1-=" - - - u G. GORT"Nll PIl'''ETURRlT I LI NA 6. ",",PLlAPERTURil G. - 6. - G. 6. t:'. -• - - - - -- ---.r----- - -- - - - • - - n TRIP"RTITA TAPURlENSIS SELlll IINAJENSls G. EOC"EN" G. CORPULENTA - - • Figure 2 ------ •• •- --- ~N" OPI"'" SI"kENSIS PSEUOOCOflTlNUOSA GeG. el.Ll\EIICl.o.E 6. eF. l"BESA G. PSEUDONtPUN'ERTURA 6. llNAPERTA 6. TF'.ANS!lANUlICA •• - -- _ h _ - P. MleR" S.L. P. ~GUEWleHIENSIS S.L. 1>. I'IlMUlDLl G. CERflO"ZULENSIS G. eOCOAENSIS G. eUNIALENSIS 1IICIlEBESeENS n - - ~- INFLAT" LAZZARll G. ANGlPOROIDU G. ll"LAVISI - - u - -- •~ • .- u - _ _ _ -- - .-- - - -- ;: O' -- - ,.6. --~- --- - u -- ---------- G. + - -- - f-::: - -" ~. - 1- - C. e. -- n u_1-- -- <5':''''-: .... 0 ".0' u u ¡. --f- W" ---=-:: --- - -- - - - ~ 5PEClES INDO H. ALAI1N'IE"SIS H. BREVISI'INA • ~ --- - - -- n ,. ". · ~. ~ n _ "~ > ~ G. urTUllACHERI G. "'*EI G. SEI'IIIKVOLlITA :'~"':11 -- - - -- : - --- f- -- - ---~ ",:.:",:":". ----, -u_ ------------ --_u "'- ---- "i"~I; • SAMPLES "~ ! 1919 80<." 19" -·· .. r- -u BLOW G.Of>i .... "l~ ~e • • ilO •"> 1919. 86 • ... PUI N AGES MOLINA G. AHWLisUTURAli$ ~ '.m~"'i~¡~.r~"'· ~---::.~::; ~ EPOCHS CHATTIAH G. SEU.ii ~jEH:ois OUGQCEHE 6. G. G. G. 6. EU"PERTURA VEtlHUELANA OFFIClNAlIS "NGUl!OFFICINAl IS ANGUl! SUTURAlI S ANGUSTl~ILICATA OUAOUTAENSIS CIPEflOEIlSlS PP.AEBUUOlDES OCCLUSA ti. UROYI 6. SOlERI C. UNlCAVU$ S.L. C. C. G. DISSIlUllS CIPEROENSlS GLOIUUR lS G. CF. GLOBOSA (tI. CtrBENSIS S.L. C. CHlPOLE~SIS 497 MOLINA, KELLER, MADILE Blow (1979). The first appearance of Globige· rina aflgulisuturalis defines lhe C. selli/G. ano gulisuturalis Zone boundary and corresponds lo Lbe base of Zone P21 (Figures 2. 3). All thes~ species are rare or absent in low latitudes secliaos (KeUer, 1983, 1985). The lower Oligocene is marked by a relatively low diversity bUl stable faunal assemblage consisting primarily of Late Eocene survivors. There are no majar species extinclions or abundance changes apparent. Faunal assemblages are charaeterized by the coa! water species GlobigeriJ1a linaperta, G. galavisi, Globorota.lia nana and the surface dwellers Globigerina amo pliapertura and Gl. increbescens.. Except for GI. nana, these species ahruptly disappear between samples 11 and 11'3 marking the lower/ upper Oligocene boundary (Figures 2, 3). The evolving species Globigerina angulisuturalis, G. binaiensis, Gl. siakensis, Gl. pseudocontinuosa, and common typical Globigerina cipe· roensis appear aboye lrus interval (Figure 2). A shon hiatus of about 1 m.y. (31.5-32.5 Ma) may be presenl at this faunal change as suggested by sediment accumulation rates. The majar faunal turnover and short hiatus coincide with a major drop in sea level postulated by Vail and Hardenbol (1979) and Haq et al. (1987). Widespread erosion or nondeposition occurred at lhis time globally as observed by the widespread distribution of Lhis hiatus (Keller el al., 1986). CALCAREOUS NANNOFOSSILS Calcareoux nannofossils from Lhe marly intervals are generally abundant and well diver· sified. Preservation varies from poor lo mode· raleo Reworked Cretaceous and Eocene nannofossils have been identified lhroughout this seetion (Figure ~). As a resul t of reworked nannofossils tbe positian of the zonal boundaries based on last occurrences are often uncertain. To circumvent this problem a semiquantilative analysis (Figure 4) lo estimate the relative abundances of the domioant species has heen roade· (Fi498 gure 5). Nevertheless, lhe zonal'boundaries are frequenlly not in tbe standard relative position to lhe planktonic foraminiferal zones as repor· ted by Beruren et al. (1986). Despite these problems a complete sequence of Late Eocene Subzone CP15a to Late Oligocene Subzone CP19a has becn identified using the biozonation of Bukry (1973, 1975) and Okada and Bukry (1980). Late Eocene The late Eocene assemblages are characte· rized by abundant Cyclicargolithus Iloridanus, Coccolilhus pelagicus, Dictyococciles bisectus, Ericsonia formosa, Discoaster btirbadiensis and D. saipanensis (Figures 4, 5). The genus Spllenolilhus ranges from the late Eocene to the early Oligoccne and is represented by S. moriformis and S. predistenlus. Sphenolitifus pseudoradians used by Martini (1971) to define the base of Zone NP20 was nol found. Tbe genus Chiasmolilhus is very rare and it is lherefore not possible to cakulate the Discoaster/Chiasmolitlzus ratio used by Bukry (1973) as indicator of water temperature. Zygrhablithus bijugatus, Lallternithus minutus and a few solution resistanl Pedinocyclus larvalis were also found; all these species are considered as indicative of ncar shore environments. The first appearance of lsrhmolithus recurvus which defines the base of Subzone CP15b occurs near the base of the Molino de Cabo section (sample 1,4 m). The extinction of Cribroce'ltrum reticulatum occurs just below the extinction of the disc shaped Discoasters as also reported by Nocchi et al. (1986) and Perch-Nielsen et al. (1986). A major biostratigraphic event is lhe decline in abundance and extinction oC Discoaster barbadiensis and D. saipanensis. Relative species abundance analyses indicates that Discoaster barbadiensis is always more abundant than D. saipanel1sis and both appear to decline simultaneous·ly. The top of Zone CP15b has been placed at sample 4 where a strong de- MülINA, KEllER, MADIlE PLANKTONIC DOMINANT SPECIES FORAMINIFERA ABUNDANCES •" 1~1- l'\§-Jt5 ... ,. " ... >U • ,• "• • § ~ • " , i • " "u •, • u ~ u • •• ª~ , u i • u " , i ! • • Figure 3 Relative percent abundances of dominant Illanktonic foraminifcra! species in the Molino de Cobo section. Note short hiatus al the LowerjUpper üligocene boundary. 499 MOLINA, KELLER, MADlLE crease of D. barbadiensis and D. saipanensis is observed. The number of specimens/mml of D. barbadiensis decreases from 43 in sample 3 lo 13 in sample 4 and lO 2 in sample 4, 5. Likewise D. saipanensis decreases from 16 spe· cimens in sample 3. 5 to 3 in sample 4 and lo 1 in sample 4, S. A similar decrease in these species abundances was a150 observed in lhe nearby Fuente Caldera section by Monechi (1986) and Perch-Nielsen el al. (1986). The few specimens of Diseoasters above sample 4 are considered reworked (Figure 4, 5). Imerestingly. the strong decrease and probable extinction of D. barbadiensis and D. sajo panensis in t..he Molino de Cobo seclion coin· cides Wilh the decline and extinction of the planklOnic foraminifer genus Globigerapsis and [he dissolution interval. No quantitative analysis of nannofossils are available fram low latitudes at this time. Therefore, it is not known whether the decline in lhe nannofossil species con-eiates preciscly with the micraspherule layer. The uppermost Eocene layers between the extinction of D. barbadiensis and D. saipanensis, and the Eocene/Oligocene boundary (based on planktonic foraminirers) are characterized by the rollowing variations in nannofossils. boundary. This event has also b....---en observed in rtaly (Nocchi et al.. 1986) and in Hungary (Baldi el al., 1984). Early Ollgocene rt was not possible to subdivide the early Oligocene Zone CPI6 inla subzones CPlóa/ CPI6b (Ericsonia subdisficha/E. formosa) because the acme of E. subdisficha which defines this subzonal boundary (Okada and Bukry, 1980) cannot be recognized. Ncither could the acme of E. obrufa be recorded which was used by Madile and Monechi in the Contessa Highway section to identify the same boundary (Premoli Silva et aL, in press). The. extinclion of EricSO'lia formosa which defines the top of Subzone CP16b is placed in sample 8 (89 m), although variable abundance is presenl throughout lhe earIy Oligocene. In subzone CPlóc an increase in abundance of L. mimltus is observed. A similar increase in abundance of L. minufus and Z. bijugatus was observed in CP16b/c Subzones of the Conlessa Highway of Italy by Premoli Silva et al. (in press) and in Hungary by Baldi el al. (1984) who interpreled this abundance change as a decrease in surface water temperature. Ericsonia far/nasa .. The extinction of Reficulofenestra umbilica defines the top of Subzone CPI6c (R. hillae). As wilh all nannofossil last occurrences in the Molino de Cabo section, reworking of older sediments makes it difricuh lo determine the true extinction of index fossils. It is assumed that lhe extinctions of, R. wnbilica and L. mi· nutus occur in sample 9'4 (112 m) near the extinction of l. recurvus, altbough rare specimeos intcrpreted as reworked occur above trus interval. In sorne sections where R. umbilica is rare (e.g. Contessa Quarry in Italy, Lowrie el al., 1982), the extinclion of l. recurvus has becn used to mark the top of Subzone CPI6c. This suggests that the top of Subzone CPI6c is inded c10se to sample 9'4 of the Molino de Cobo section. 3. An increase in abundance or L. miltUfus and Z. bijugatus ncar the Eoccne/Oligocene The first occurrence or S. dislenlus in sample 10'6 (137 ro) marks the base of Zone CPI8, A slight increase in lhe abundance of ISll1molilhus recurvus, indicative of relative1y caoler walcrs. This increase has also been observed in lhc nearby Fuente Caldera section by Monechi (1986) and Pcrch Nielsen et al. (1986), in lhe Umbro-Marchean Apennines (Ita· Iy) by Monechi (l986). Nocchi et al. (1986, in press), Premoli Silva et al. (in press). as well as in DSDP Site 522·522A (Soulh Atlantic) by Backmann (1986), in Sitc 362-363 (Angola Basin) by Proto Decima (pers. comm.) and in several si tes of the Pacific Oeean by Perch Niclsco (1986). 1. 2. 500 A slight decrease in lhe abundance of MülINA, KEllER, MADlLE MOLLNO DE COSO Cale, nannofosslls 1Il W 1Il ...J o <: ~ ~ ~ ~ ..·· ·· •• • c. lO " • • • c. '" H- • !cec. .",. ~ . , , , • . • • .. ... ·. · . '0.. c. oo, • • . O. . O. O : :n: O ' . . ~' .· · :~O ; O• • . • :::: ..... 1. . O' U. . O . O. .:ó~·O:: .. . ·oU :On . O. : . O: : ••: o·... .... nU ¡: O; : : ~: ~~ .. H-'U ~~:n O O O . ~ •..• +,0,'" ++ I -'---"-'-'~~-L:-'-':~L-'-':~,-,-,:~'-'-'''-'~. : "-"-~-'--':~:-'UiI. lLlJ~· • .¡. -0+ .... .. '+0- ·on O'U ~ o· ¡ 1 ;~~:O ;O~· ~ .~ ~~IIII!li •O . n ·00 .. .. , :.: : . ~Ó.O ~ •• • ~ . . '. . .. . • ·. . • • . . .O . O. ·0 :O - ... - .··0. c. m .. . " : ~ I1I : : U' l:' .... . . c. ..· ·. ·. + O O O .. O O O O· , . O' o· O ·0 " l --,,-"--,--,''-''--'- ~ Figure 4 Range chart óf calcareous nannofossils fmm the Molino de Cobo section. The assemblages were called abundant (A) ir the relative abundanceS exceeded 60 % af all componcnts, common (C) it there were more lhan 40 % coccoliths, few (F) tor more lhan 10 % coccolilhs and rore (R) tor a relaLive abundance af identifjable coccolith af less than 10 %. Relative ahundancc af calcareous nannofossils is based on the rrequency af lhe species per ficld of view in the Light microscope al a magnificaLion of 1500. The species was considered: A • I species x neld of view e • 0,5-1 species x field of view + Reworkcd species F ~ 1-4 species x 10 field of view 0,2-0.9 species x 10 field of view R o 501 MOLINA, KELLER, MADILE ::md the top of lhis Zone is marked by the first appearance uf Sphcl10lirhus ciperoensis in sample 18 (191 m). Thc Globigerapsis exlinction 'event in the Molino de Cobo section is associated with a dissolution intcrval and involvcs thc cxtinction or a1l species of the Genus Glubigerapsis as well as Globigerillll Iral1sdtlllllbica and Globorowlia pUl'l1eroli and coincides with a major decline in disc shaped discoasters. A catastrophjc decline in thc dise shaped diseoaslers at Ihis leve! has al so been observed in the nearby Fuente Caldera seelion (Perch-Nielsen et al., 1986) and in Umbrian sequcnees or haly (Nocchi et al., 1986). These species extinctions and faunal abundance changes imply a majar paleoeeanagraphic event al Ihis time. DJSCUSSION The correlation between planktonic faraminifers and calcareous nannofossils is il1ustrated in Figure 6 along wilh the con-csponding EW'opean stages. Over 40 first appearances and extinctions uf stratigraphically significant species (see Plates 1-3) have becn irlenlified as usefui dalum events. Mast uf tbese datum events cluster around three time periods: the late Eocene, al ¡he Eocene-Oligocene boundary, and al the early lo late Olígoccnc boundary. Severa} species extinctions and first appearances a1so occur scattered in the early Oligocene, bu! these species are general1y very rare (Table 1). ,• N.\1lNOrOSS1LS " < .U~aY ... ,,~ " u z u u ,• SAIIPHS 0_, • 1111 " " , , , j' .." .." " " n'0 c-- " " " "" ---- 'o,. , , o • O.' "n- " O , '. ,, o.' f-" "" "•, o.' ~ ~ 11 ,J ,~ .. _R~ O,, , , , 1~0 'o I , i 'j '70 ~ .. ,.. 1h/b ~9 O ••• ¡.• ---- ---- ",' • " "O '" " 19/20 " . """ " , '." ,'.' o.; O ... , ¿' •, , , ,7h b' . ..--, , " .. l~~ i~ ;I~ 15' r~ r~ -=::::: ~It Figure 5 Relative abundances of domimml ea1careous nannofossils in the Molino de Cobo seclion. Abundance cxpresscd in numbcr of spccimcns pcr mm 2 at a magnif.ication of x 1250. 502 o , -. 8,2 6, " I " 11,7 m U 'j , ¡,• , 10.6 H Z • 13.~ o U ,, ••• •o •• o • MAl\TIMl " ,• •• zmlES ~ Oxygen isolape dala summarized by Keigwin and Carliss (1986) show that a global cooling Irend aecurred during middle to late Eocenc lime. This coo!ing trend resu1ted in gradual replaecmcnt of warm waler species. i , '7J MüLINA, KELLER, MADILE The abundance decline <lnd subsequent extinclion of Ihe Globigerapsis group could Iherefore have becn a consequence of this global cooling trend_ However, Lhis inlerpretation does not cxplain lhe near inslanlaneous decline in the Globigerapsis group from a high of more Ihan 60 % lo I % in low latitudes al Lhe time of deposition of a microspherulc layer. or from 20 % to zem in ¡he Molino de Coba section. The de mise of Ihe Globigerapsis group in low latitudes \Vas probably has tened by an extra- lerreslrial impact evenl. TI is nol yet clear whclher lhc extinction of Ihis gmup in Ihe Molino de Coba scction con-elates lO this evenl 01' is diachronoLls, espedal1y since we failed lo reconfirm our earlier microspherule discovery (Keller et aL, 1987). The Eocene-Oligocene boundary exlinction event is not associated \Vilh any calcareous nannofossil specics cxlinctions (Nocchi et al., 1986) and no majar spccics abundance changes ,. ": ~ ~~~~~ ~ ~ ~~ ~ o........_,a""" ..\;. o. .,,."~f(;.' Q, _ '......l _ o...... " .. t . . . h. , O. _h......- . O•• , . . , ••• I , .. ., •• '" • •.•1...-'• •. d. ,,_ _ 'o . _t.. . '.01. ,'.-..'_ •. "",,"l~'" " •. ,.1_101 • 3!l ·· a.,_ ,, " •• ' " • ,," • • , ti" ..... •. ,lobol.". " ·.. 11,. a..... t_l, a._' ,". • . a ......' a."",_;. a.l_' a. " _ " O. "_t~ a • ..." ... ..•. w". 0011. _"_'..... 11 o I)t~ ~ .. " O• • " ', d•• ll. .. O. _ ,_ a c21 li '" .>lID _. , .,. Il~ " '" 11.'_ t •. _]ll .·. ',_l~ .... 1<'_"" Oo, _1_ 01. .--..1_'. 01. _1. ••, _ , . _ ,••• ·· ,• , • , ", '",, • • •• 'lI,.lO • ,, ,, , ,• • , • • • ,, "" , • • • ,• ""lO" , liza al . ".d._ · · _,.Il • 1. 01.""--"_ 01. ., " 01. ••, c.. , _.. , .... ......, -,,--,.,. C o . l . t . _.. "". o.t........... __ ,.1Il. o. •,., ••"., •.O. _''''' _'ro loo.. Ooll.l , ,• • •• • " •• 1 •• T • 1> . " .'0 r 5 '15"'Z14'Z"15,"" . . .l _ l , .. ...,... ........'''''l_ ,.rl.,. .... " ,~ r. _ ' " ' ' ' ' ' ' •. 1. _lO'. ,. lIo'''''lfl... •• •• ...,.1 -.o-t. ~ 3 •• 1 • • • .. • • •• •"'o• . ·••• ,• ."•• ·,, .. ..., • ,• , ""'lIltll. ¡ ..., ,n · ,• , · " . " ...., ", • '" • , • •, • • • ~ ¡ ~ i i; , . •., ••, , • , •• •• .,, , , • lO • • • • •• .. • ¡ , , ,, i' ¡ - - -. ,, ! - , - i ! , ! i , - i i , i, , • ¡ " ·....... . • , • , •• ¡ •,,"• , , 'I " or ,•• cl _ _ .. -- , •• • • • " ,,• •• ,," '" , •• O, ....l_ •.•• o. . '''l''. ..•. '-'''''' 01. _ 01.' , ", , , , "'" • ~ , ¡ ¡~ ¡, Table 1 Percent abundance data of specics in Lhe Molino de Coba scclion bascd on population counts of 300-500 individuals. X = lcss than 2 %. 503 MaLINA, KELLER, MADlLE are evidcnt among planktonic foraminifers (Keller, 1983. 1985, 1986). However, large (> 150 microns) Pseudohasrigerina micra disappears shortly after the boundary. ln addj· tion. lhe five foraminifer species extinctions occur more gradually Ihan previously thougbt. These faunal changes may be related to pro· gressively adverse environmental condilions which may be related lO the maximum developmeDt of lhe psychrosphere, or two layer ocean with cold bollom water and warm surface water al this time (Keonett and Shackleton. 1976; Keigwin, 1980). The earIy to late Oligocene extinction even t is somewhat obscured due to a possible 1 m.y. hiatus. Nevertheless. a majar faunal turnover occurs during Ihis interval with four species extinclions and seven firsl appearanees including the nannofossil Dictyococcites abisectus and Spheno/ithus distentus and the larger benthic foraminifer genus Lepidocyclina which appears at the 10p of lhe early Oligocene (Figure 6). The four planktonic foraminiferal spedes Globorotalia increbescel1s, Globigerina ampliapertura, G. linapena and G. angiporoides going extinct are Eocene survivors which constitute between 30-40 % of the foraminiferal assemblage. Their clemisc occurs globally al this time ·(KeIler, 1983, 1985). This major faunal tumover may be related to the global cooling recognized by Keigwin and Keller (l984) at this time and to the drastic sea level drop noted by Vail and Hardenbol (1979) and Haq el al. (1987). CONCLUSIONS Three major faunal event are observed in lhe upper Eoccne to Oligocene strata of the Molino de Cobo section: Extinction of Globigerapsis group and disc shaped discoasters. This Faunal event involves the demisc of the Globigerapsis group (e. il1dex survives in lo the lalest Eocene in high lalilude sections). Species of the elobige· rapsL~ group constitute 20 % of the lotal foraminifcral populalion at the time of eXlinction. The dise shaped discoasters D. saipanensis and D. barbadiensis also decline dramatically at this time. This faunal turnover is associated with a dissolution event and a microspherule layer in low latitude deep-sea sections. 2. The Eocene-Oligocene Boundary extinction cvent involves S planktonic foraminiferal species, which did not go extinct simultaneousIy, but stretched oul over a 3 m interval. The Globorotalia ccrroazulensis group (el. cocoaen<;is, GI. CL/nialensis) disappears before the ex· tinction of the Genus Hantkenina (H. alaba· mensis, 1/. brevispinaJ, which in tum preceeds the extinction of Cribrohant kel1ina (e. lau.arii) and Pseudohastigerina micra > 150 microns. This gradual extinction event appears to be related to adverse environmental conditions associated with the maximum development of I he psychrosphere. 3. The early/latc Oligocene faunal turnover event involves thc extinclion of Eocene survivors (Globorotalia increbescens, Globigerina ampliapertura, G. /inaperra, and G. angiporoides) and the evolution of late Oligocene to Miocene spedes (Globif!,eri/la binaiensis, G. angtlIisuturalis, and el. siakensisJ as wel1 as two nannofossi¡ spccies (Dictyococcites abisectus and Spllenolitllus distentus). This faunal turnover appears to be rclatcd lO paleoceanogra· phic changes associatcd with a global cooling and majar sea leve! drop. ACKNOWLEDGEMENT We would Iike to thank I. Premoli Silva and S. Monechi for their comments. This research was supporled by the U.S. - Spain Joint Committcc for scientifie and Technological Coope· ration and by M.P.1. 60 % (S. MoneehO. 1. 504 REFERENCES BACKMAN J., SIlACKU:rON N. .l. 1983 Quulllilalive bioc/¡ronology 01 PUocenc. mld Early PleiSlOcc.J1I: calcareOI/S nUIlIJOlossils Iro/11 AtltJnlic, Jndian alld Pacific Dcealls. Mar. Mi· cropalcont., vol. 8. pp. 141-170. MaLINA, KELLER, MAOlLE B • DATUM MAlN EVENTS OOOU"''' lllOW lIOlU ''''. M 1m 11M C" ' " .... l' • p. " 00' 1 ,. ! .. • ¡ • o.n 1i '3 • '" '"" 1II .j ... " a .~ ~ l~ ~-i, ~ l ,, , , ,, " I----+---j , ~ ~ .i •• .. ~ I rrr 3• l!~ ~ g~• Ji u!.:~~ "'.oc o:> '" d e ... u tI ~ • 1 • I... , ,ª ;• ,! t ...l', , • u u g.¡ o •u ".15 I .. o n i u u o. " :It .,; .. o • ! ~ 11 ", ~ • t lO" , • ~ e" l' e , " e" "' .... Illro !~ • Figure 6 Surnmary chart of planktonic foraminife.ral and calcareous nannoplanklon zonalions and datum cvents (rirSI and lasl appcarances) in the Molino de Cobo seclion. 505 MOLINA, KELLER, MADILE flAWI T. el al. 1984 Tlle Eocene Oligocene hall/ldar", in HWlgary: Tlle Kiscellian Stuge. Acta Ceo!. Hung., vol. n. pp. 41-65. IIERGGREN W. A., KEt-..,- D. 1985 v., FLYN J. J. 1975 Coceofi", and 5;lico{lagellare stratigrap1Jy. Northll'cSlerl1 Paci{ic OceuII DSDP Leg 32. In Larson R. L el al. ¡nitial RcpoTls oC the DSDP, vol. 32 pp. ón.701. CO.\lAS M. Po/cagene geocJ¡rollofogy olla c/lrOIlOslraligrtl' 1984--85 p1zy. Geol. Soc. Amer. Bull., vol. 96. No. JI. pp. 1419·1427. BLOW W. li. 1979 The CailJuzuic Globigerinida. Leiden, Brill, ] vol. c., .\IARTlNEZ-GAU.ECO J., .\IDUNA E. Lito{acie.{)' sucesiÓn cslraliráfica de/ Eoce110 y Oligoceno al Norll! del cerro Menca/ (10110 Stlbbit;cu Proll. de Grallada). Cuad. Cco!., vol. 12 pp. 145·155. CORI.ISS O. 11., ¡\UBREY M. P., BIlRCGREN W. A., Jr., BOERSM" A. o PRUIOL.l-SILVA l. FENNER J. M., KEIGWIN L. D. 1986 1984 Tlle Eocene Dligocem:: boundary Eve", in the Deep Sea. Sciencc, vol. 226, pp. 806-810. Terminal Eocene Evctl/s: plollktollic (orami. ,¡¡{era ami isotopic evidenCI!. Developments in Pale. and Slnuig., \'01. 9, pp. 213-224. KELt.ER G. O'IIONDT S. L.. KELLER G., STAl.L\RD R. BOLL.¡ H • .\\. 1987 Ma;or element composiliollal variarioll \Villlin 1966 Zorra/ion of CreraceOl4s lo Pliorenc marine se· diments based 011 pfallktollic lorumillifera. Bol. 1nfor. AsSQC. Venez. Ceo!. Mine. y Petrol., \'0lume 9, pp. ]·31. alld betll't!en diflerell/ late Eocellt!' ",icrolektite streIV {ields. Mclcorilics, vol. 22, No. 1, pp. 61-79. GL\SS O. P., IlURNS C. A., CROSIlll! J. R., lIUUOIS D. L. DUKRY n. 1973a Coccolilll olld Silicofragellale slroligrapllY Tas. mml sea alld sOlltll\vcstem l'ucific Ocean D$DP leg 2/. In R. E. Burns et al., ¡nitial rcports of DSDP, vol. 21, pp. 885-893. 1985 Late Eocene Norl/r American microteklile.\· alld cli'IOpY"oxe¡¡c-bcar¡',g sp/rerulcs. Proee. 16th Lunar and Planct Sei. ConC. Jour. Gcophys. Res., vol. 90. pp. 175·196. 1973b Luw lat;flldcs coccofitll bioslratigrapJty ~olla­ tiOll. In Edgar N. T. et al., Inilia1s Reports oC the DSDP vol. 21. pp. 685-703. 1976 Early Cellol.u;c IIalllloplollklon b;ogeograpl,y u{ file Allanlic Dccan. Mar. Micropalcont., vol. 1, pp. 119-194. HAQ B. U., t.OH,\IAN G. P. PLATE 1 Scale bar = 100 ¡.lm 1. 2_ 3, 4. 5. 6. Hatllke"ina aloballlf!lIsis (Cushman). sample 1.5. lop of Gfobigerapsis semiinvolutus Zonc. Globigerop!is semiinvolulUS (Kcijcr), samplc 2. G. semiinvolutus Zone. Gfobigerapsis index (Finlay), sample 2, G. semiirlvo/utus Zone. G/obigerapsis interbacJlCri (Bolli), samplc 2, C. sf!miinvolutl/s Zone. Globigeropsis 1Io\Vci (Blow and Banncr), samplc O, G. semiirlvolr41us Zonc. 7. '8. 9, 10. 11. 12. 13, 14. 14, 15. 506 Gfoborotofia pol1leroli (Toumarkinc and Bolli). samplc 1,5, C. semiillvoluiHS Zonc. Globororolia cerrOGl,ulellsis (Cole). sample 2. G. sellliillvolutlls Zonc. Cloborotalia cocoaellsis (Cushman). samplc S, GI. cerroazulellsis or C. inllala Zone. CribruluUllkenilla i/Jflala (Howc), sólmplc 2, C. sell'liiHvo/u/tls Zonc. Cribrollalllk·enina lazzadi (Pcrieo1i), samplc 6.4, Globoro/lllia cerroal.ulellsis or C. laZl,a,.ii Zone. MüLINA, KELLER, MADILE PLATE 1 REVISTA ESPAÑOLA DE MICRO PALEONTOLOGÍA, Vol. XX, núm. 3, 1988 507 MaLINA, KELLER, MADILE REVISTA ESPAÑOLA DE MICRQPALEONTOLOGÍA, 508 PLATE 2 Vol. XX, núm. 3, 1988 MOLlNA, KELLER, MADILE HAO B. H., PREMOLl-SH.VA l., LOHMAN C. P. ltI!.lGW1N LO., CORUSS 8. H. 19TI CalcareollS pfankto" biogeograpllic l!vidence for 1986 Slabfe isOIOpes in Lale Eocelle to Ofigocel1e Foromini/era. Geol. Soc. Amer. Bull., vol. 97, pp. 335·345. /IIajor e/imafic flllCtllatiOIlS in lile earl)! Ce1loHAO B. 1-1., llARDENBOL J., VAIL P. R. 1987 C/tremology of fluclllaling sea levels since lile Triassic. Science, vol. 235, pp. 1156-1167. KELLER G. 1983 Bioc1lrollology olld Palcoclimalic implicolions of middle Eocene lO Oligocelle planklOllic /oro. mini/eral faunas. Marine Micropal., vol. 7, pa· ges 464-486. HUT P., ALVAREZ W., EUIER W. P., l-IAN5EN T., lCAUFFMAN E. G., KELLER G., SH OEUAKER E. M., WEISSMAN P. R. 1987 Comel showers as a passlble cauSe uf mass extillcli01ls. Naturc, vol. 329, pp. 118-126. K.E..lGWIN L O. 1985 Eocelle and Oligocelle slraligraplry olla erosiollal uncullformities in lhe GIIJ/ of Mexico ond GIIJf Cuasi. Jour. Paleo., vol. 59, No. 4, pp. 882·903. J r. 1980 Paleoc:eal1ographic cllange in lIle Pacific al lile Eocen¡;·Oligocene Boundary. Nature, vol. 287, pp. 722-725. 1986 Stepwise Mass Extillction ond ¡/IIpaCI Evenls: Lale Eocene lO Early Oligocene. Mar. Micropal., vol. 10, pp. 267·293. KEIGWIN LO., KElJ..ER G. KEU.ER 1984 Middle Oligoccne e/imolie ellonge frotll equotoriol Pacific DSDP Sile 77B. Geology, vol. 12, No. 1, pp. 16--20. e., U'HONUT S., VIILLlER T. L 1983 MII/liple microlektite 110riZOllS ill upper Eocelle Marine Sedimenls: No evidence lor Mass ExIinctions. Seicnc!:, vol. 221, pp. 150-152_ PLATE 2 Scale bar = 100 um 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11,12_ Globigerina cocaella (Gumbel), samplc 6,49, Cribrohantkeniru1 lauarU or Globormalia cerruazulensis Zonc. PseudolrllStigerina micra (Cole), sample 2,4, Gtobiguapsis semiinvolu/us Zone. Pseudollastigerina barbadoensis (Blo",,), sample 9, Globigerina /apu· riensis Zone. Clliloguembelina cllbensis S. L. (Palmer). sample 9, Globigeril1a lapuriellsis Zone. ' Globigerina galavisi (Bermudez), sample 6,48, C. lazzarii or Gl. cerroazulensis Zonc. Globigerina tapuriensis (Blo"" and Banncr), sample 9,7, Globigerina seW or G. ampliaperlura lonc. Globigerina selli (BorsclIi), sample 12, GtobigerirTa angulisuturalis or Globoro(alia opin¡a Zone. Globigerina bil1aiensis (Koch) , sample 11.3, G. angulisuturalis or Gl. opima Zonc. Globorotalia nana (Bolli), samplc 5,6, C. lazzar;i or Gl. cerroazulensis Zo~nc. 13. 14. 15. 16. Globigerina gorlmlii (Borsctli), sample 13,5, G. al1gulisuturalis or GI. opillla Zone. Globorolalia siakensis (Le Roy). sample 12, C. al1gulisLHuralis or Gl. opima Zonc. Globiger;na angulislltllralis (BolJi), samplc 12, G. angulisulllralis or Gl. opima Zone. G/oborolalia opima (Bolli), sample 11,7, G. allgulisuturalis or Gl. opima Zone. 509 MOLlNA, KELLER, MADll.E KEU.ER G., HER8F.RT T., DORSEY R., JDHNSSON M., CHI W. R. MARTINEZ-cAllECO J. 1986 Global distributi011 o( lAte Paleogene Hiatuse.s. Gcology, vol. 15, No. J. pp. 199-203. c., D'HONDT S. L. ORTH C. J., GIL\'ORE J. s., o, SIiOEMAKER E. M., MOUNA E. 1987 lAte Eocene ImpaCI Microspherules: Slratígraphy, Age and Geochemistry. Meteo;'ilics, vol. 22, No. 1, pp. 25-60. 1977 de un sectOr comprendido entre Mort!da Pina, Pedro Martinet. (Zo"a SlIbbilica). Tesis Doct. Univ. Granada, No. 175, 264 pp. KEU.ER OUVER P. KENNETT J. P. 1977 Ceno~ojc EWJlution o( Anlarclic g/adalion, Ihe circum hllarctic Ocean and their impac/ on global Paleoceanography. Jaur. Geophys. Re!., vol. 82, No. 27, pp. 3843·3860. Estudio micropaleontof6gico del Nummulitico MARTlNEZ-GAll.F:CO J .• ),lOUNA E- ro- 1975 ESl/(dio del lrdnsito Eouno-oUgoceno con raminiferos plallct6nicos al Sur de Torre Car· dela (Prov. de Granada. Zona Subbilica). Cuad. Geol.• vol. 6. pp. 1TI-195. MARTlNI E. 1971 Standard Tt!rfiary and Quaternary calcareous nannoplankton lOna/io". Proc. Second Plank. Canf. Roma, 1971, vol. 2, pp. 739--785. LOWRIE W. el al. 1982 Paleogellf~ magnelic s/ratigraplly in Umbrian pelagic carbonate rocks in tJu: Conlessa seco rions, Gubbio. Ceol. Soc. Amer. Bull., vol. 93, pp. 321-325. MAURASSE F.• CIASS, B. P, 1976 Radiolarian stra/igraphy and Norlh American micro/ektiles itl Caribbean Core RC9-58:¡;;jplication cotlcernin, La/e Eocene radiolarian PLATE 3 The abbrevialions XN and QL de,note cross-poIarized and trasmited light. 1. Discoaster de/landrei Bramlelte and Riedel, sample 3,5 (OL) x 2200. 2. Discoasler lani nodifer Bramlette and Riedcl, sampIe 3,5 (Ol) x 2200. 3, 4. Cruciplacolill1us crux (Deflandre and Fert) ROlh, samplc 3,5. (3) OL, (4) XN. x 2200. 5, 6. HelicospJtaera euphratis Haq, sample O. (5) Ol, (6) XN. ¡( 2200. 7, 8. HelicosplJaera bramlettei Mullcr. 9, 10. Pontospllaera plana (Bramlelte and Sullivan) Haq, sample O. (9) Ol, ,(lO) XN. x 2200. 11, 12. Pontosphaera multipora (Kamptner) Roth, sample 9. (11) OL, (12) XN. x 2200. 13, 14. Transversopon/is obliquipons (Deflandre) Hay, Mohlcr and Wade, sample 3,5. (13) OL, (14) XN. x 2200. 15. 16. Ericsonia fOTmosa (Kamplner) Romein, sample 6,37. (15) OL, (16) XN. x 2200. 17, 18_ Diclyococciles abiseclus (Muller) Bu"-ry and Pcrcival, sample 10,6. (17) Ol, (18) XN. x 2200. 19. 20. ~1. '22. 23. 24_ 25, 26. 27. 510 ZygThablilhus bijugalus (Deflandre) Deflandre. sample 18. (19) Ol, (20) XN. x 2200. Coronocyclus nilescens (Kamptner) Bramlette and Wilcoxon, sampIe 2,6. (21) OL. (22) XN. x 2200. Corannulus germanicus Slradner, sample 6,5, Ol. x 2200. Discoaster sublodoensis BramIette and Sullivan, sample 5, OL. x 2200. Chiasmolilhus oamaruePfsis (Deflandre) Hay, MohJer and Wade, sampie 5,6. (25) OL. (26) XN. x 2200. Discoasler baTbadiensis Tan Sin Hok, sample 3.5. OL. x 2800. MüUNA. KELLER, MADlLE PLATE 3 .. - ,. , ~ I . ... .••• .. . .¡ • ~ .' , .' • • ,• •• REVISTA ESPAÑOl~ DE M1CROPAlEOmOlOO1A. Vol. XX. mlm. 3, 1988 511 MOLlNA, KELLER, MADlLE REVISTA EspAÑOLA DE MlCao'AL[ONTUlOGlA, Vol. XX, nOmo J, 1988 512 PLATE 4 MüLINA, KELLER, MADILE chronology and tlle ape 01 l/le Eoeene-Oligo. eene bOlmdary. 7th Caribean Gcol. Conf. Proc. 1974, Guadeloupc, pp. 205-212. MCGQWRAN B. 1973 Rifling and drifl af Australia and Ihe migralían 01 mamma/s. Sciencc, vol. 180, pp. 759. MIu..ER K. G., THOMAS E. 1985 Lale Eoeene lO O/igocene bcnlhíc /uramíni/eral isotope record, Sile 574, equaloria/ Paci/ic. Inilials Rcports oC Ihe DSDP, vol. 85; pp. 771-7&0. s., TUCHOLKE B. E. 1985 Oligoeene glacioellsla.sy and erosion on Ihe margín of Ihe Norrh AI/maie. Geology, vol. 13, pp. 1-13. MIl.l.ER K. G., MOUNTAlN G. s. 1986 Calcareous nannofossils of lhe Fuente Caldera seclion. Develop. in Paleont. and Stratig., vol. 9, pp. 65-70. MONECHI In press Cu/careollS nannofossil cvellls around Ihe Eocene Oligocl;lle bOlmdar)! in lhe Umbrian secliolls (Ita/y). Submitted to Palco. Palco. Paleo. NOCCHI M., PARISI 1986 T/lI.' Eocene Oligocene boundar)! in the Umbriall pelagic seqtlenccs, Ila/y. Devclop. in Paleont. and Stratigr. vol. 9, pp. 25-40. NOCCHI M., PARlSt G., MONACO P., MONECHI S., MADILE M. 1979 O/igoceno-Mioeeno inferior por medio de foramini/eros plunclónicos en el seclor cenlral de las Cordilleras Belieas (Espalia). Tesis Doct. Public. Univ. Granada y Zaragoza, 342 pp. In el al. 1986 Biostraligrap/¡ic corre/alioli belll'eell LIle cellIru/ Sllbbelic (Spaill) mld Umbro-Marc!leUfl (1Ialy) pelagic seqw:l1t:es al l!le E/O bOllndary IlSillg farwlli/lilera. Develop. in Paleont. and Stratig., No. 9, pp. 75-86. MOLlNA E. MONACO P., MONECHI S., PREMDLI-SILVA l., lIlCE D. M. MOUNA E. 1986 Descriplion alld bioslratigraphy 01 lhe maill reference seclioll o/ l/le Eocene Oligocene botlndary hl Spai,l.· Flleme Caldera seClioll. Develop. in Paleont. and Slralig., No. 9, pp. 49-52. e., Mo\tHLE M., NAPOLEONE G., RIPEPE M., ORLANDO M., press Middle Eocene lO Ear/)! O/lgocenc faraminiferal and calcareous namlOlossils biostratigrapJlY and paleoenvironmental c/lallges in Ihe Soul/¡ Eas/crll seqlleflces, Ilaly. Submitted to Palco. Paleo. Paleo. OBERHANSLI 1-1., TOUMARKINE M. 1985 T}¡e Puleogene oxygen and carbon is%pe hislury of Sites 522, 523 and 524 Irom /he cefl/ral SOllt!J Atlalllic. In: Hsu K. J., Weissert H. J. eds. South Atlantic Paleoceanography. Cambrigc Universily Prcss, pp. 125-148. o KADA H., BUKRY D. 1980 SlIpp/emc'l/ary modificalion al/d inlrodllction (J/ code IIl1mbers ro l!Je lolV lariLUdes cOCCOlitll PlATE 4 Reticlllofel1estra lIlIlbilica (Levin) Martini and Ritzkowsky, samplc 3,5. (1) Ol, (2) XN. x 2800. 3, 4. EricsOIlia sp., sample 6,4. (3) Ol, (4) XN. x 2800. S, 7. Spllel101illlUS disretl!us (Martini) Bramlette and X ilcoxon, sample 16. (5) Ol, (6) XN, (7) XN 45". x 2800. 8, 9. Eriesollia ObTUra Perch Nielsen, sample 5,4. (8) Ol, (9) XN. x 2200. lO, 11. SpllcllolitJltIs predislcnlllS Bramlcllc and Wilcoxon, sample 5,6. (ID) al (11) XN. x 2200. 12. Hulodiscolillws solidlls (Deflandre) Roth, sample 3,5, aL. x 2200. 13. Diseoas/er saipallensis Bramlette and Riedcl, and Braarudospllaera bigelowii (Gran and 8raarud) Deflandrc, sample 3,5, OL. x 2800. 14, 15. CyclococcolitJJilla killgi (Roth) Roth, sample 1,5. (14) al, (15) XN. x 2200. 16. Isllil/loli/llUS recllrvus Deflandre, sample 5,6, Ol. x 2200. I7, 18. Cribrocen/rwll reliculalwl1 (Gartner and Smith) Perch Niclsen, sampIe 1,5. (17) Ol, (18) XN. x 1200. 19. Pedillocyclus larvalis (Bukry and Bram1cttc) Loeblich and Tappan, sample 5,6, aL. x 2800. 1, 2. 513 MOLlNA, KELLER, MAOILE bioslrotigro.ph¡c W"lJ.lioll, Mar. Micropalcont., SHACKl..lrrON N. J., KENNETT J. P • 1976 vol. 3, pp. 32J-325. PERe 1I NIElSEN K. 1986 CalcareollS NOlltlofossil elle'1ll al Ihe Eocelle/ Ofigocerre bOll1ldafY. Develop. in Palcont. and StraLig.. vol. 9, pp. 215-282. ¡'RUIOU SILVA l., MOS:ECIlI s., MAUlLE: M., SA.POLEONE u., ORLANDO M., RIPEI'E M. Paleotemperalllre I-listory 01 lile Cenoz.oic and tlle ;"itiaríon of Antarctic g/aciation: oxigen alld carbOIl istope allalysis in DSDP Sites 277, n9 al/d 181.. IniEia! Rcports of the D5DP, vol. 29, pp. 743-755. STE.lNECK P. L., BREF_" M•• NEVlNS N., O'I-IAR-' r. 1984 Middle Eocenc mld Dligocelle dl!ep sea ostra· coda Iro", lile oceallic formation Barbados. J. Palconlology, vol. 58, No. 6, pp. 1463.. 1496. In press CalcareollS plallkto" bioslratigrap/,)' alld magllt!lDslraligraplly lIf fhe Eoccnc 01igoccIle Irtll/siliOI! fmm ti/e G/lbbio area Early Paleocene fJ¡rougJi Earl)' Oligocen/!o Submiltcd lO Palco. Palco. Pako. VAII.. P. R, II,\ROENBOL J. Il.OI:IASZ\'NSKI 1'., CARUN M., GONZALEZ-DONOSO J. M., WEISSEL J. K., Il",VES D. 1:" WONDEllS .\. H. 1972 1984 Atlas 01 /(lIe Creluceolls globolnmCtlllids. Revue de Micropalcontologic, vol. 26, pp. 145-305. 1979 Sea level ellallges dllring tlJe Terliary. Occanus, vol. 22, No. 3, pp. 7J.80. Magl1elic ulIol11111ies ¡" flre sOIlI}¡ea..s1 Indian Dccan. In Hayes O. E. ed. Antarctic Oceanology JI. Anlarclic Res. Ser., vol. 19, p. 165. SANFIUPPO A., RIEOEl. W. R., GUSS B. P., KYTI': F. T. WILLIAMS O. F., TIIUNELL R. e .• 1I01)EI.l. 11. A., 1985 LA/e Eoccue microtekliles 0",1 radia/ariall ex· tillClioll U/I Barbados. Nalure. vol. 314, pa· ges 613-615. VERGN... UlI-GItAZZINI SAUSOERS J. R.• IIERNOULLl O. ,MUU,.EK-MERZ E., OIlERHA/'IlSU 1-1., PERII NII,ISEN K., RIEDH.. W. R., Jr. 1984 StrOligroplly 01 tl,e lAte Middle Eocene lO Eorly O/igocene in tllC Batll Cliff Section, Bar· bodas. Ulest IlIdies. Micropaleontology, vol. lO, pp. 390-425. SANFII.IPI'O A., TORRINI R. 514 c. 1985 SYlltcsis of IAle CretaceollS, Tertiary alld Quaternary sluble isolope records of Ole SOIlIfI Atlamic basea 011 Leg 7Z DSDP core Material. m Hsu K. J., Weissen H. J. cds. Soulh Allantic Palcoccanogrnphy. Cambridge UniveTSilY Press, pp. 205-242. MallflScrito recibido el S-VI-1987