INDUCTANCIA Y CAPACITANCIA

Anuncio
Circuitos Eléctricos I
V
Elementos Almacenadotes de Energía
Elementos almacenadotes de energía
Objetivos:
o Describir uno de los elementos importantes almacenadores de energía muy
comúnmente utilizado en los circuitos eléctricos como es el Capacitor
o Calcular la Capacitancia equivalentes en los circuitos
o Reconocer como se da el almacenamiento de energía en un Capacitor
o Describir el otro elemento importante almacenador de energía muy comúnmente
utilizado en los circuitos eléctricos como es el Inductor
o Calcular la Inductancia equivalentes en los circuitos
o Reconocer como se da el almacenamiento de energía en un Inductor
o Discutir acerca de la dualidad de ambos elementos almacenadores de energía
Introducción
El almacenamiento de energía en elementos de circuito eléctrico es un aspecto importante
en el desarrollo de circuitos flexibles y útiles. Describiremos dos elementos almacenadotes
de energía como son: el capacitor y el inductor. Todos los capacitares como los inductores
o bobinas son elementos lineales, sin embargo a diferencia de la resistencia, sus
características terminales se describen mediante ecuaciones diferenciales lineales. Otra
característica distintiva de estos elementos es su capacidad de absorber energía del circuito,
almacenarla temporalmente y regresarla después. Los elementos que poseen esta capacidad
de almacenamiento de energía se denominan simplemente elementos de almacenamiento.
Los capacitores son capaces de almacenar energía cuando un voltaje esta presente a través
del elemento. La energía realmente se almacena en un campo eléctrico.
Los inductores o bobinas son capaces de almacenar energía cuando una corriente pasa a lo
largo de ellas haciendo que se forme un campo magnético.
5.1
dq
i(t) = dt
Capacitores
Un capacitor es un elemento de circuito
que consiste en dos superficies
conductoras separadas por un material
no conductor, o dieléctrico. Un
capacitor simplificado y su símbolo se
muestran en la figura 5.1.1
A
(a)
d
+
dieléctrico
v(t)
-
+
q(t)
-
C
(b)
Figura 5.1.1
Hay muchas formas diferentes de
capacitores y pueden clasificarse por el tipo de material dieléctrico que se usa entre las
placas conductoras. El material dieléctrico puede ser aire, vacío, papel impregnado con
aceite o cera, mylar, poliestireno, mica, vidrio o cerámica.
133
C.R. Lindo Carrión
Circuitos Eléctricos I
Elementos Almacenadotes de Energía
Capacitancia es una medida de la propiedad de un dispositivo de almacenar energía en
forma de cargas separadas o de un campo eléctrico. Es el factor de proporcionalidad que
aparece entre las placas conductoras y se mide en Culombios por voltios (Coulombs por
volt) o Faradios (F).
Los capacitores o condensadores pueden ser fijos o variables y típicamente van de miles de
microfaradios (µF) a unos cuantos picofaradios (pF).
La capacitancia de dos placas paralelas, de área A separadas una distancia d (como el de la
Figura 5.1.1.a), es
C=
εo A
d
,donde εo es la permeabilidad del espacio libre, con valor de 8.85x10-12 F/m
Supongamos ahora que se conecta una fuente al capacitor como en la Figura 5.1.1.b,
entonces se transferirán cargas positivas a una placa y cargas negativas a la otra. La carga
en el capacitor es proporcional al voltaje a través de éste como q = Cv.
El diferencial de carga entre las placas crea un campo eléctrico que almacena energía.
Debido a la presencia del dieléctrico, la corriente de conducción que fluye en los alambres
que conectan el capacitor al resto del circuito no puede fluir internamente entre las placas.
Sin embargo, vía la teoría del campo electromagnético se puede mostrar que ésta corriente
de conducción es igual a la corriente de desplazamiento que fluye entre las placas del
capacitor y está presente siempre que un campo eléctrico o voltaje varía en el tiempo.
Las características terminales de corriente-voltaje del capacitor son: Como
dq
d
, entonces para un capacitor la corriente es: i = Cv lo cual para capacitancia
dt
dt
dv
1
constante es: i = C , esta ecuación puede rescribirse como: dv = i dt que integrando
dt
C
ésta expresión desde t = -∞ hasta algún tiempo t y suponiendo que v(t = -∞) = 0, se obtiene:
i=
1 t
i ( x ) dx , donde v(t) indica la dependencia con respecto al tiempo del voltaje. La
C ∫−∞
ecuación anterior se puede expresar como dos integrales, como sigue:
v(t ) =
v(t ) =
1 t0
1 t
i ( x) dx + ∫ i ( x) dx
∫
C −∞
C t0
v(t ) = v(t 0 ) +
1 t
i ( x) dx
C ∫t0
Donde v(t0) es el voltaje debido a la carga que se acumula en el capacitor desde el tiempo t
= -∞ hasta el tiempo t = t0.
134
C.R. Lindo Carrión
Circuitos Eléctricos I
Elementos Almacenadotes de Energía
La energía almacenada en el capacitor puede derivarse de la potencia que se entrega al
elemento. Esta potencia esta dada por la expresión:
p (t ) = v(t ) i (t ) = C v(t )
t
wC (t ) = ∫ C v ( x)
−∞
wC (t ) =
dv(t )
y de aquí que la energía almacenada en el campo eléctrico es:
dt
t
dv ( x )
1
1
v (t )
dx = ∫ C v ( x ) dv ( x ) = Cv 2 ( x ) v ( −∞ ) = Cv 2 (t )
−
∞
dx
2
2
1 2
1
v (t )
Cv ( x) v ( −∞ ) = Cv 2 (t ) Joules, ya que v(t = -∞) = 0.
2
2
La expresión de la energía también puede escribirse como:
wC (t ) =
1 q 2 (t )
, ya que (q = Cv)
2 C
Veamos ahora algunos ejemplos:
Ejemplo 5.1.1
Si la carga acumulada es dos condensadores paralelos cargados a 12V es 600pC ¿Cuál es la
capacitancia de los condensadores paralelos?
Solución: Como el voltaje y la carga son constante entonces, tenemos:
C=
Q 600 x10 −12
=
= 50 pF
V
12
v(t) V
Ejemplo 5.1.2
El voltaje a través de un capacitor de 5µF tiene la 24
forma de onda que se muestra en la Figura 5.1.2:
Determine la forma de onda de la corriente.
Solución:
0
Como el voltaje no es constante y depende del tiempo,
necesitamos expresarlo por partes, esto es:
v(t)
=
(24/6m)t
0 ≤ t ≤ 6ms
(-24/2m)t + 96
6ms ≤ t ≤ 8ms
0
t ≥ 8ms
135
6
8
t (ms)
Figura 5.1.2
C.R. Lindo Carrión
Circuitos Eléctricos I
Elementos Almacenadotes de Energía
La corriente en el capacitor esta dada por la expresión: i = C
dv
y evaluándolo para cada
dt
parte del voltaje obtenemos:
(5x10-6)(4x103) = 20mA
i(t)
0 ≤ t ≤ 6ms
(5x10-6)(-12x103) = -60mA 6ms ≤ t ≤ 8ms
=
0
t ≥ 8ms
Eso me da la forma de onda mostrada en la
Figura 5.1.3
i(t) mA
20
0
8
6
Ejemplo 5.1.3
Determine la energía almacenada en el campo
eléctrico del capacitor del ejemplo anterior al
tiempo t = 6ms
t (ms)
-60
Figura 5.1.3
Solución:
wC (t ) =
1 2
1
Cv (t ) la energía al cabo de 6ms es: wC (6m) = (5 x10 −6 ) 24 2 = 1440 μJ
2
2
Ejemplo 5.1.4
v(t) V
El voltaje aplicado entre las terminales de un capacitor se
muestra en la Figura 5.1.4 encuentre la corriente del capacitor.
Solución:
0
=
0
t≤0
(1/Δt)t
0 ≤ t ≤ Δt
1
t ≥ Δt
Δt
t (s)
Figura 5.1.4
Primero expresamos el voltaje como sigue:
v(t)
1
Dado que la corriente en el capacitor es: i = C
dv
, entonces:
dt
136
C.R. Lindo Carrión
Circuitos Eléctricos I
i(t)
=
Elementos Almacenadotes de Energía
0
t≤0
C(1/Δt)
0 ≤ t ≤ Δt
0
t ≥ Δt
Al decrecer Δt la corriente crecerá. Obviamente, Δt no puede reducirse hasta cero porque se
tendría una corriente infinita. Esta corriente es imposible, puesto que requeriría de potencia
infinita y que en las terminales del capacitor ocurriera un movimiento instantáneo de la
carga. De acuerdo con las condiciones de conservación de la carga, la cantidad de ésta no
puede cambiar instantáneamente. Por tanto no es posible un cambio de voltaje instantáneo
(Δt = 0) a través del capacitor.
El principio de conservación de la carga establece que la cantidad de carga eléctrica no
puede cambiar instantáneamente, por lo que q(t) debe ser continua en el tiempo. Recuerde
que q(t) = Cv(t). Por tanto, el voltaje a través del capacitor no puede cambiar
instantáneamente; es decir, no puede haber una discontinuidad en v(t).
5.2
Inductores
Un inductor o una bobina es un elemento de circuito que consiste en una alambre conductor
usualmente en forma de rollo o carrete. En la Figura 5.2.1 se muestran dos bobinas típicas y
su símbolo eléctrico.
líneas de flujo
líneas de flujo
i(t)
i(t)
+
+
v(t)
v(t)
-
L
i(t)
(b)
(a)
(c)
Figura 5.2.1
Las bobinas se suelen caracterizar según el tipo de núcleo en el que están enrolladas. Por
ejemplo, el material del núcleo puede ser aire o cualquier material no magnético, hierro o
ferrita. Las bobinas hechas con aire o con material no magnético se usan ampliamente en
circuitos de radio, TV y filtros. Las bobinas núcleo de hierro se usan en suministros de
potencia eléctrica y en filtros. Las bobinas con núcleo de ferrita se utilizan ampliamente en
aplicaciones de alta frecuencia.
137
C.R. Lindo Carrión
Circuitos Eléctricos I
Si consideramos la bobina mostrada
en la Figura 5.2.2 con N vueltas y
permeabilidad relativamente alta, de
manera que el flujo magnético se
concentra en el área A. Aplicando la
ley de Faraday obtenemos que:
Elementos Almacenadotes de Energía
N vueltas
Nφ
A
i
i
-
v
+
+
v
-
Figura 5.2.2
dφ
, puesto que el flujo total
dt
Nφ es proporcional a la corriente en la bobina Nφ = Li, entonces el voltaje en la bobina
será:
v=N
di
cuya expresión expresa que: El campo magnético cambiante produce un voltaje
dt
que es proporcional a la razón con respecto al tiempo del cambio de la corriente que
produce el campo magnético.
v=L
La constante de proporcionalidad L se llama Inductancia y se mide con la unidad de Henrio
(Henry)
1 Henrio es dimensionalmente igual a 1 voltio-segundo
La expresión para la corriente en una bobina es:
i (t ) =
1 t
v( x)dx la cual también puede escribirse como:
L ∫−∞
1 t
v ( x )dx , donde i(t0) es la corriente debido al campo magnético que se
L ∫t0
acumula en la bobina desde el tiempo t = -∞ hasta el tiempo t = t0.
i (t ) = i (t 0 ) +
La potencia transmitida a la bobina puede usarse para derivar la energía almacenada en la
bobina. Esta potencia es igual:
p(t) = v(t) i(t)
⎡ di (t ) ⎤
p (t ) = ⎢ L
i (t ) por lo tanto la energía almacenada en el campo magnético es:
⎣ dt ⎥⎦
t ⎡ di ( x ) ⎤
wL (t ) = ∫ ⎢ L
i ( x)dx que realizando la integral se obtiene:
−∞
⎣ dx ⎥⎦
wL (t ) =
1 2
L i (t ) Joules
2
138
C.R. Lindo Carrión
Circuitos Eléctricos I
Elementos Almacenadotes de Energía
La bobina, como la resistencia y el capacitor es un elemento pasivo. La polaridad del
voltaje a través de la bobina, es mostrado en la Figura inicial 5.2.1.
Las bobinas prácticas suelen estar entre unos pocos microhenrios a decenas de henrios
Ahora ilustraremos nuestro contenido con algunos ejemplos.
i(t) mA
Ejemplo 5.2.1
La corriente en una bobina de 10mH tiene la forma de
onda que se muestra en la Figura 5.2.3. Determine la
forma de onda del voltaje.
20
0
4
2
t (ms)
Figura 5.2.3
Solución:
Para encontrar el voltaje, primero expresemos la corriente en partes:
i(t)
=
(20m/2m)t
0 ≤ t ≤ 2m
(-20m/2m)t +40m
2m ≤ t ≤ 4m
0
t ≥ 4m
Como el voltaje a través de la bobina es: v = L
v(t)
=
di
entonces obtenemos:
dt
(10m)(20m/2m) = 100mV
0 ≤ t ≤ 2m
(10m)(-20m/2m) = -100mV
2m ≤ t ≤ 4m
0
t ≥ 4m
Así la forma de onda del voltaje se muestra en la v(t) mV
figura 5.2.4
100
0
Ejemplo 5.2.2
La corriente en una bobina de 2mH es i(t) =2
sen377t A. Determine el voltaje a través de la
bobina y la energía almacenada en la bobina.
139
2
4
t (ms)
-100
Figura 5.2.4
C.R. Lindo Carrión
Circuitos Eléctricos I
Elementos Almacenadotes de Energía
Solución:
El voltaje a través de la bobina viene dado por la expresión v = L
di
y sustituyendo los
dt
valores obtenemos:
v (t ) = ( 2m)
d
( 2 sen377t ) = 1.508 cos 377t V
dt
La energía almacenada en la bobina viene dad por la expresión wL (t ) =
1 2
L i (t ) y
2
sustituyendo los valores, obtenemos:
wL (t ) =
1
(2m)(2 sen377t ) 2 = 0.004 sen 2 377t J
2
i(t) A
Ejemplo 5.2.3
La corriente que pasa a través de las terminales de una bobina se 1
muestra en la Figura 5.2.5 encuentre el voltaje a través de la
bobina.
0
Solución:
t1
t (s)
Figura 5.2.5
Primero expresamos la corriente como sigue:
i(t)
=
0
t≤0
(1/t1)t
0 ≤ t ≤ t1
1
t ≥ t1
Dado que el voltaje a través de la bobina es: v = L
v(t)
=
0
t≤0
L(1/t1)
0 ≤ t ≤ t1
0
t ≥ t1
di
, entonces:
dt
Nótese que si t1 disminuye, la magnitud del voltaje aumenta. Es claro que no se puede hacer
t1 = 0, puesto que el voltaje requerido se haría infinito y se necesitaría una potencia infinita
en las terminales del inductor. Por consiguiente, no es posible que los cambios de la
corriente por un inductor sean instantáneos.
140
C.R. Lindo Carrión
Circuitos Eléctricos I
5.3
Características fundamentales de Capacitares y Bobinas
•
•
•
•
•
•
5.4
Elementos Almacenadotes de Energía
Similitud de las ecuaciones que los definen. Tienen una relación dual; es decir, las
ecuaciones que los definen son idénticas si intercambiamos C con L e i con v y
viceversa.
Si el voltaje a través de un capacitor es constante (es decir, que no varía con
respecto al tiempo), la corriente a lo largo de este es cero y por lo tanto el capacitor
se ve como un circuito abierto de CD (o DC por las siglas en inglés).
De manera similar, si la corriente en una bobina es constante, el voltaje a través de
ella es cero y por ende la bobina se ve como un corto circuito de CD (o DC por las
siglas en inglés).
Un salto instantáneo en el voltaje a través de un capacitor no es realizable
físicamente debido a que requiere el movimiento de una cantidad finita de carga en
un tiempo cero, la cual es una corriente infinita. Por lo tanto no es posible cambiar
instantáneamente el voltaje en un capacitor.
De igual manera, un cambio instantáneo en la corriente en una bobina requeriría un
voltaje infinito, por lo tanto no es posible
cambiar instantáneamente la corriente en
una bobina.
L
Los capacitores y las bobinas en la práctica
R fuga
C
poseen resistencias de fuga y no son como
R fuga
símbolos que hemos presentado. Un
capacitor y un inductor más práctico es
mostrado en la Figura 5.3.1
Capacitor práctico Bobina práctica
Figura 5.3.1
Relación dual para Capacitares y Bobinas
Capacitor
i (t ) = C
v(t ) = v (t 0 ) +
1
C
Bobina
dv (t )
dt
∫
t
t0
i ( x ) dx
p (t ) = C v (t )
w(t ) =
v (t ) = L
i (t ) = i (t 0 ) +
dv(t )
dt
di (t )
dt
1 t
v ( x )dx
L ∫t0
p (t ) = L i (t )
1 2
Cv (t )
2
w(t ) =
141
di (t )
dt
1 2
L i (t )
2
C.R. Lindo Carrión
Circuitos Eléctricos I
5.5
Elementos Almacenadotes de Energía
Conexiones serie-paralelo de Capacitores (Capacitancia equivalente)
+ v1(t) - + v2(t) - + v3(t) -
Capacitores en serie
Para obtener el capacitor equivalente serie del
circuito mostrado en la Figura 5.51, haremos uso
de la LKV
+
v(t)
-
C1
C3
C2
CN
- vN(t) +
v(t) = v1(t) + v2(t) +v3(t) + …+vN(t), pero
vi (t ) =
1
Ci
∫
t
t0
i (t ) dt + vi (t 0 ) , entonces
⎛ N 1
v(t ) = ⎜⎜ ∑
⎝ i =1 C i
v(t ) =
1
CS
∫
t
t0
Figura 5.5.1
N
⎞ t
⎟⎟ ∫ i(t ) dt + ∑ vi (t 0 )
i =1
⎠ t0
N
i (t ) dt + v(t 0 ) , donde v (t 0 ) = ∑ vi (t 0 ) y
i =1
N
1
1
1
1
1
=∑
=
+
+ ... +
C S i =1 Ci C1 C 2
CN
i(t)
+
CS
El circuito de la Figura 5.4.1 puede reemplazarse por el circuito v(t)
equivalente de la Figura 5.5.2
Es importante notar que la corriente fluye en cada uno de los Figura 5.5.2
capacitores en serie, cada capacitor gana la misma carga en el mismo
periodo de tiempo. El voltaje a través de cada capacitor dependerá de su carga y de la
capacitancia del elemento.
+ 2V -
Ejemplo 5.5.1
Determine la Capacitancia equivalente y el voltaje inicial para
el circuito mostrado en la Figura 5.5.3
+
v(t)
2µF
-
6µF
3µF
4V
+
+ 1V -
Solución:
Figura 5.5.3
La capacitancia equivalente es:
1
1 1 1
= + + = 1 , así: CS = 1µF
CS 2 3 6
142
C.R. Lindo Carrión
Circuitos Eléctricos I
Elementos Almacenadotes de Energía
Si aplicamos la LKV al circuito podemos obtener v(t0) = 2 – 4 – 1 = -3V
Además podemos advertir que la energía total almacenada en el circuito es:
wC (t 0 ) =
1
1
C S v 2 (t ) = (1x10 −6 x( −3) 2 ) = 4.5μ J
2
2
Ejemplo 5.5.2
Dos capacitares previamente descargados se conectan en serie y se cargan con una fuente
de 12V. Un capacitor es de 30µF y el otro se desconoce. Si el voltaje a través del capacitor
de 30µF es de 8V, encuentre la capacitancia del capacitor desconocido.
Solución:
Como conocemos el voltaje del capacitor de 30µF entonces podemos conocer la carga de
ese capacitor
Q = CV = (30µ)(8) = 240µC
Como fluye la misma corriente en cada uno de los capacitores es serie, cada capacitor gana
la misma carga en el mismo periodo de tiempo, entonces podemos conocer la capacitancia
sabiendo que el voltaje a través de él es 12-8 = 4V, así
C=
Q 240 μ
=
= 60 μ F
V
4
Capacitores en Paralelo
Para obtener el capacitor equivalente
paralelo del circuito mostrado en la
Figura 5.5.4, haremos uso de la LKC
i(t)
+
v(t)
C1
i2(t)
C2
iN(t)
i3(t)
C3
CN
-
Figura 5.5.4
i(t) = i1(t) + i2(t) + i3(t) +…+ iN(t) pero iC (t ) = C
i (t ) = C1
i1(t)
dv (t )
dt
dv (t )
dv (t )
dv (t )
dv (t )
+ C2
+ C3
+ L + CN
dt
dt
dt
dt
i(t)
dv(t )
⎛
⎞ dv (t )
= CP
, donde CP = C1 + C2 + C3 +…+CN
i (t ) = ⎜ ∑ C i ⎟
dt
⎝ i =1 ⎠ dt
N
Así el circuito de la Figura 5.5.4 puede reemplazarse por el circuito
equivalente de la Figura 5.5.5
143
+
v(t)
CP
-
Figura 5.5.5
C.R. Lindo Carrión
Circuitos Eléctricos I
Elementos Almacenadotes de Energía
3µF
Ejemplo 5.5.3
Encuentre la Capacitancia equivalente del circuito
mostrado en la Figura 5.5.6
2µF
4µF
Ceq
2µF
12µF
3µF
Solución:
Figura 5.5.6
La capacitancia de 2µF y 4µF se encuentran en
paralelo entonces el equivalente de ellos es 6µF y este queda en serie con la capacitancia de
3µF y el equivalente de éste es 2µF, el cual queda en paralelo con la capacitancia de 2µF,
obteniéndose de ellos un equivalente de 4µF y éste queda en serie con la capacitancia de
1µF y de 12µF, entonces Ceq será:
1
1
1
1
8
=
+
+
=
, así: Ceq = (3/2)µF
C eq 3μ 4μ 12μ 12
5.6 Conexiones serie-paralelo de inductores (Inductancia equivalente)
i(t) + v1(t) -
Inductores o Bobinas en serie
Para obtener el inductor equivalente serie del
circuito mostrado en la Figura 5..6.1, haremos uso
de la LKV
di (t )
, entonces:
dt
+ v3(t) -
L2
L3
L1
+
v(t)
-
LN
- vN(t) +
v(t) = v1(t) + v2(t) + v3(t) +…+ vN(t),
pero v L (t ) = L
+ v2(t) -
Figura 5.6.1
v (t ) = L1
di (t )
di (t )
di (t )
di (t )
+ L2
+ L3
+ L + LN
dt
dt
dt
dt
i(t)
di (t )
⎛ N ⎞ di (t )
v(t ) = ⎜ ∑ Li ⎟
= LS
, donde LS = L1 + L2 + L3 +…+ LN
dt
⎝ i =1 ⎠ dt
+
v(t)
Así el circuito de la Figura 5.6.1 puede reemplazarse por el circuito
equivalente de la Figura 5.6.2
LS
-
Figura 5.6.2
Ejemplo 5.6.1
1H
Para el circuito mostrado en la Figura 5.6.3 encuentre
la inductancia equivalente.
Leq
2H
4H
Figura 5.6.3
144
C.R. Lindo Carrión
Circuitos Eléctricos I
Elementos Almacenadotes de Energía
Solución: Como las bobinas están en series, se suman sus inductancias, por lo tanto,
Leq = 1 + 2 +4 = 7H
i(t)
Inductores o Bobinas en paralelo
Para obtener el inductor equivalente paralelo
del circuito mostrado en la Figura 5.6.3,
haremos uso de la LKV
i1(t)
+
v(t)
L1
i2(t)
L2
iN(t)
i3(t)
L3
LN
-
Figura 5.6.3
i(t) = i1(t) + i2(t) +i3(t) + …+iN(t), pero
ii (t ) =
1
Li
i (t ) =
1
LP
∫
t
t0
∫
t
t0
⎛ N 1
i (t ) = ⎜⎜ ∑
⎝ i =1 Li
v(t ) dt + ii (t 0 ) , entonces:
N
v (t ) dt + i (t 0 ) , donde i (t 0 ) = ∑ ii (t 0 ) y
i =1
N
⎞ t
⎟⎟ ∫ v(t ) dt + ∑ ii (t 0 )
i =1
⎠ t0
N
1
1
1
1
1
=∑ =
+
+ ... +
LP i =1 Li L1 L2
LN
El circuito de la Figura 5.6.3 puede reemplazarse por el circuito
equivalente de la Figura 5.6.4
i(t)
+
v(t)
LP
-
Ejemplo 5.6.2
Determine la inductancia equivalente y la corriente
inicial para el circuito mostrado en la Figura 5.6.5
Figura 5.6.4
i(t)
3A
+
Solución: Para encontrar la inductancia equivalente
ocuparemos la siguiente fórmula:
v(t)
12mH
6A
6mH
2A
4mH
-
Figura 5.6.5
1
1
1
1
6
, así LP = 2mH
=
+
+
=
LP 12m 6m 4m 12
Para encontrar la corriente inicial se hace uso de la LKC, así:
i(t0) + 6 = 3 + 2, entonces i(t0) = -1A
145
C.R. Lindo Carrión
Circuitos Eléctricos I
5.7
Elementos Almacenadotes de Energía
Problemas Resueltos
+
Vo
+
24V
-
Ejemplo 5.7.1
Dos capacitores se conectan en serie como se muestra en la figura
5.7.1, encuentre Vo.
12µF
6µF
Figura 5.7.1
Solución:
Sabemos que la carga de un capacitor es. Q = CV, entonces podemos encontrar la carga del
capacitor de 6µF, así:
Q6µF = (6µ)(24) = 144µC
Ahora como ambos capacitores se encuentran en serie, entonces fluye la misma corriente en
cada uno de los capacitares y por lo tanto ganan la misma carga en el mismo periodo de
tiempo, así que la carga del capacitor de 6µF será la misma que la del capacitor de:12µF,
así podemos despejar entonces:
V12µF = Q12µF/12µ = 144µ/12µ = 12V
v(t) V
Ejemplo 5.7.2
El voltaje a través de un capacitor de 100µF se
muestra en la figura 5.7.2. Calcule la forma de onda
para la corriente en el capacitor.
6
0
1
2
3 t (s)
Figura 5.7.2
Solución:
Para encontrar la corriente, primero expresemos el voltaje en partes:
v(t)
=
6t
0 ≤ t ≤ 1s
6
1s ≤ t ≤ 2s
(-6t) + 18
2s ≤ t ≤ 3s
Como la corriente a través del capacitor es: i (t ) = C
i(t)
=
0.6mA
0 ≤ t ≤ 1s
0A
1s ≤ t ≤ 2s
146
dv (t )
entonces obtenemos:
dt
C.R. Lindo Carrión
Circuitos Eléctricos I
Elementos Almacenadotes de Energía
-0.6mA
i(t) mA
2s ≤ t ≤ 3s
0.6
Así la forma de onda de la corriente se muestra
en la figura 5.7.3
0
1
3
2
t (s)
-0.6
Ejemplo 5.7.3
Figura 5.7.3
Determine la capacitancia equivalente entre las terminales
a
a y b del circuito que se muestra en la figura 5.7.4.
3µF
5µF
2µF
6µF
2µF
6µF
Solución:
Como podemos observar del circuito, en la parte inferior
los capacitares de 6µF y 12µF se encuentran en serie y su b
equivalente será:
(6µ)(12µ)/(18µ) = 4µF y a la vez éste se encuentra en
paralelo con el capacitor de 2µF, entonces su equivalente será:
7µF
12µF
Figura 5.7.4
4µ + 2µ = 6µF, que es colocado como se muestra en la figura 5.7.5.a, ahora la parte
superior de la figura 5.7.4 se puede reducir como se hizo anteriormente, el capacitor de 6µF
se encuentra en serie con el capacitor de 3µF, entonces se pude reducir a
(6µ)(3µ)/(9µ) = 2µ, que a la vez se encuentra en paralelo con el capacitor de 2µF, entonces
su equivalente es:
2µ + 2µ = 4µF, que es colocado como se muestra en la figura 5.7.5.a, como podemos
observar dicha figura, todos lo capacitores se encuentran en serie, entonces su equivalente
será:
5µF
C ab =
a
1
1
1
1
1
+
+
+
5μ 4 μ 6 μ 7 μ
muestra en la figura 5.7.5.b
a
= 1.32 μ F , como se
4µF
1.32µF
6µF
b
b
7µF
(b)
(a)
Figura 5.7.5
Ejemplo 5.7.4
La corriente en una bobina de 50mH es de la forma:
i(t) = 0
i(t) = 2t℮-4t A
t<0
t>0
147
C.R. Lindo Carrión
Circuitos Eléctricos I
Elementos Almacenadotes de Energía
Encuentre: (a) El voltaje a través de la bobina; (b) El tiempo en que la corriente es un
máximo y, (c) El tiempo en que el voltaje es un mínimo.
Solución:
(a) El voltaje a través de la bobina es: v L (t ) = L
di (t )
, para t < 0 es cero , pero para t > 0
dt
será:
vL (t ) = (50m) ⎡⎣ 2t ( −4)e −4t + 2e −4 t ⎤⎦ = 50m ⎡⎣ 2e −4t − 8te −4t ⎤⎦ = 0.1e −4t (1 − 4t )
(b) Para obtener el tiempo en el cual la corriente es un máximo derivamos la corriente con
respecto al tiempo e igualamos a cero la expresión para obtener el tiempo, así:
diL (t )
= 2e −4t − 8te −4t = 0 , de aquí tenemos que 2 – 8t = 0, así que t = ¼ = 0.25s
dt
(c) Para obtener el tiempo en el cual el voltaje es un mínimo derivamos el voltaje con
respecto al tiempo e igualamos a cero la expresión para obtener el tiempo, así:
dvL (t )
= 0.1e −4t ( −4) − 0.4e −4t (1 − 4t ) = e −4t ( −0.8 + 1.6t ) = 0
dt
Si observamos la expresión anterior se hará mínima cuando t → ∞.
i(t) mA
Ejemplo 5.7.5
100
La corriente en una bobina de 50mH es
mostrada en la figura 5.7.6. Obtenga la forma
de onda del voltaje en la bobina.
0
2
4
6
8
10
t (ms)
-100
Figura 5.7.6
Solución:
Para encontrar el voltaje, primero expresemos la corriente en partes:
i(t)
=
0
0 ≤ t ≤ 2ms
-50t + 100m
2ms ≤ t ≤ 4ms
50t – 300m
4ms ≤ t ≤ 8ms
-50t + 500m
8ms ≤ t ≤ 10ms
148
C.R. Lindo Carrión
Circuitos Eléctricos I
Elementos Almacenadotes de Energía
Como el voltaje a través de la bobina es: v(t ) = L
i(t)
=
di (t )
entonces obtenemos:
dt
0
0 ≤ t ≤ 2ms
(50m)-50 = -2.5V
2ms ≤ t ≤ 4ms
(50m)50 = 2.5V
4ms ≤ t ≤ 8ms
(50m)-50 = -2.5V
8ms ≤ t ≤ 10ms
Así la forma de onda de la corriente se muestra
en la figura 5.7.7
v(t) V
2.5
0
2
6
4
8
10
t (ms)
-2.5
Figura 5.7.7
Ejemplo 5.7.6
Determine la inductancia equivalente entre las terminales a
a y b en el circuito mostrado en la figura 5.7.8
1mH
12mH
4mH
Solución:
4mH
3mH
Como podemos observar las bobinas de 4mH y 12mH
están en paralelo y podemos reducirla a un equivalente:
b
2mH
2mH
Figura 5.7.8
4m || 12m = 3mH y a la vez ésta queda en serie con la bobina de 3mH que se encuentra
abajo, así:
3m + 3m = 6mH, como puede ser observado en la figura 5.7.9.a. Las bobinas de 2mH y
4mH se encuentran en serie, así:
2m + 4m = 6mH, como se puede observar a
en la figura 5.7.9.a. Observando dicha
figura las bobinas de 6mH se encuentran
en paralelo y podemos reducirla a una
b
equivalente, asÍ:
1mH
a
6mH
6mH
6mH
2mH
(a)
6m || 6m = 3mH y ésta se encuentra en
serie con la bobina de 1mH y la bobina de
2mH, así la bobina equivalente entre las terminales a y b es:
b
(b)
Figura 5.7.9
1m + 3m + 2m = 6mH, la cual se representa en la figura 5.7.9.b.
149
C.R. Lindo Carrión
Circuitos Eléctricos I
5.8
Elementos Almacenadotes de Energía
Problemas propuestos
5.8.1 Un capacitor de 100µF descargado se carga con una corriente constante de 1mA.
Encuentre el voltaje a través del capacitor después de 4 segundos.
5.8.2 El voltaje a través de un capacitor de 100µF esta dado por la expresión v(t) = 120
sen 377t V. Encuentre a) la corriente en el capacitor y b) la expresión para la energía
almacenada en el elemento.
5.8.3 El voltaje a través de un capacitor de 40µF es de 25V cuando t = 0. Si la corriente
por el capacitor en función del tiempo viene dada por i(t) = 6℮-6t mA para t > 0, calcule v(t)
para t > 0.
5.8.4 Una fuente de corriente i como la mostrada en la figura 5.8.4, se conecta aun
capacitor sin carga en t = 0. Determine la onda de voltaje de t = 0 a t = 2.5 segundos y trace
la onda cuando C = 1mF.
i(t) A
0.5
0
0.5
1
1.5
2
2.5
3
t (s)
-0.5
Figura 5.8.4
5.8.5 Un capacitor de 3µF y otro de 6µF están conectados en paralelo y cargados a 12V:
Encuentre: a) la carga almacenada por cada capacitor, b) la energía total almacenada.
5.8.6 El voltaje a través de un capacitor de 50µF se muestra en la figura 5.8.6. Determine
la forma de onda de la corriente.
v(t) V
10
0
2
4
6
8
10
12
t (ms)
-10
Figura 5.8.6
150
C.R. Lindo Carrión
Circuitos Eléctricos I
Elementos Almacenadotes de Energía
5.8.7 El voltaje a través de un capacitor de 6µF se muestra en la figura 5.8.7. Determine la
forma de onda de la corriente
v(t) V
10
0.5
0
t (ms)
-10
Figura 5.8.7
5.8.8 Determine la corriente i en el circuito mostrado en la figura 8, si v(t) = 5(1 - 2℮-2t) V
6µF
i
200K
Figura 5.8.8
5.8.9 Encuentre la capacitancia equivalente entre las terminales a y b del circuito
mostrado en la figura 5.8.9.
3µF
b
a
4µF
6µF
6µF
3µF
Figura 5.8.9
5.8.10 Encuentre la capacitancia equivalente entre las terminales a y b del circuito
mostrado en la figura 5.8.10.
16µF
27µF
34µF
5µF
20µF
9µF
a
24µF
b
Figura 5.8.10
151
C.R. Lindo Carrión
Circuitos Eléctricos I
Elementos Almacenadotes de Energía
5.8.11 Determine el voltaje en cada capacitor del circuito mostrado en la figura 5.8.11.
Suponga que el circuito se encuentra en estado estable.
6µF
12µF
5µF
100V
1µF
Figura 5.8.11
5.8.12 El modelo de un motor eléctrico es una combinación en serie de un resistor y un
inductor. Una corriente i(t) = 4t℮-t A fluye por la combinación en serie de un resistor de
10Ω y un inductor de 0.1 henrio. Determine el voltaje a través de la combinación.
5.8.13 La corriente en una bobina cambia de 0 a 200mA en 4ms e induce un voltaje de
100mV ¿Cuál es el valor de la bobina?
5.8.14 Si la corriente i(t) = 1.5t A fluye a través de una bobina de 2H encuentre la energía
almacenada a t = 2s.
5.8.15 La corriente por un inductor de 20mH se muestra en la figura 5.8.15. Calcule el
voltaje en del inductor en t = 1ms y t = 6ms.
i(t) mA
4
2
0
-2
2
4
6
t (ms)
-4
Figura 5.8.15
5.8.16 El voltaje a través de una bobina de 2H esta dado por la forma de onda que se
muestra en la figura 5.8.16. Encuentre la forma de onda para la corriente en la bobina.
v(t) V
5
0
2
4
6
t (s)
-5
Figura 5.8.16
152
C.R. Lindo Carrión
Circuitos Eléctricos I
Elementos Almacenadotes de Energía
5.8.17 El voltaje a través de una bobina de 10mH esta dado por la forma de onda que se
muestra en la figura 5.8.17. Encuentre la forma de onda para la corriente de la bobina.
v(t) mV
10
1
0
2
t (ms)
Figura 5.8.17
5.8.18 La corriente en una bobina de 4mH esta dada por la forma de onda de la figura
5.8.18. Grafique el voltaje a través de la bobina.
i(t) mA
0.12
0
0.5
1
t (ms)
-0.12
Figura 5.8.18
5.8.19 Encuentre la bobina equivalente entre las terminales a y b del circuito que se
muestra en la figura 5.8.19.
a
1mH
0.4mH
7mH
12mH
5mH
0.8mH
5mH
2mH
b
Figura 5.8.19
5.8.20 Determine la inductancia equivalente en las terminales a y b del circuito mostrado
en la figura 5.8.20, cuando el interruptor S esta en (a) la posición 1 y (b) la posición 2.
2mH
a
120mH
32mH
12mH
1
2
32mH
24mH
S
72mH
b
27mH
9mH
Figura 5.8.20
153
C.R. Lindo Carrión
Circuitos Eléctricos I
Elementos Almacenadotes de Energía
5.8.21 Dado el circuito que se muestra en la figura 5.8.21. Encuentre: (a) La inductancia
equivalente entre las terminales a y b, con las terminales c-d en cortocircuito. (b) La
inductancia equivalente entre las terminales c y b, con las terminales a-b en circuito abierto.
12H
a
c
6H
b
2H
d
2H
Figura 5.8.21
5.8.22 Encuentre el valor de L en el circuito de la figura 5.8.22, de modo que la
inductancia total LT sea 2mH.
4mH
2mH
LT
L
6mH
Figura 5.8.22
154
C.R. Lindo Carrión
Descargar