1 NIVELES VS INCREMENTOS EN LA ESTIMACIÓN DE MODELOS

Anuncio
NIVELES VS INCREMENTOS EN LA ESTIMACIÓN DE MODELOS DE
REGRESIÓN: ALGUNAS REGLAS BÁSICAS
a) Senderos aleatorios con deriva
Procesos no cointegrados
PGD: DX1=nrnd+0.1
DY1=2*DX1+nrnd
1) La estimación en niveles produce inconsistencia
Dependent Variable: Y1
Method: Least Squares
Date: 10/26/03 Time: 10:46
Sample: 1 1000
Included observations: 1000
Variable
C
X1
R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
Durbin-Watson stat
Coefficient
Std. Error
t-Statistic
Prob.
4.763699
1.683017
0.626139
0.006858
7.608055
245.4027
0.0000
0.0000
0.983698
0.983682
8.244128
67829.72
-3527.439
0.016348
Mean dependent var
S.D. dependent var
Akaike info criterion
Schwarz criterion
F-statistic
Prob(F-statistic)
144.4675
64.53723
7.058877
7.068693
60222.47
0.000000
2) La estimación en niveles con AR(1) permite obtener un estimador consistente de
“beta”
Dependent Variable: Y1
Method: Least Squares
Date: 10/26/03 Time: 10:46
Sample(adjusted): 2 1000
Included observations: 999 after adjusting endpoints
Convergence achieved after 6 iterations
Variable
Coefficient
Std. Error
t-Statistic
Prob.
C
X1
AR(1)
-29.09405
2.005744
0.996594
11.19131
0.031999
0.002155
-2.599701
62.68160
462.4503
0.0095
0.0000
0.0000
R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
Durbin-Watson stat
Inverted AR Roots
0.999758
0.999757
1.003531
1003.047
-1419.539
1.929940
Mean dependent var
S.D. dependent var
Akaike info criterion
Schwarz criterion
F-statistic
Prob(F-statistic)
144.6121
64.40725
2.847926
2.862661
2054957.
0.000000
1.00
1
3) La estimación en incrementos permite obtener estimadores consistentes de “alfa” y
de “beta”
Dependent Variable: DY1
Method: Least Squares
Date: 10/26/03 Time: 11:08
Sample: 1 1000
Included observations: 1000
Variable
Coefficient
Std. Error
t-Statistic
Prob.
C
DX1
-0.026062
2.005375
0.032100
0.031950
-0.811919
62.76605
0.4170
0.0000
R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
Durbin-Watson stat
0.797877
0.797674
1.005847
1009.704
-1423.767
1.928309
Mean dependent var
S.D. dependent var
Akaike info criterion
Schwarz criterion
F-statistic
Prob(F-statistic)
0.245172
2.236176
2.851534
2.861350
3939.577
0.000000
Procesos cointegrados
PDD: X2=X1
Y2=2+2*X2+nrnd
4) La estimación en niveles permite obtener estimadores consistentes de “alfa” y de
“beta”
Dependent Variable: Y2
Method: Least Squares
Date: 10/26/03 Time: 10:48
Sample(adjusted): 2 1000
Included observations: 999 after adjusting endpoints
Variable
C
X2
R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
Durbin-Watson stat
Coefficient
Std. Error
t-Statistic
Prob.
1.945017
2.000413
0.075729
0.000829
25.68375
2412.867
0.0000
0.0000
0.999829
0.999829
0.994220
985.5089
-1410.728
1.984434
Mean dependent var
S.D. dependent var
Akaike info criterion
Schwarz criterion
F-statistic
Prob(F-statistic)
168.1614
75.94304
2.828284
2.838108
5821927.
0.000000
2
5) La estimación en incrementos permite obtener estimadores consistentes de “beta”
Dependent Variable: D(Y2)
Method: Least Squares
Date: 10/26/03 Time: 11:14
Sample(adjusted): 3 1000
Included observations: 998 after adjusting endpoints
Variable
Coefficient
Std. Error
t-Statistic
Prob.
0.001460
1.995341
0.044759
0.044521
0.032625
44.81830
0.9740
0.0000
C
D(X2)
R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
Durbin-Watson stat
0.668517
0.668184
1.401251
1955.651
-1751.791
3.029499
Mean dependent var
S.D. dependent var
Akaike info criterion
Schwarz criterion
F-statistic
Prob(F-statistic)
0.270045
2.432583
3.514610
3.524442
2008.680
0.000000
Procesos no cointegrados y regresión espuria
PDD: X3=X1
DY3=0.2+nrnd
Representación gráfica
250
200
150
100
50
0
-50
250
500
X3
750
1000
Y3
3
6) La regresión en niveles produce una “regresión espuria”
Dependent Variable: Y3
Method: Least Squares
Date: 10/26/03 Time: 10:49
Sample: 1 1000
Included observations: 1000
Variable
Coefficient
Std. Error
t-Statistic
Prob.
C
X3
-33.06879
1.914118
0.955650
0.010467
-34.60345
182.8652
0.0000
0.0000
R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
Durbin-Watson stat
0.971020
0.970991
12.58267
158007.1
-3950.258
0.029608
Mean dependent var
S.D. dependent var
Akaike info criterion
Schwarz criterion
F-statistic
Prob(F-statistic)
125.8182
73.87665
7.904517
7.914332
33439.68
0.000000
7) La estimación en incrementos permite detectar que se trata de un regresión espuria
Dependent Variable: D(Y3)
Method: Least Squares
Date: 10/26/03 Time: 10:50
Sample(adjusted): 2 1000
Included observations: 999 after adjusting endpoints
Variable
Coefficient
Std. Error
t-Statistic
Prob.
C
D(X3)
0.242879
-0.000255
0.032701
0.032532
7.427279
-0.007825
0.0000
0.9938
R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
Durbin-Watson stat
0.000000
-0.001003
1.024172
1045.782
-1440.380
1.933089
Mean dependent var
S.D. dependent var
Akaike info criterion
Schwarz criterion
F-statistic
Prob(F-statistic)
0.242845
1.023659
2.887647
2.897470
6.12E-05
0.993758
4
8) La estimación en niveles con AR(1) “también” permite detectar que se trata de una
regresión espuria
Dependent Variable: Y3
Method: Least Squares
Date: 10/26/03 Time: 10:51
Sample(adjusted): 2 1000
Included observations: 999 after adjusting endpoints
Convergence achieved after 10 iterations
Variable
Coefficient
Std. Error
t-Statistic
Prob.
C
X3
AR(1)
939.9565
-0.001320
0.999701
1202.666
0.032592
0.000439
0.781561
-0.040514
2275.315
0.4347
0.9677
0.0000
R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
Durbin-Watson stat
Inverted AR Roots
0.999808
0.999807
1.024449
1045.298
-1440.148
1.933432
Mean dependent var
S.D. dependent var
Akaike info criterion
Schwarz criterion
F-statistic
Prob(F-statistic)
125.9441
73.80617
2.889186
2.903921
2589533.
0.000000
1.00
5
b) Senderos aleatorios sin deriva
Procesos no cointegrados
PGD: DX1=nrnd, DX2=nrnd, DX3=nrnd
DYX=2·DX1+2·DX2+2·DX3+nrnd
1) La estimación en niveles produce inconsistencia
Dependent Variable: Y1
Method: Least Squares
Date: 10/30/03 Time: 21:17
Sample: 2 10000
Included observations: 9999
Variable
Coefficient
Std. Error
t-Statistic
Prob.
C
X1
X2
X3
-21.77510
1.979500
1.742952
1.954095
0.474370
0.005623
0.003815
0.008529
-45.90317
352.0070
456.8162
229.1080
0.0000
0.0000
0.0000
0.0000
R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
Durbin-Watson stat
0.974153
0.974146
16.03864
2571093.
-41933.20
0.004048
Mean dependent var
S.D. dependent var
Akaike info criterion
Schwarz criterion
F-statistic
Prob(F-statistic)
56.15612
99.74733
8.388278
8.391163
125570.3
0.000000
2) La estimación en niveles con un proceso AR(1) permite obtener un estimador
consistente de “beta”
Dependent Variable: Y1
Method: Least Squares
Date: 10/30/03 Time: 21:18
Sample: 2 10000
Included observations: 9999
Convergence achieved after 5 iterations
Variable
Coefficient
Std. Error
t-Statistic
Prob.
C
X1
X2
X3
AR(1)
-53.83252
1.998631
1.998373
1.997127
0.998509
6.893216
0.009829
0.009891
0.009783
0.000488
-7.809492
203.3319
202.0385
204.1507
2044.063
0.0000
0.0000
0.0000
0.0000
0.0000
R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
Durbin-Watson stat
Inverted AR Roots
0.999902
0.999902
0.986375
9723.523
-14048.30
1.995995
Mean dependent var
S.D. dependent var
Akaike info criterion
Schwarz criterion
F-statistic
Prob(F-statistic)
56.15612
99.74733
2.810940
2.814546
25558122
0.000000
1.00
6
3) La estimación en incrementos permite obtener estimadores consistentes de “alfa” y
de “beta”
Dependent Variable: DY1
Method: Least Squares
Date: 10/30/03 Time: 21:19
Sample: 2 10000
Included observations: 9999
Variable
Coefficient
Std. Error
t-Statistic
Prob.
C
DX1
DX2
DX3
-0.005638
1.998815
1.998862
1.997274
0.009870
0.009832
0.009890
0.009784
-0.571224
203.2963
202.1018
204.1329
0.5679
0.0000
0.0000
0.0000
R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
Durbin-Watson stat
0.925257
0.925235
0.986787
9732.615
-14052.97
1.997093
Mean dependent var
S.D. dependent var
Akaike info criterion
Schwarz criterion
F-statistic
Prob(F-statistic)
0.009089
3.608888
2.811675
2.814559
41243.38
0.000000
Procesos cointegrados
4) La estimación en niveles permite obtener estimadores consistentes de “alfa” y de
“beta”
Dependent Variable: Y2
Method: Least Squares
Date: 10/30/03 Time: 21:21
Sample: 2 10000
Included observations: 9999
Variable
C
Z1
Z2
Z3
R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
Durbin-Watson stat
Coefficient
Std. Error
t-Statistic
Prob.
2.010660
1.999780
1.999926
1.999436
0.029734
0.000352
0.000239
0.000535
67.62257
5673.465
8362.585
3740.010
0.0000
0.0000
0.0000
0.0000
0.999914
0.999914
1.005303
10101.29
-14238.85
1.967612
Mean dependent var
S.D. dependent var
Akaike info criterion
Schwarz criterion
F-statistic
Prob(F-statistic)
108.3463
108.2299
2.848855
2.851739
38623823
0.000000
7
5) La estimación en incrementos permite obtener estimadores consistentes de “beta”
Dependent Variable: D(Y2)
Method: Least Squares
Date: 10/30/03 Time: 21:22
Sample(adjusted): 3 10000
Included observations: 9998 after adjusting endpoints
Variable
Coefficient
Std. Error
t-Statistic
Prob.
C
D(Z1)
D(Z2)
D(Z3)
-0.000324
1.972066
2.005368
1.998500
0.014103
0.014049
0.014132
0.013980
-0.022999
140.3743
141.9003
142.9558
0.9817
0.0000
0.0000
0.0000
R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
Durbin-Watson stat
0.857663
0.857621
1.409940
19867.38
-17619.33
2.994308
Mean dependent var
S.D. dependent var
Akaike info criterion
Schwarz criterion
F-statistic
Prob(F-statistic)
0.015185
3.736604
3.525371
3.528256
20073.27
0.000000
Procesos no cointegrados y regresión espuria
PGD: W1=X1, W2=X2, W3=X3
DY3=nrnd
Representación gráfica
200
100
0
-100
-200
-300
2500
5000
Y3
W1
7500
10000
W2
W3
8
6) La regresión en niveles produce una “regresión espuria”
Dependent Variable: Y3
Method: Least Squares
Date: 10/30/03 Time: 21:25
Sample: 2 10000
Included observations: 9999
Variable
Coefficient
Std. Error
t-Statistic
Prob.
C
W1
W2
W3
44.98617
-0.267909
-1.019153
-1.011407
1.340604
0.015892
0.010783
0.024104
33.55664
-16.85775
-94.51754
-41.96022
0.0000
0.0000
0.0000
0.0000
R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
Durbin-Watson stat
0.600160
0.600040
45.32633
20534493
-52321.03
0.001530
Mean dependent var
S.D. dependent var
Akaike info criterion
Schwarz criterion
F-statistic
Prob(F-statistic)
-62.47053
71.67082
10.46605
10.46894
5000.836
0.000000
7) La estimación en incrementos permite detectar que se trata de un regresión espuria
Dependent Variable: D(Y3)
Method: Least Squares
Date: 10/30/03 Time: 21:26
Sample(adjusted): 3 10000
Included observations: 9998 after adjusting endpoints
Variable
Coefficient
Std. Error
t-Statistic
Prob.
C
D(W1)
D(W2)
D(W3)
-0.023560
-0.026440
0.005314
-0.003316
0.010001
0.009963
0.010022
0.009914
-2.355704
-2.653905
0.530202
-0.334509
0.0185
0.0080
0.5960
0.7380
R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
Durbin-Watson stat
0.000743
0.000443
0.999855
9991.096
-14183.09
2.010209
Mean dependent var
S.D. dependent var
Akaike info criterion
Schwarz criterion
F-statistic
Prob(F-statistic)
-0.023201
1.000076
2.837986
2.840871
2.475989
0.059502
9
8) La estimación en niveles con AR(1) “también” permite detectar que se trata de una
regresión espuria
Dependent Variable: Y3
Method: Least Squares
Date: 10/30/03 Time: 21:28
Sample(adjusted): 3 10000
Included observations: 9998 after adjusting endpoints
Convergence achieved after 13 iterations
Variable
Coefficient
Std. Error
t-Statistic
Prob.
C
W1
W2
W3
AR(1)
-980.9110
-0.026421
0.005302
-0.003332
0.999975
5170.456
0.009963
0.010023
0.009915
0.000139
-0.189715
-2.651854
0.528985
-0.336111
7194.753
0.8495
0.0080
0.5968
0.7368
0.0000
R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
Durbin-Watson stat
Inverted AR Roots
0.999805
0.999805
0.999925
9991.495
-14183.29
2.010080
Mean dependent var
S.D. dependent var
Akaike info criterion
Schwarz criterion
F-statistic
Prob(F-statistic)
-62.47687
71.67161
2.838226
2.841832
12837631
0.000000
1.00
10
Documentos relacionados
Descargar