Programación y Métodos Numéricos Resolución de ecuaciones no

Anuncio
!!
##
$!
$! %%
""
& ' ())*
##
+
$!
$! %%
,, ..
f(x ) ∈ C2 ([ a, b ])
0 -1
5
2 ' &34 +
,-. / )
-) / ,-1 $ %.'
"
h2
0 = f(x*) = f(x 0 + h) = f(x 0 ) + h.f '(x 0 ) + .f "(x 0 + θ.h)
2
+
θ ∈ [0,1]
%"
h2
θ ∈ [0,1]
0 = f(x 0 ) + h.f '(x 0 ) + .f "(x 0 + θ.h)
2
0
" -1 / -) 6 %
(
##
'
'
$!
$! %%
,(.
,(.
"
h2
0 = f(x 0 ) + h.f '(x 0 ) + .f "(x 0 + θ.h)
2
θ ∈ [0,1]
8
"
9.
θ
(9. :
7
##
< " :
< : = ! :
$!
$! %%
<>
,7.
,7.
> ?
h2
0 = f(x 0 ) + h.f '(x 0 ) + .f "(x 0 + θ.h)
2
0 = f(x 0 ) + H.f '(x 0 )
H=−
f(x 0 )
f '(x 0 )
(H :
h)
x * ≈ x1 = x 0 + H = x 0 −
f(x 0 )
f '(x 0 )
;
##
$!
$! %%
,;.
,;.
< 8
-)
/
A
&
' (' 44444
f(xi−1 )
x i = x i −1 −
f '(xi−1 )
4
α
f(x 0 )
tg(α
α
)
=
f’(x0) =
H
f(x 0 )
H=
f '(x 0 )
x2 x1
H
f(x0)
x0
@
##
$!
$! %%
,@.
,@.
4444
C<
8
D
C >
D
C <
8
-
D
......
B
##
:
f(x )
g(x ) = x −
f '(x )
f(xi−1 )
x i = x i −1 −
f '(xi−1 )
$!
$! %%
,B
,B..
& "
- /
,- $ .
EEE :
:
&G 8
H
,-.
&G 8
2 ' &3
|g’(x)| < 1
'
I,-.
f "(x ) ⋅ f(x )
<1
f '(x)
FFF
,-.
0 2 ' &34
"
∀x ∈ [a, b ]
*
##
$!
$! %%
H
5
&
+ f(x ) ∈ C2 ([ a, b ]) '
f(xi )
x i+1 = x i −
f '(xi )
x 0 ∈ [ a,b ]
,*
,*..
∞
0
2 ' &3 ' < 5 H
2 ' &3
>< +
8
i= 0
%
,-. / )
G
2 ' &34
&
-
'
4
J
##
+
,-. / - K , ,-. L
#
$! %
$!
$! %%
,J
,J..
I,-. .'
'
%
0
-
-1
,-. / )
M- K - $ M
+
!
,-.
%
H
#
,
%
%
K
.4
%
G
4
##
¿ |f(xi)| < ε ? N &
8
M ,- .M O ε
$!
$! %%
,, ..
&
M- K - $ M O δ
f(x) = x.e-x
ε
M ,- . M
&
N &
8
&
))
##
:
$!
$! %%
0
&
,, ).
).
"
,-.
I,-.
<
G
%
G
'
%
'
)
##
$!
$! %%
""
I,-.
,-.
- '
' ε
-
)
-
δ
(4
O
< 5 ! + ,,
N >< ! "
9. 0
- $ ,-. L I,-.
79.
M , -.M
R >:< >H
. P ,,
- Q ε. H ,
(9.
-
;9. -
@9.
A
(4
Q δ..
M - K 0 M
0
6
> H
:4
)(
##
$!
$! %%
"" <<WW
:
%
S
"
U
(
>
>
A
−n
Q = . 1 − (1 + i )
i
,
,
T"
)
.
.
'
'
G
>
%
99 ,, ..
,
G
8
U /
@))))
' V
'444.
&
'
/ @;))
0
() V
(n = 40)
)7
(
##
)
$!
$! %%
"" <<WW
99 ,(.
,(.
A
−n
5400
Q = . 1 − (1 + i )
150000 =
. ( 1 − (1 + i)−40 )
i
i
5400
150000 −
. ( 1 − (1 + i)−40 ) = 0
i
5400 1
f(i)
f '(i) =
. . ( 1 − (1 + i)−40 ) − 40.(1 + i)−41
i
i
f(ik −1 )
ik = ik −1 −
f '(ik −1 )
5400
150000 −
. ( 1 − (1 + ik −1 )−40 )
ik −1
ik = ik −1 −
5400 1
.
. ( 1 − (1 + ik −1 )−40 ) − 40.(1 + ik −1 )−41
ik −1
ik −1
);
##
i0 = 0.03
$!
$! %%
i1 = 0.0175
i3 = 0.0191
"" <<WW
99 ,7.
,7.
i2 = 0.0190
i4 = 0.0191
&
4
X
4
H5 "
i0 = 3
H >H
i1 = -244.000
Y <!Z <4
i2 = - 1654265.777
,< 4 4" [
....
.
)@
##
$!
$! %%
"" <<WW
' λ'
<
(9
(9 ,, ..
&
\'
'
8
!
G
,! .
λ −1/ 2 = −2.ln
&
>
&
]"
2.51
K
+
Re⋅ λ 1/ 2 3.71⋅ D
8
\ / )4)))(@
G
'
!
/ )47 '
8
%
! / (4 )@
)B
##
λ
−1/ 2
$!
$! %%
"" <<WW
(9
(9 ,(.
,(.
2.51
K
= −2.ln
+
1/ 2
3.71⋅ D
Re⋅ λ
,+
λ −1/ 2 = −2.ln
.
2.51
0.00025
+
=
5
1/ 2
3.71⋅ 0.3
2 ⋅ 10 ⋅ λ
1.255 ⋅ 10 −5
−4
2.24618
10
= −2.ln
+
⋅
λ 1/ 2
,:
- / λ$
L(.
x = −2.ln ( 1.255 ⋅ 10 −5 ⋅ x + 2.24618 ⋅ 10 −4 )
)*
##
$!
$! %%
"" <<WW
(9
(9 ,7.
,7.
x = −2.ln ( 1.255 ⋅ 10 −5 ⋅ x + 2.24618 ⋅ 10 −4 )
,:
/
x = −2.ln ( a ⋅ x + b )
4(@@ 4 )$@
e = ( a.x + b )
x
& / (4(;B J 4 )$;.
−2
f(x)
e ⋅ ( a.x + b ) = 1
e ⋅ ( a.x + b ) − 1 = 0
2
x
x
2
f '(x ) = e ⋅ ( a.x + b ) + 2.a.e x ⋅ ( a.x + b )
x
2
f '(x ) = e x ⋅ ( a.x + b ) . ( a.x + b + 2.a )
)J
##
$!
$! %%
"" <<WW
(9
(9 ,;.
,;.
e ⋅ ( a.xi + b ) − 1
2
xi
f(xi )
x i+1 = x i −
f '(xi )
x i+1 = x i −
e ⋅ ( a.xi + b ) − 1
2
xi
e xi ⋅ ( a.xi + b ) . ( a.xi + b + 2.a )
e xi ⋅ ( a.xi + b ) . ( a.xi + b + 2.a )
x i+1 = x i −
( a.xi + b ) − e − xi
2
( a.xi + b ) . ( a.xi + b + 2.a )
( a = 1.255 .10-5 y b = 2.24618 .10-4)
xi +1 = xi −
(1.255 ⋅ 10
(1.255 ⋅ 10
−5
−5
.xi + 2.24618 ⋅ 10
)
−4 2
− e − xi
g(xi)
.xi + 2.24618 ⋅ 10 −4 ) . (1.255 ⋅ 10 −5 .xi + 2.49718 ⋅ 10 −4 )
)
##
$!
$! %%
"" <<WW
(9
(9 ,@.
,@.
S
T
(1.255 ⋅ 10−5.x + 2.24618 ⋅ 10−4 ) − e− x
2
g(x ) = x −
(1.255 ⋅ 10
−5
.x + 2.24618 ⋅ 10 −4 ) . (1.255 ⋅ 10 −5 .x + 2.49718 ⋅ 10 −4 )
g(0) = 1.7828121.107 > 0
( | g’(x) | >>> 1 )
g(1) = 5.914310615.106 > 1
( | g’(x) | >> 1 )
g(10) = 354. 6536402 > 10
g(20) = 19. 05878 < 20
, +
g(20.5) = 19. 55462453 < 20.5
0
&
0
.
g(20.5) − g(20)
<1
0.5
-) / ()
)
##
x0 = 20
x1 = 19.05878285
x2 = 18.13341977
x3 = 17.24775965
x4 = 16.45875644
x5 = 15.87532000
$!
$! %%
"" <<WW
| x0 – x1 | = 0.9412...
| x1 – x2 | = 0.9253...
| x2 – x3 | = 0.8856...
| x3 – x4 | = 0.7890...
| x4 – x5 | = 0.5834...
(9
(9 ,B
,B..
f(x1) = 39.17...
f(x2) = 14.34...
f(x3) = 5.020...
f(x4) = 1.6136...
f(x5) = 0.4092...
##
x5 = 15.87532000
x6 = 15.60114244
x7 = 15.55279476
x8 = 15.55151517
x9 = 15.55151430
$!
$! %%
"" <<WW
| x5 – x6 | = 0.2741...
| x6 – x7 | = 0.0483...
| x7 – x8 | = 0.0012...
| x8 – x9 | = 8.7.10-7
(9
(9 ,*
,*..
f(x5) = 0.4092...
f(x6) = 0.0540...
f(x7) = 0.0013...
f(x8) = 9.1.10-7
f(x9) = 4.0.10-9
(
##
$!
$! %%
"" <<WW
(9
(9 ,J
,J..
x* ≈ x 9 = 15.55151430
x = λ −1/ 2
λ* =
λ=
1
x2
1
1
≈
= 0.004134801184
2
2
(x*)
(15.55151430)
>
/ )4)); 7;444
7
;
Documentos relacionados
Descargar