Propiedades de los MCO

Anuncio
Econometría I. DADE
Notas de Clase
PROPIEDADES DE LOS ESTIMADORES MCO
Profesor Rafael de Arce (rafael.dearce@uam.es)
INTRODUCCIÓN
Una vez lograda una expresión matricial para la estimación de los parámetros del
modelo, es pertinente comprobar las propiedades estadísticas de los mismos. En este
sentido, los parámetros MCO y Máximo-verosímiles se calcularán así1:
βˆ = [ X ' X ]−1 X ' Y
donde se ha utilizado la expresión del modelo en forma matricial:
Y = X β +U
nx1
nxk kx1
nx1
Se demuestra, a continuación, que estos estimadores son estimadores lineales,
insesgados, óptimos y consistentes (ELIO2+Consistentes). Es decir, cumplen las
mejores condiciones que estadísticamente se puede pedir a un valor estimado.
En primer lugar, contar con un estimador insesgado nos asegura que el valor esperado
de nuestro cálculo coincide con el valor real del parámetro. Éste requisito es
fundamental a la hora de realizar una estimación, siendo la condición sinequanon para
seguir realizando algunas comprobaciones estadísticas. De hecho, la segunda
demostración que se realiza en este documento sirve para comprobar que los parámetros
estimados también serán óptimos; es decir, serán los que cuenten con la varianza más
pequeña de entre todos los insesgados3.
En tercer lugar, se demostrará que los MCO también son consistentes. Esto quiere decir
que nuestra forma de calcular los parámetros para la estimación daría el resultado
exacto de cálculo de los parámetros reales si en vez de utilizar una muestra usáramos el
total de los datos, sin error alguno. Dicho de otro modo, cuando contamos con el total
del universo para realizar la estimación la varianza de los parámetros calculados es nula,
ya que coinciden exactamente con los reales.
Previamente a realizar estas tres demostraciones, se hará una derivación matemática de
la fórmula de cálculo original de los MCO para comprobar que, dicho cálculo, produce
unos estimadores que son combinación lineal de las perturbaciones aleatorias. Esta
comprobación tendrá importantes consecuencias para poder determinar a posteriori el
intervalo de confianza de los parámetros. Bajo el supuesto habitual de normalidad de las
1
La expresión de cálculo es la misma para ambos cuando la función de densidad de las perturbaciones
aleatorias se distribuye como una normal.
2
3
BLUE en inglés y, a veces, MELI en algunas traducciones.
Quizá se puedan encontrar formas de estimar los parámetros con un menor intervalo de variación, pero
si estos no son insesgados conculcan lo que hemos llamado condición sinequanon para un valor estimado.
Podemos ser muy precisos en una estimación, pero si su valor medio o esperanza no coincide con el valor
real, la utilidad de la estimación quedará en entredicho.
Econometría I. DADE
Notas de Clase
perturbaciones aleatorias, demostrar que los parámetros son una combinación lineal de
éstas lleva inmediatamente a conocer en qué forma se distribuyen nuestros coeficientes
estimados. Sabiendo cuál es su función de densidad, podremos calcular con facilidad en
qué rango o intervalo se mueven éstos e, incluso, podremos diseñar algunos contrastes
estadísticos para averiguar el grado de significatividad de estos (en qué medida
podemos decir que los parámetros son distintos de cero o, dicho de otra forma, en qué
grado las variables a las que multiplican dichos parámetros son relevantes para la
explicación de la variable endógena del modelo).
LINEALIDAD
Para comprobar que los parámetros estimados son una combinación lineal de las
perturbaciones aleatorias del modelo, basta con sustituir “Y” en la expresión de cálculo
de los mismos por su expresión completa (entre “llaves” en la expresión de más abajo):
βˆ = [ X ' X ]−1 X ' Y = {Y = Xβ + u
}=
[X ' X ]−1 X ' Xβ + [X ' X ]−1 X ' u = β + [X ' X ]−1 X ' u =
β + WU
Los estimadores MCO son una combinación lineal de las perturbaciones aleatorias.
Como ya se ha indicado anteriormente, esta comprobación será de especial
trascendencia para acometer la fase de validación del modelo ya que una función lineal
de una variable aleatoria que se distribuye como una normal también se distribuye como
una normal. A partir de esta deducción, podremos determinar los intervalos de
confianza en los que se moverán nuestras estimaciones y podremos realizar hipótesis
sobre el valor real de los parámetros a contrastar estadísticamente.
INSESGADEZ
En este momento tiene interés demostrar que el valor esperado del parámetro estimado
con MCO coincide con el valor real del parámetro.
Para la demostración, partiremos del resultado obtenido en el apartado anterior, cuando
escribimos los parámetros como una combinación lineal de las perturbaciones
aleatorias:
βˆ = β + [ X ' X ]−1 X 'U
−1
−1
E ( βˆ ) = E ( β + [ X ' X ] X 'U ) = β + [X ' X ] X ' E (U ) = {E (U ) = 0} =
E ( βˆ ) = β
El valor esperado del estimador coincide con el real.
ÓPTIMO (EFICIENCIA)
El objeto de esta demostración es comprobar que los parámetros estimados mediante
MCO son los que tienen la varianza más pequeña de entre todos los alternativos
posibles de la familia de los insesgados.
Econometría I. DADE
Notas de Clase
Para demostrar que el estimador MCO es el estimador óptimo se seguirán cuatro pasos4:
1) Se determina el valor de las varianzas de los estimadores MCO.
2) Se propone un estimador alternativo al MCO cualquiera y se comprueba cuál es la
condición necesaria y suficiente para que dicho estimador sea insesgado.
3) Se determinan las varianzas de estos estimadores alternativos
4) Se comparan las varianzas de éste con las de los estimadores MCO.
1) Matriz de varianzas-covarianzas de los estimadores
Partiendo de la expresión hallada al demostrar la linealidad y sabido que este estimador
es insesgado:
βˆ = β + [X ' X ]−1 X 'U Y E ( βˆ ) = β
Podemos calcular la matriz de varianzas-covarianzas de los parámetros MCO del
siguiente modo:
[
] [
X 'U )'] = E [ X ' X ]
]
−1
−1
COV − VAR( βˆ ) = ( βˆ − E ( βˆ ))( βˆ − E ( βˆ ))' = E ( β + [ X ' X ] X 'U − β )( β + [ X ' X ] X 'U − β )' =
[
−1
−1
E ([X ' X ] X 'U )([X ' X ]
−1
−1
−1
] {
X 'UU ' X [X ' X ] = E (UU ' ) = σ I n
−1
2
}
−1
σ [X ' X ] X ' X [X ' X ] = σ [X ' X ]
2
2
−1
COV − VAR( βˆ ) = σ 2 [X ' X ]
Posteriormente, comprobaremos las varianzas de los parámetros así estimadas (los
elementos de la diagonal principal de la expresión anterior) son las más pequeñas o no
de entre todos los estimadores insesgados posibles.
2) Estimador alternativo insesgado
Sumando una matriz P no nula a la expresión del estimador MCO se obtiene la
expresión general de un estimador cualquiera alternativo, del que habrá que comprobar
qué condiciones ha de cumplir para ser insesgado.
En primer lugar, escribimos la expresión de un parámetro alternativo simplemente
adicionando a la fórmula de los MCO una matriz P distinta de cero. Posteriormente,
escribimos este parámetro alternativo sustituyendo “Y” por su valor:
t
[
]
β = [ X ' X ]−1 X '+ P Y = {Y = Xβ + U
[ X'X]
−1
−1
]
X ' Xβ + [X ' X ] X 'U + PXβ + PU =
[β + [X ' X ]
−1
4
}=
X 'U + PXβ + PU
]
Esta demostración también se podría realizar comprobando que la varianza del estimador MCO es la
cota de Cramer Râo.
Econometría I. DADE
Notas de Clase
Una vez contamos con la expresión de un estimador cualquiera alternativo, hay que
comprobar cuáles son las condiciones que este debe cumplir para ser insesgado.
t
−1
E ( β ) = E β + [X ' X ] X 'U + PXβ + PU =
[
[β + [X ' X ]
−1
]
]
X ' E (U ) + PXβ + PE (U ) =
[β + PXβ ]
condición insesgadez PX = 0
t
β = β + [ X ' X ]−1 X 'U + PU
En la expresión anterior, efectivamente es necesario verificar la siguiente condición para
que no haya sesgo: PXβ = 0 . En esta expresión, los parámetros no pueden contener
ningún cero, ya que se supone que la especificación del modelo es correcta (no sobra
ninguna variable explicativa). Por ello, la expresión anterior de la insesgadez de los
parámetros alternativos queda reducida a que: PX = 0 .
3) Matriz de varianzas-covarianzas del estimador alternativo
A continuación, se calcula la expresión de la matriz de varianzas-covarianzas de estos
estimadores que, para ser insesgados, nos permiten suprimir de los cálculos cualquier
producto en el que intervenga PX = 0 (o su transpuesta).
t
t
t
−1
−1
cov− var(β ) = E ( β + [ X ' X ] X 'U + PU − E ( β ))( β + [ X ' X ] X 'U + PU − E ( β ))' =
t
−1
−1
E ( β ) = 0 = E ([ X ' X ] X 'U + PU )([X ' X ] X 'U + PU )' =
[
[
{
} [
−1
]
]
−1
−1
]
−1
E [ X ' X ] X 'UU ' X [ X ' X ] + [X ' X ] X 'UU ' P'+ PUU ' X [ X ' X ] + PUU ' P' =
{E (UU ' ) = σ I } = σ ([X ' X ]
2
2
n
−1
−1
−1
−1
X ' X [ X ' X ] + [ X ' X ] X ' P'+ PX [ X ' X ] + PP ' ) =
−1
= {PX = 0} = σ 2 ([ X ' X ] + PP' )
t
−1
cov− var(β ) = σ 2 ([ X ' X ] + PP ' )
4) Comparación de varianzas
Finalmente, hay que comprobar que efectivamente las varianzas de los estimadores
MCO siempre son inferiores a las varianzas de cualquier otro estimador insesgado:
t
−1
−1
cov − var(β ) = σ 2 ([ X ' X ] + PP ' ) > σ 2 ([ X ' X ] = cov − var( βˆ )
Esta condición se verifica siempre, ya que PP’ es una matriz por su transpuesta, luego
en su diagonal siempre hay números positivos y es precisamente la diagonal principal
donde en la matriz de varianzas-covarianzas están las varianzas.
Econometría I. DADE
Notas de Clase
CONSISTENCIA
Por último, se demostrará que los parámetros MCO son consistentes; es decir, que
ampliando la muestra al total de la población, el valor estimado coincide con el real o,
dicho de otra forma, que cuando contamos con todos los datos, no con una muestra, el
cálculo de MCO da como resultado los parámetros reales, un cálculo exacto, luego con
varianza igual a cero.
p lim( βˆ ) = β
n →∞
≈
p lim(var(βˆ )) = 0
n →∞
Para demostrar esta situación, emplearemos la segunda expresión (la de la probabilidad
asintótica de la varianza de los estimadores). Sustituyendo esta fórmula por su expresión
de cálculo (a la que hemos llegado cuando realizámos la demostración de la eficiencia u
optimalidad de los parámetros) tenemos:
σ 2 X'X 
−1
p lim(var(βˆ )) = σ 2 [ X ' X ] =
n  n 
n →∞
−1
→0
Lo antedicho, podría interpretarse como que, a medida que vamos aumentando el
número de datos en nuestra estimación (“n” tiende a infinito), el valor del producto sería
cada vez más pequeño; es decir, se iría aproximando a cero. En el límite, sería nulo
siempre que el segundo valor del producto (la matriz inversa) fuera calculable.
COROLARIO
En definitiva, después de haber observado que los estimadores MCO cumplen con las
cuatro propiedades propuestas (linealidad, insesgadez, optimalidad y consistencia);
además de saber que contamos con las estimaciones paramétricas con mayores garantías
estadísticas, también podemos saber que los coeficientes del modelo se distribuyen
como una Normal, con media el verdadero valor del parámetro (son insesgados) y
−1
varianza COV − VAR ( βˆ ) = σ 2 [X ' X ] . Es decir:
βˆ → N ( β ; σ 2 [X ' X ]−1 )
En cualquier caso, esta expresión no será de utilidad para determinar los intervalos de
confianza de los parámetros (para conocer entre qué bandas se moverán los verdaderos
valores de los parámetros) salvo que obtengamos un método para estimar la varianza de
las perturbaciones aleatorias que interviene en esta fórmula σ 2 .
Descargar