Las rarezas de los pueblos pequeños

Anuncio
Las rarezas de los pueblos
pequeños
Recuerdo cuando yo era pequeño e iba al colegio que casi todo el mundo
tenía un pueblo al que irse durante las vacaciones. Claro que eran otros
tiempos y la mayor parte de los niños eran hijos de emigrados recientemente
a la ciudad, así que casi todo el mundo tenía “su pueblo”. Ahora la cosa es
diferente. La mayoría de los niños de los colegios son de la ciudad donde
viven, así que está casi mal visto ser “de pueblo”.
Sin embargo, los pueblos tienen muchas cosas interesantes. Suelen ser,
por ejemplo, lugares más tranquilos y donde se lleva una vida más sana.
Pero, aunque poca gente lo sabe, los pueblos se ven acechados por el azar.
Los pueblos son presa fácil de una cosa llamada ley de los pequeños
números. ¿Sabéis en qué consiste?. Trataremos de explicarlo con un ejemplo.
Cuando yo era residente había un pueblo, cuyo nombre no voy a decir para
no ofender a nadie, del que venían casi todos los traslados de enfermedades
raras. Ignorantes de nosotros, llegamos incluso a especular con la
posibilidad de que la abundante pizarra del lugar fuese radiactiva y
tuviese la culpa de que los habitantes de este pueblo tuviesen
aparentemente una incidencia tan alta de patología tan extraña. Sin
embargo, la explicación es mucho más sencilla y no hace falta recurrir a
ninguna teoría conspiratoria. La culpa es de los pequeños números.
Vamos a suponer que el riesgo de padecer fildulastrosis es del uno por
mil (prevalencia Pv = 0,001). Como todos sabemos, esta enfermedad genética
se debe a una mutación que se produce totalmente al azar, por lo que
presentar o no la enfermedad puede asumirse como un suceso de Bernouilli
que sigue una distribución de probabilidad binomial.
Según la prevalencia que hemos elegido, si vamos recorriendo pueblos
esperaremos encontrar un caso de fildulastrosis por cada 1.000 habitantes.
Si llegamos a un pueblo con 5.000 habitantes y tiene solo un caso en lugar
de cinco, ¿qué diríamos?. Pues seguro que pensaríamos que nos encontramos
ante uno más de los beneficios de la vida del campo, mucho más sana, sin
estrés y en contacto con la naturaleza.
¿Y si llegamos a uno todavía más pequeño, de 1.000 habitantes y vemos
que hay cuatro enfermos?. Siguiendo un razonamiento tan estúpido como el
anterior, diríamos que es sin duda un efecto de la vida en el campo, con
menos controles sanitarios y en contacto con animales de granja y demás
guarrerías de la naturaleza.
Pero en los dos casos estaríamos equivocados. El vivir en el campo no
tiene culpa de que haya más o menos enfermos. Vamos a ver qué pasa con
estos pueblos.
Si hay 1.000 habitantes, lo esperado es que haya un caso de
fildulastrosis (Pv=0,001). De hecho, si utilizamos una calculadora de
probabilidad binomial, la probabilidad de que haya al menos un enfermo es
del 63%. Pero si jugamos un poco con la calculadora, podemos ver que la
probabilidad de que haya dos o más es del 26%, de que haya tres o más del
8% y de que haya cuatro o más un 2%. Como veis, la prevalencia se triplica
en uno de cada cuatro pueblos de 1.000 habitantes solo por efecto del azar.
Pensemos ahora que el pueblo tiene 10.000 habitantes. El número de casos
esperados es de 10 (con una probabilidad del 54%). Sin embargo, la
probabilidad de que haya al menos 20 casos cae a un 0,3% y de que haya al
menos 30 se aproxima a cero. Quiere esto decir que el azar es mucho más
caprichoso con los pueblos pequeños. Las muestras grandes son siempre más
precisas y es más difícil que encontremos valores extremos por efecto del
azar.
¿Qué pasa con el otro ejemplo?. Ocurre lo mismo: la muestra pequeña es
más imprecisa y más susceptible a la desviación hacia valores extremos por
mero azar. Como el primer pueblo tiene 5.000 habitantes, esperaremos
encontrar por lo menos cinco casos de fildulastrosis (probabilidad del
61%). Si volvemos a utilizar la calculadora, veremos que la probabilidad de
que haya cuatro o menos es del 44%, de que haya tres o menos del 26% y de
que haya dos o menos del 12%. Quiere decir que en uno de cada ocho pueblos
de 5.000 habitantes, la prevalencia, por puro azar, bajará hasta 0,0004.
¿Qué pasaría con un pueblo más grande, digamos de 10.000 habitantes?. Pues
que esperaríamos 10 casos o menos con una probabilidad del 58%, pero la
probabilidad de que la prevalencia baje a 0,0004 (cuatro casos o menos) cae
hasta un 3%. Y si hacéis el cálculo para una ciudad de 100.000 habitantes,
veréis que la probabilidad de que la prevalencia baje a la mitad es
prácticamente cero.
La ley de los pequeños números se cumple en ambos sentidos. Ya no
tendremos que volver a dar ninguna explicación absurda cuando veamos una
ciudad pequeña con una prevalencia anormalmente alta o baja de una
enfermedad conocida. Sabemos que es capricho del azar y de su ley de los
pequeños números.
Y aquí terminamos por hoy. Espero que nadie se haya ido a Google a
buscar qué es la fildulastrosis, pero si alguien lo ha encontrado, que me
lo explique. El ejemplo que hemos puesto es sencillo para poder demostrar
más fácilmente el asunto de la imprecisión de las muestras pequeñas. En la
vida real probablemente la aparición de ciertas enfermedades pueda
condicionar un mayor riesgo de enfermar en los familiares, lo cual podría
exagerar todavía más el efecto que hemos mostrado y favorecer la aparición
de valores más extremos. Pero esa es otra historia…
Descargar