Informes Técnicos Ciemat 1335 Diciembre, 2014 Study of TJ-II Density Limit Dependence on Magnetic Configuration M. A. Ochando E. Ascasíbar A. Baciero F. Castejón D. López-Bruna J. M. Fontdecaba M. Liniers K. J. McCarthy F. Medina I. Pastor B. Sun B. Zurro and the TJ-II Team GOBIERNO DE ESPAÑA MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas Informes Técnicos Ciemat 1335 Diciembre, 2014 Study of TJ-II Density Limit Dependence on Magnetic Configuration M. A. Ochando E. Ascasíbar A. Baciero F. Castejón D. López-Bruna J. M. Fontdecaba M. Liniers K. J. McCarthy F. Medina I. Pastor B. Sun B. Zurro and the TJ-II Team Laboratorio Nacional de Fusión por Confinamiento Magnético Toda correspondencia en relación con este trabajo debe dirigirse al Servicio de Información y Documentación, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Ciudad Universitaria, 28040-MADRID, ESPAÑA. Las solicitudes de ejemplares deben dirigirse a este mismo Servicio. Los descriptores se han seleccionado del Thesauro del DOE para describir las materias que contiene este informe con vistas a su recuperación. La catalogación se ha hecho utilizando el documento DOE/TIC-4602 (Rev. 1) Descriptive Cataloguing On-Line, y la clasificación de acuerdo con el documento DOE/TIC.4584-R7 Subject Categories and Scope publicados por el Office of Scientific and Technical Information del Departamento de Energía de los Estados Unidos. Se autoriza la reproducción de los resúmenes analíticos que aparecen en esta publicación. Catálogo general de publicaciones oficiales http://www.060.es Depósito Legal: M-26385-2011 ISSN: 1135-9420 NIPO: 721-14-056-6 Editorial CIEMAT CLASIFICACIÓN DOE Y DESCRIPTORES S70 THERMONUCLEAR REACTIONS; TOKAMAK DEVICES; MAGNETIC CONFINEMENT; TJ-II HELIAC; TORSATRON STELLARATORS Study of TJ-II Density Limit Dependence on Magnetic Configuration Ochando, M. A.; Ascasíbar, E.; Baciero, A.; Castejón, F.; López-Bruna, D.; Fontdecaba, J. M.; Liniers, M.; McCarthy, K. J.; Medina, F.; Pastor, I.; Sun, B.; Zurro, B. and the TJ-II Team 4 pp. 6 ref. 5 figs. Abstract: In all stellarator and torsatron devices, a non MHD-driven plasma density limit appears that depends on the absorbed power density and the magnetic field. The dominant mechanism that limits the maximum attainable density in steady state is the thermal collapse. As in the case of reverse field pinches (RFP) and opposite to tokamaks, no current disruption can occur when the thermal collapse develops and, moreover, the plasma can restart if the auxiliary heating is maintained. Depending on plasma composition, thermal instabilities may originate at some point of the plasma column and easily provoke radiative collapses. The use of wall conditioning techniques with low-Z (C, B or Li) materials or divertors to reduce the average impurity radiation strength, and the injection of pellets to centrally fuel the plasma, led to notable extensions of the density limit. These facts reinforce the common belief that the density limit is also an edge phenomenon, as in tokamaks and RFPs. In TJ-II, a medium-size flexible heliac with moderate heating power capability (< 2.6 MW), the main action to control and increase the electron density has been wall coating with low-Z materials. The change from boron to lithium walls has yielded an increment of a factor of two in tauE and 1.6 in maximum electron density at low input power. During the last campaigns, further efforts to improve the plasma-wall interaction have been made to produce more stable plasmas at full power and to widen the operative magnetic configurations map. Estudio del Límite de Densidad en el TJ-II y su Dependencia de la Configuración Magnética. Ochando, M. A.; Ascasíbar, E.; Baciero, A.; Castejón, F.; López-Bruna, D.; Fontdecaba, J. M.; Liniers, M.; McCarthy, K. J.; Medina, F.; Pastor, I.; Sun, B.; Zurro, B. and the TJ-II Team 4 pp. 6 ref. 5 figs. Resumen: En dispositivos de tipo stellarator y torsatron se encuentra una densidad límite que depende de la densidad de potencia absorbida y del campo magnético. El mecanismo dominante que limita la máxima densidad alcanzable en estado estacionario no está relacionado con inestabilidades magneto hidrodinámicas, sino con el llamado colapso térmico. Como en el caso de los dispositivos tipo reverse field pinch y al contrario de lo que ocurre en tokamaks, el colapso no lleva asociadas disrupciones de corriente. Dependiendo de la composición del plasma pueden originarse inestabilidades térmicas localmente, cuya evolución desemboca en el colapso radiativo. Las técnicas para reducir el contenido de impurezas, como el acondicionamiento de la pared de la cámara de vacío con recubrimientos de materiales de muy bajo número atómico (C, B o Li), la utilización de divertores y la inyección de pastillas de hidrógeno para alimentar el plasma desde el centro, han permitido una notable extensión del límite de densidad. En el TJ-II, un stellarator del tipo heliac, con potencia de calentamiento moderada (hasta 2.6 MW), el recubrimiento con litio de la cámara de vacío previamente boronizada, ha permitido incrementar el tiempo de confinamiento de la energía en un factor 2 y en 1.6, el valor de la densidad electrónica máxima. Asímismo, se ha encontrado un régimen de operación en el que el plasma puede recuperarse tras el colapso y alcanzar mayores densidades. La dependencia con la configuración magnética es muy débil. . . 41st EPS Conference on Plasma Physics P2.074 Study of TJ-II density limit dependence on magnetic configuration M. A. Ochando, E. Ascasíbar, A. Baciero, F. Castejón, D. López-Bruna, J. M. Fontdecaba, M. Liniers, K. J. McCarthy, F. Medina, I. Pastor, B. Sun, B. Zurro and the TJ-II Team Laboratorio Nacional de Fusión, CIEMAT, Madrid, Spain Introduction. In all stellarator and heliotron devices, a non MHD-driven plasma density limit appears that depends on the absorbed power density and the magnetic field [1]. The dominant mechanism that limits the maximum attainable density in steady state is the thermal collapse. As in the case of reverse field pinches (RFP) and opposite to tokamaks, no current disruption can occur when the thermal collapse develops and, moreover, the plasma can restart if the auxiliary heating is maintained. Depending on plasma composition, thermal instabilities may originate at some point of the plasma column and easily provoke radiative collapses. The use of wall conditioning techniques with low-Z (C, B or Li) materials or divertors [2, 3] to reduce the average impurity radiation strength, and the injection of pellets to centrally fuel the plasma, led to notable extensions of the density limit. These facts reinforce the common belief that the density limit is also an edge phenomenon, as in tokamaks and RFPs. In TJ-II, a medium-size flexible heliac with moderate heating power capability (< 2.6 MW), the main action to control and increase the electron density has been wall-coating with low-Z materials [4]. The change from boron to lithium walls yielded an increment of a factor of two in τE and 1.6 in maximum electron density [5] at low input power. During the last campaigns, further efforts to improve the plasma-wall interaction have been done to produce more stable plasmas at full power and to widen the operative magnetic configurations map. After the recent installation of one liquid lithium limiter (LLL), a marked reduction of carbon impurities has been achieved, especially in plasmas with strong interaction with the vessel walls. In this report, an updating of TJ-II database is presented, bringing to the foreground the magnetic configurations that yield the larger increments over the Sudo limit [1]. Operation domain. TJ-II is a four-period flexible Heliac with low magnetic shear and major and averaged minor radii of 1.5 m and ≤ 0.22 m, respectively [5], and operated at B=0.95 T. For this study, plasmas of different magnetic configurations were started with electron cyclotron resonance heating (ECRH) (Pin ≈ 600 kW, 2 gyrotrons, at 53.2 GHz, 2nd harmonic, X-mode 41st EPS Conference on Plasma Physics P2.074 polarization) and maintained with two tangentially injected neutral beams (co and counter) delivering Pin ≤ 700 kW port through each. The considered ranges in the parameters of interest are: input power density 0.33 - 1.55 MW/m-3; average electron density 2 - 8 x1019 m-3; minor radius 15.0 - 19.3 x10-2 m; iota2/3 1.33 - 1.63, and plasma volume 0.67-1.1 m-3. 7 0.016 6 lithium. This practice has enabled for the ! 0.012 5 Wdia (kJ) tau exp (s) Since 2008, TJ-II wall is regularly coated with co + cnt NBI cnt NBI co NBI co NBI + ECH extension in plasma parameters range and 4 0.008 density ! 3 control. comparison 2 Figure between 1 shows previous the [yellow 0.004 rectangle, see ref. 5] and present operation 1 00 00 20.004 4 0.008 6 0.012 8 0.01610 19 -3 tau neISS04 (x10 xm0.5) (s) ! Figure 1. Diamagnetic energy versus line average electron density for the studied discharges. The yellow rectangle represents the last reported accessed operation region [5]. regions. Increments of about 1.5 in Wdia and 1.7 in ne have been obtained. The different heating schemes for each shot are indicated in the legend. Comparison of TJ-II data with scalings. Data from TJ-II were considered in a comparative inter-machine analysis to build the unified scaling law for the energy confinement time in stellarators, the ISS04 [6]: ! !EISS04 = 0.134a2.28 R0.64 P-0.61 ne0.54 B0.84 "-2/30.41! tau exp (s) 0.016 In that analysis, data from ECRH-only heated discharges were included, but with a co + cnt NBI cnt NBI co NBI co NBI + ECH 'high ripple' renormalization factor of 0.25. For 0.012 the present set of NBI-heated discharges, as can be seen in Figure 2, it is 0.008 apparent that the renormalization factor 0.004 must be relaxed in a factor of 2. Then, the evident uneven behaviour of TJ-II with 0 0 0.004 0.008 0.012 0.016 tau ISS04 x 0.5 (s) Figure 2. τE (exp) for NBI discharges vs. the intermachine energy confinement time τE (ISS04) x 0.5. respect to other medium size stellarators, ATF/CHS/H-E, [see Table 3 in ref. 6] seems to be corrected. This is due to the fact that the negative effect of large ripple on transport is reduced for large collisionality. In fact, the comparison with the Sudo scaling, as is shown in Figures 3a and 3b, is rather good. However, it is observed that τE (exp) can surpass the limit for all heating schemes, whilst ne (exp) seems to stay below the limit. Several plasma density 41st EPS Conference on Plasma Physics !ESudo = 0.17a2 R0.75 P-0.58 ne0.64 B0.84! a) tau exp (s) 0.016 P2.074 b) neSudo = 0.25(PB /a2 R)0.5 under fresh Li-coated co + cnt NBI cnt NBI co NBI co NBI + ECH at constant magnetic 0.012 configuration and input power to approach the 0.008 maximum density in a 0.004 controlled way. As an 0 0 0.004 0.008 0.012 0.016 tau Sudo (s) example, the behaviour Figure 3. Comparison of TJ-II data with Sudo limits [1] scalings: a) τE (exp) vs. τE (Sudo) and b) ne (exp) vs. ne (Sudo). Note: ne’s are in 1019 m-3 units. . 8 c)! frequency (kHz) 7 nexp 6 5 4 4 3 3 2 2 1 1 H 1 2 3 4 5 6 L 7 8 nSudo 1.2 b)! with increasing !" 100 50 density, ι(a)=1.65, and 390 kW co-injected NB power is represented in Figure 4. From densities 150 #" 100 50 labelled '3', plasmas with this magnetic configuration 0 are prone to enter in H- 0.8 frequency (kHz) nexp / ns 1 of a series of 15 shots configuration 150 0 frequency (kHz) a)! scans were performed 0.6 0.4 0.2 150 $" 100 mode, characterized by an increase of the confinement 50 0 0.5 1 time, likely due to the 1.5 tauexp / taus Figure 4. a) Experimental vs. scaling values for a series of increasing density. b) Shots parameter location in the Sudo scaling map. c) Mirnov spectra from four of the shots with increasing density (1-> 4). ! frequency (kHz) 0 0 150 %" 100 activity. It is seen that the 50 0 reduction of the MHD 1080 1100 1120 time (ms) 1140 1160 ratio τexp/τSudo ≥ 1, whereas nexp/nSudo is kept ≤ 1. Best performance: re-starting discharges. In many of the explored magnetic configurations and especially under high (Pin ≥ 1MW) heating power, discharges that collapse at low densities can recover. Moreover, during the second heating phase, the energy content and the average density increase in a factor of 2 and 3, respectively, whilst radiation only increases in a factor of 0.5 (see Figure 5a). The emissivity profiles reveal the development of a radiative instability that begins at the edge and propagates toward the core. Then, plasma cools down to <Te> ≈ 40 eV, and the density profile becomes strongly peaked, conditions rather adequate to optimize heating beams absorption. During the reheated phase, the plasma core can reach densities of 1 x 1020 m-3, 41st EPS Conference on Plasma Physics P2.074 the profiles shape are the typical of the H-mode, the estimated Zeff can be as low as 1.2, and the MHD activity in the whole plasma column is reduced with respect to H-mode. 200 2 Wdia 1160 1180 0.8 1200 time(ms) 1220 t = 1226 ms emissivity (MW.m-3) t = 1205 ms 0.3 t = 1186 ms 0.1 -1 -0.5 0 ! 0.5 60 1 obtained with regular Licoating !!"!#$% ! 0.2 max=2.6 80 1160 1180 1200 1220 TJ-II walls, leading to a reduction of the low NBI input power, co- 40 20 1140 of plasma-wall interaction. For 60 injection 1160 1180 1200 1220 1240 time (ms) 1140 Higher density plasmas are 40 1240 0.5 0.4 80 20 0.7 0.6 max=2.2 0 frequency (kHz) ne (10 100 SXR Pnbi (MW) 0 1140 b)! 300 4 Conclusions c)! frequency (kHz) ne Prad -19 -3 400 Shot # 33527 6 Prad (kW) m ), Wdia (kJ), SRX (a.u.) a)! 1240 time (ms) Figure 5. a) Time evolution of representative plasma parameters. b) Radial evolution of emissivity for discharges that collapse twice. Inset: Emissivity profiles at collapses and restarting times, marked with arrows. c) Mirnov and bolometer spectra from shot #33527.! ! yields better performance than counterinjection, mainly due to asymmetric fluxes. ECH applied to co-injection NBI or gas base dilution with He does not help to increase plasma density. Although in this study the explored iota range is rather narrow, our results suggest that the scaling dependence on that parameter likely should be reconsidered. MHD activity is strongly reduced approaching the maximum density, when the best confinement is obtained, probably due to the reduction of ion radial orbits for high collisionality. For absorbed powers ≤ 1.55 MW.m-3, in this ripple dominated device, the maximum attainable density, seems to be still limited by thermal collapse. Acknowledgments ‘This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement number 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.’ References [1] Sudo S et al 1990 Nucl. Fusion 30 11 [2] Giannone L et al 2003 Plasma Phys. Control. Fusion 45 1713 [3] Miyazawa J et al 2008 Nucl. Fusion 48 015003 [4] Tabarés F L et al 2008 Plasma Phys. Control. Fusion 50 124051 [5] Ascasíbar E et al Contrib. Plasma Phys. 50 594 [6] Yamada H et al 2005 Nucl. Fusion 45 1684 Study of TJ-II density limit dependence on magnetic configuration M. A. Ochando, E. Ascasíbar, A. Baciero, F. Castejón, D. López-Bruna, J. M. Fontdecaba, M. Liniers, K. J. McCarthy, F. Medina, I. Pastor, B. Sun, B. Zurro and the TJ-II Team Laboratorio Nacional de Fusión por Confinamiento Magnético, CIEMAT, 28040 Madrid, Spain ne0.64 B0.84 τEISS04 = 0.134a2.28 R0.64 P-0.61 ne0.54 B0.84 7/4 12/7 1.7 @ Bt = 0.95 T 5/3 1.65 !/2" 13/8 1.6 8/5 11/7 14/9 1.55 1.5 0.016 0 0.2 0.4 0.6 0.8 1 Previous results 7 0.016 Nucl. Fusion 51 (2011) 094022 co + cnt NBI cnt NBI co NBI co NBI + ECH 6 0.015 3 0.008 3 2 1 2 0.004 0 co + cnt NBI cnt NBI co NBI co NBI + ECH 0.012 0.016 -3 200 2 Wdia -19 ne (10 tau exp (s) ne (experimental ) x 10 4 SXR Pnbi (MW) 0 1160 1180 0 1200 time(ms) 1220 1240 thermal collapse t = 1226 ms -3 frequency (kHz) Density scan at low power 8 n (experimental) 7 6 5 4 4 2 1 2 3 4 5 frequency (kHz) 2 L 6 7 8 n (scaling) S 0.6 0.5 t = 1186 ms 0.3 0.1 -1 0.4 -0.5 0 0.5 0 0.4 1040 1 ! 0.5 50 1040 1180 1200 1220 3 1240 Reheated plasmas are obtained in almost all explored configurations; favoured by fresh Li-coating and full power max=2.6 80 60 40 20 1160 1180 1200 1220 1240 time (ms) Mirnov and central bolometer chord spectra 0 frequency (kHz) Entering in H-mode improves τexp but nexp is limited by input power 1.2 1.0 Conclusions 150 3 100 Higher density plasmas are obtained with regular Li-coating of TJ-II walls and the use of LLL's For low NBI input power, co-injection yields better performance than counter-injection NBI 50 0.8 ECH applied to co-injection NBI or gas base dilution with He does not help to increase plasma density 0 frequency (kHz) 0.6 0.4 0.2 0 0.5 1.0 tauexp / taus 1.5 4 100 MHD activity is strongly reduced approaching the maximum density For absorbed powers ≤ 1.55 MW.m-3, in this ripple dominated device, the maximum 50 0 0 Rotational transform dependence likely should be reconsidered 150 1080 1100 1120 time (ms) 1140 1160 1080 1 time ( ρ = 0.1 1160 0 0 1200 1160 time (ms) 1140 2 <Te>rc0.2≥ <Te>tc0.05 0.4makes it very difficult to assess and Li sputtering, two distinct and chemical bonding effects, how the ratio of H to Li ejection should behave in reality. sputtering theory. Finally, the release of glo Furthermore, the ratio of neutral to ionic sputtering yields, assumed to be 1/3 for metallic lithium [17], could be strongly a H plasma normalized to the modified by the presence of more electronegative species (such a shot to shot basis [16]. The Co+counter injection as carbon and boron) in the mixture. In figure 2, the release of and were obtained by the meas 0.3 1 2 density 3 together 4 5 6 667 nm) 7 in 8the plasma and (at H by He plasma (b) and the line average with 19 -3 gas analyser (RGA) the density-normalized Hα emission (a) are depicted. fairly nexp (xA10 m residual ) constant yield of γ ∼ 0.03–0.04 is deduced for this particular of the residual gas in the vac discharge. The analysis of other similar discharges yields figure, a transient phase chara 0.5 s (∼2 shots) is followed by values between 0.02 and 0.06, in veryMHD good agreement activitywith reduction TRIM code estimates and making allowance for the intrinsic after a few shots. This behav glow-discharge conditioning uncertainties in the estimates. max=2.2 and is interpreted Figure 3 shows the dependence of the Li emission and a H plasma the Hα signal, both density-normalized, on the electron process, thus implying that r 80 temperature at the last closed flux surface, as measured by the which is He-depleted by H bo He beam diagnostic in the60 same toroidal location [16]. Two place between shots. Experim important facts are worth highlighting in the data shown in the between shots are now in prog figure. First, a very similar threshold energy, corresponding to corresponding diffusion coeffi 40 A key ingredient for u electron temperatures of Te ∼ 50 eV, seems to exist for both processes, obviously higher than the expected ones from TRIM improvement is the radiation 20 Li sputtering by He+ ). Second, Edge radiation can be kept sma calculations (Eth ∼ 9 eV for the same energy dependence seems to apply for H desorption that triggers the low radiation Radial evolution of emissivity for discharges that collapse twice. Inset: Emissivity profiles at collapse times. 100 1120 0.1 Figure 2. Left panel: time traces of Hα (lower trace), electron density (right) and ratio between them (upp plasma on a hydrogenated Li wall. Right panel: deduced hydrogen desorption yield for He on Li : H for th time (ms) 150 1080 0.2 1140 50 0.15 Impurity radiation reduction 2 1 100 0 nexp 3 3 1 1 H 150 Hα/ne 0.2 frequency (kHz) emissivity (MW.m ) emissivity (MW.m-3) (Sudo)x x0.5 10 (s) tauneISS04 nexp / ns 100 0.7 0.01612 0.6 1 300 Prad 1140 2 3 H/α ne 0.004 0.8 ne 6 4 10 2 0.25 1 0.6 0.8 80.012 1 line average de -3 0.008 The renormalization factor needed to fulfil the ISS04 scaling (H. Yamada et al., 2005 Nucl. Fusion 45, 1684) is relaxed to 0.5 for NBI heated plasmas. 6 0.008 0 1.5 increment in Wdia and 1.7 in ne Shot # 33527 radiative collapse 4 5 Figure 1. Maximum value of the plasma energy content (left) and energy confinement time (right) versus (black) and Li-coated walls (red symbols). Crosses correspond to ECR and circles correspond to NBI hea 400 6 0.008 2 0.004 4 m ) 0.004 neSudo = 0.25(PB /a2 R)0.5 00 00 3 line average density (1019 m-3) Best performance: re-starting discharges 0.008 0 0.012 8 2 4 tau ISS04 x 0.5 (s) 10 m ) 1 5 0 co + cnt NBI cnt NBI co NBI co NBI + ECH 0.01610 0 0.000 0.012 tautau ISS04 x 0.5 Sudo (s) (s) 0.016 4 0.008 6 0.012 8 -3 (s) ISS0419x 0.5 tau ne (x10 0.016 0.016 12 20.004 0.009 0.006 (+) ECRH B( ) 0.003 Li ( ) 19 0.012 0.012 0.012 tau_E (s) 4 Prad (kW) 0.008 0.008 (Ascasíbar et al. CPP 2010) 0.012 5 00 00 0.004 0.004 0.004 15.00 17.76 18.04 18.20 18.37 18.66 18.77 19.08 19.25 17.11 16.10 15.63 15.16 19.20 19.16 0.666 0.934 0.964 0.981 0.999 1.031 1.043 1.079 1.098 0.867 0.768 0.723 0.680 1.092 1.087 Updated results 0.41 ι-2/3 0.004 0.004 00 00 1.372 1.517 1.539 1.553 1.567 1.593 1.609 1.630 1.650 1.628 1.627 1.628 1.628 1.676 1.668 # Hα, Hα/ne tau exp (s) 0.008 0.008 1.299 1.423 1.447 1.457 1.467 1.492 1.510 1.534 1.551 1.556 1.562 1.564 1.571 1.575 1.591 electron density (10 tau exp (s) 0.012 0.012 a (cm) rotational transform profiles of the most used magnetic configurations 1.45 m ), Wdia (kJ), SRX (a.u.) co + cnt NBI cnt NBI co NBI co NBI + ECH iota(a) Vol. (m3) 3/2 1 0.016 0.016 iota(0) H Desorption Yield (a. u.) P-0.58 1.75 Prad/Pabs R0.75 Co, counter, co + counter NBI and ECH + co NBI injection W_dia (kJ) ISS04 0.17a2 Input power scan: 0.33 MW/m-3 < Pin < 1.55 MW/m-3 frequency (kHz) τESudo = Rotational transform and magnetic well scans in H and H+He plasmas tau exp (s) Comparison with scalings SUDO Operation domain Wdia (kJ) ABSTRACT In all stellarator and torsatron devices, a non MHD-driven plasma density limit appears that depends on the absorbed power density and the magnetic field. The dominant mechanism that limits the maximum attainable density in steady state is the thermal collapse. As in the case of reverse field pinches (RFP) and opposite to tokamaks, no current disruption can occur when the thermal collapse develops and, moreover, the plasma can restart if the auxiliary heating is maintained. Depending on plasma composition, thermal instabilities may originate at some point of the plasma column and easily provoke radiative collapses. The use of wall conditioning techniques with low-Z (C, B or Li) materials or divertors to reduce the average impurity radiation strength, and the injection of pellets to centrally fuel the plasma, led to notable extensions of the density limit. These facts reinforce the common belief that the density limit is also an edge phenomenon, as in tokamaks and RFPs. In TJ-II, a medium-size flexible heliac with moderate heating power capability (< 2.6 MW), the main action to control and increase the electron density has been wall coating with low-Z materials. The change from boron to lithium walls has yielded an increment of a factor of two in tauE and 1.6 in maximum electron density at low input power. During the last campaigns, further efforts to improve the plasma-wall interaction have been made to produce more stable plasmas at full power and to widen the operative magnetic configurations map. attainable density, seems to be limited by thermal collapse 41st Conference on Plasma Physics, Berlin, Germany, 2nd-6th July 2014 1135- 9420