A Simple Version of a Heuristic Derivation of Hamiltonian Danyang Xie and CHINHUA Let us examine a simple problem: max Z ∞ u(c)e−ρt dt 0 subject to : k̇ = g(c, k) f (c, k) ≥ 0 k0 given Think of the integral sign as if it is a summation, and apply Lagrangian blindly: Z ∞ Z ∞ h Z ∞ i −ρt −ρt L= u(c)e dt + μ g(c, k) − k̇ e dt + λf (c, k)e−ρt dt 0 0 0 Use integration by parts: Z ∞ Z μk̇e−ρt dt = kμe−ρt |∞ − 0 0 ∞ 0 k(μ̇ − ρμ)e−ρt dt Thus, L = Z ∞ u(c)e −ρt dt + 0 Z 0 ∞ [μg(c, k) + k(μ̇ − ρμ)] e−ρt dt Z ∞ λf (c, k)e−ρt dt − kμe−ρt |∞ + 0 Z ∞0 = [u(c) + μg(c, k) + λf (c, k)] e−ρt dt 0 Z ∞ (μ̇ − ρμ) ke−ρt dt − lim μt kt e−ρt + k0 μ0 + t→∞ 0 Z ∞ Z ∞ = H(c, k, μ, λ)e−ρt dt + (μ̇ − ρμ) ke−ρt dt − lim μke−ρt + k0 μ0 0 FOCs: 0 ∂L ∂H = =0 ∂c ∂c ∂H ∂L = + (μ̇ − ρμ) = 0 ∂k ∂k which can be rewritten as: μ̇ = ρμ − 1 ∂H ∂k